Система лінійних рівнянь має єдине рішення якщо. Калькулятор онлайн


Рішення систем лінійних алгебраїчних рівнянь(СЛАУ), безсумнівно, є найважливішою темоюкурсу лінійної алгебри. Безліч завдань з усіх розділів математики зводиться до вирішення систем лінійних рівнянь. Цими чинниками пояснюється причина створення цієї статті. Матеріал статті підібраний та структурований так, що за його допомогою Ви зможете

  • підібрати оптимальний методвирішення Вашої системи лінійних рівнянь алгебри,
  • вивчити теорію обраного методу,
  • вирішити Вашу систему лінійних рівнянь, розглянувши докладно розібрані рішення характерних прикладів та завдань.

Короткий опис статті.

Спочатку дамо всі необхідні визначення, поняття та введемо позначення.

Далі розглянемо методи розв'язання систем лінійних рівнянь алгебри, в яких число рівнянь дорівнює числу невідомих змінних і які мають єдине рішення. По-перше, зупинимося на методі Крамера, по-друге, покажемо матричний методрозв'язання таких систем рівнянь, по-третє, розберемо метод Гауса (метод послідовного виключенняневідомих змінних). Для закріплення теорії обов'язково вирішимо кілька СЛАУ у різний спосіб.

Після цього перейдемо до вирішення систем лінійних рівнянь алгебри загального вигляду, В яких число рівнянь не збігається з числом невідомих змінних або основна матриця системи є виродженою. Сформулюємо теорему Кронекера – Капеллі, яка дозволяє встановити спільність СЛАУ. Розберемо рішення систем (у разі їхньої спільності) за допомогою поняття базисного мінору матриці. Також розглянемо метод Гауса і докладно опишемо рішення прикладів.

Обов'язково зупинимося на структурі загального рішення однорідних та неоднорідних систем лінійних рівнянь алгебри. Дамо поняття фундаментальної системирішень та покажемо, як записується загальне рішення СЛАУ за допомогою векторів фундаментальної системи рішень. Для найкращого розуміння розберемо кілька прикладів.

Наприкінці розглянемо системи рівнянь, що зводяться до лінійних, і навіть різні завдання, під час вирішення яких виникають СЛАУ.

Навігація на сторінці.

Визначення, поняття, позначення.

Розглянемо системи з p лінійних алгебраїчних рівнянь з n невідомими змінними (p може дорівнювати n ) виду

Невідомі змінні - коефіцієнти (деякі дійсні або комплексні числа), - вільні члени (також дійсні чи комплексні числа).

Таку форму запису СЛАУ називають координатною.

У матричній формізапису ця система рівнянь має вигляд ,
де - основна матриця системи, - матриця-стовпець невідомих змінних, - матриця-стовпець вільних членів.

Якщо до матриці А додати як (n+1)-ого ​​стовпця матрицю-стовпець вільних членів, то отримаємо так звану розширену матрицюсистеми лінійних рівнянь Зазвичай розширену матрицю позначають буквою Т , а стовпець вільних членів відокремлюють вертикальною лінією від інших стовпців, тобто,

Рішенням системи лінійних рівнянь алгебриназивають набір значень невідомих змінних , що обертає всі рівняння системи у тотожності. Матричне рівнянняпри даних значеннях невідомих змінних також звертається до тотожності.

Якщо система рівнянь має хоча одне рішення, вона називається спільної.

Якщо система рівнянь рішень немає, вона називається несумісний.

Якщо СЛАУ має єдине рішення, її називають певною; якщо рішень більше одного, то – невизначеною.

Якщо вільні члени всіх рівнянь системи дорівнюють нулю , то система називається однорідний, в іншому випадку - неоднорідний.

Розв'язання елементарних систем лінійних рівнянь алгебри.

Якщо число рівнянь системи дорівнює кількості невідомих змінних і визначник її основної матриці не дорівнює нулю, то такі СЛАУ будемо називати елементарними. Такі системи рівнянь мають єдине рішення, причому у разі однорідної системи всі невідомі змінні дорівнюють нулю.

Такі СЛАУ ми починали вивчати у середній школі. При їх вирішенні ми брали якесь одне рівняння, висловлювали одну невідому змінну через інші і підставляли її в рівняння, що залишилися, потім брали наступне рівняння, висловлювали наступну невідому змінну і підставляли в інші рівняння і так далі. Або користувалися методом додавання, тобто складали два або більше рівнянь, щоб виключити деякі невідомі змінні. Не будемо докладно зупинятися цих методах, оскільки вони насправді є модифікаціями методу Гаусса.

Основними методами розв'язання елементарних систем лінійних рівнянь є метод Крамера, матричний метод та метод Гаусса. Розберемо їх.

Вирішення систем лінійних рівнянь методом Крамера.

Нехай нам потрібно вирішити систему лінійних рівнянь алгебри

в якій число рівнянь дорівнює числу невідомих змінних та визначник основної матриці системи відмінний від нуля, тобто .

Нехай – визначник основної матриці системи, а - визначники матриць, що виходять з А заміною 1-го, 2-го, …, n-огостовпця відповідно на стовпець вільних членів:

За таких позначень невідомі змінні обчислюються за формулами методу Крамера як . Так знаходиться рішення системи лінійних рівнянь алгебри методом Крамера.

приклад.

Методом Крамера .

Рішення.

Основна матриця системи має вигляд . Обчислимо її визначник (при необхідності дивіться статтю):

Так як визначник основної матриці системи відмінний від нуля, система має єдине рішення, яке може бути знайдено методом Крамера.

Складемо та обчислимо необхідні визначники (визначник отримуємо, замінивши в матриці А перший стовпець на стовпець вільних членів, визначник - замінивши другий стовпець на стовпець вільних членів, - замінивши третій стовпець матриці А на стовпець вільних членів):

Знаходимо невідомі змінні за формулами :

Відповідь:

Основним недоліком методу Крамера (якщо можна назвати недоліком) є трудомісткість обчислення визначників, коли кількість рівнянь системи більше трьох.

Вирішення систем лінійних рівнянь алгебри матричним методом (за допомогою зворотної матриці).

Нехай система лінійних рівнянь алгебри задана в матричній формі , де матриця A має розмірність n на n і її визначник відмінний від нуля.

Оскільки , то матриця А – оборотна, тобто існує зворотна матриця. Якщо помножити обидві частини рівності на ліворуч, то отримаємо формулу для знаходження матриці-стовпця невідомих змінних. Так ми отримали рішення системи лінійних рівнянь алгебри матричним методом.

приклад.

Розв'яжіть систему лінійних рівнянь матричним способом.

Рішення.

Перепишемо систему рівнянь у матричній формі:

Так як

то СЛАУ можна вирішувати матричним методом. За допомогою зворотної матриці рішення цієї системи може бути знайдено як .

Побудуємо зворотну матрицю за допомогою матриці з алгебраїчних доповненьелементів матриці А (при необхідності дивіться статтю):

Залишилося обчислити - матрицю невідомих змінних, помноживши зворотну матрицю на матрицю-стовпець вільних членів (при необхідності дивіться статтю):

Відповідь:

або в іншому записі x 1 = 4, x 2 = 0, x 3 = -1.

Основна проблема при знаходженні рішення систем лінійних рівнянь алгебри матричним методом полягає в трудомісткості знаходження зворотної матриці, особливо для квадратних матриць порядку вище третього.

Вирішення систем лінійних рівнянь методом Гаусса.

Нехай нам потрібно знайти рішення системи з n лінійних рівнянь із n невідомими змінними
визначник основної матриці якої відмінний від нуля.

Суть методу Гаусаполягає в послідовному виключенні невідомих змінних: спочатку виключається x 1 зі всіх рівнянь системи, починаючи з другого, далі виключається x 2 зі всіх рівнянь, починаючи з третього, і так далі, поки в останньому рівнянні залишиться тільки невідома змінна x n . Такий процес перетворення рівнянь системи для послідовного виключення невідомих змінних називається прямим ходом методу Гауса. Після завершення прямого ходу методу Гауса з останнього рівняння знаходиться x n, за допомогою цього значення з передостаннього рівняння обчислюється x n-1 і так далі з першого рівняння знаходиться x 1 . Процес обчислення невідомих змінних під час руху від останнього рівняння системи до першого називається зворотним ходом методу Гауса.

Коротко опишемо алгоритм виключення невідомих змінних.

Вважатимемо, що , оскільки ми можемо цього домогтися перестановкою місцями рівнянь системи. Виключимо невідому змінну x 1 зі всіх рівнянь системи, починаючи з другого. Для цього до другого рівняння системи додамо перше, помножене на , до третього рівняння додамо перше, помножене на , і так далі, до n-го рівняння додамо перше, помножене на . Система рівнянь після таких перетворень набуде вигляду

де , а .

До такого ж результату ми дійшли б, якби висловили x 1 через інші невідомі змінні в першому рівнянні системи і отриманий вираз підставили у всі інші рівняння. Таким чином, змінна x 1 виключена зі всіх рівнянь, починаючи з другого.

Далі діємо аналогічно, але лише з частиною отриманої системи, яка зазначена на малюнку

Для цього до третього рівняння системи додамо друге, помножене на , до четвертого рівняння додамо друге, помножене на , і так далі, до n-го рівняння додамо друге, помножене на . Система рівнянь після таких перетворень набуде вигляду

де , а . Таким чином, змінна x 2 виключена зі всіх рівнянь, починаючи з третього.

Далі приступаємо до виключення невідомої x 3 при цьому діємо аналогічно з зазначеною на малюнку частиною системи

Так продовжуємо прямий хід методу Гаусса доки система не набуде вигляду

З цього моменту починаємо зворотний хід методу Гауса: обчислюємо x n з останнього рівняння як за допомогою отриманого значення x n знаходимо x n-1 з передостаннього рівняння, і так далі, знаходимо x 1 з першого рівняння.

приклад.

Розв'яжіть систему лінійних рівнянь методом Гауса.

Рішення.

Виключимо невідому змінну x 1 з другого та третього рівняння системи. Для цього до обох частин другого та третього рівнянь додамо відповідні частини першого рівняння, помножені на і відповідно:

Тепер із третього рівняння виключимо x 2 , додавши до його лівої та правої частин ліву та праву частини другого рівняння, помножені на :

На цьому прямий хід методу Гауса закінчено, починаємо зворотний хід.

З останнього рівняння отриманої системи рівнянь знаходимо x 3 :

З другого рівняння отримуємо.

З першого рівняння знаходимо невідому змінну, що залишилася, і цим завершуємо зворотний хід методу Гауса.

Відповідь:

X 1 = 4, x 2 = 0, x 3 = -1.

Вирішення систем лінійних рівнянь алгебри загального виду.

У загальному випадкучисло рівнянь системи p не збігається з числом невідомих змінних n:

Такі СЛАУ можуть мати рішень, мати єдине рішення чи мати нескінченно багато рішень. Це твердження відноситься до систем рівнянь, основна матриця яких квадратна і вироджена.

Теорема Кронекер - Капеллі.

Перш ніж знаходити розв'язання системи лінійних рівнянь, необхідно встановити її спільність. Відповідь на питання, коли СЛАУ спільна, а коли несумісна, дає теорема Кронекера - Капеллі:
для того, щоб система з p рівнянь з n невідомими (p може бути дорівнює n) була спільна необхідно і достатньо, щоб ранг основної матриці системи був дорівнює рангурозширеної матриці, тобто Rank(A)=Rank(T) .

Розглянемо з прикладу застосування теореми Кронекера – Капеллі визначення спільності системи лінійних рівнянь.

приклад.

З'ясуйте, чи має система лінійних рівнянь рішення.

Рішення.

. Скористаємося методом обрамляють мінорів. Мінор другого порядку відмінний від нуля. Переберемо його мінори третього порядку:

Так як всі мінори третього порядку, що облямовують, дорівнюють нулю, то ранг основної матриці дорівнює двом.

У свою чергу ранг розширеної матриці дорівнює трьом, оскільки мінор третього порядку

відмінний від нуля.

Таким чином, Rang(A) , отже, по теоремі Кронекера – Капеллі можна дійти невтішного висновку, що вихідна система лінійних рівнянь несовместна.

Відповідь:

Система рішень немає.

Отже, ми навчилися встановлювати несумісність системи з допомогою теореми Кронекера – Капеллі.

А як же знаходити рішення СЛАУ, якщо встановлено її спільність?

Для цього нам знадобиться поняття базисного мінору матриці та теорема про ранг матриці.

Мінор найвищого порядку матриці А, відмінний від нуля, називається базисним.

З визначення базисного мінору випливає, що його порядок дорівнює рангу матриці. Для ненульової матриці базисних мінорів А може бути кілька, один базисний мінор є завжди.

Наприклад розглянемо матрицю .

Всі мінори третього порядку цієї матриці дорівнюють нулю, так як елементи третього рядка цієї матриці є сумою відповідних елементів першого і другого рядків.

Базисними є такі мінори другого порядку, оскільки вони відмінні від нуля

Мінори базисними є, оскільки рівні нулю.

Теорема про ранг матриці.

Якщо ранг матриці порядку p на n дорівнює r то всі елементи рядків (і стовпців) матриці, що не утворюють обраний базисний мінор, лінійно виражаються через відповідні елементи рядків (і стовпців), що утворюють базисний мінор.

Що нам дає теорема про ранг матриці?

Якщо з теоремі Кронекера – Капеллі ми встановили спільність системи, то вибираємо будь-який базисний мінор основний матриці системи (його порядок дорівнює r ), і виключаємо з системи всі рівняння, які утворюють обраний базисний мінор. Отримана таким чином СЛАУ буде еквівалентна вихідної, так як відкинуті рівняння все одно зайві (вони згідно з теоремою про ранг матриці є лінійною комбінацією рівнянь, що залишилися).

У результаті після відкидання зайвих рівнянь системи можливі два випадки.

    Якщо кількість рівнянь r в отриманій системі дорівнюватиме кількості невідомих змінних, то вона буде певною і єдине рішення можна буде знайти методом Крамера, матричним методом або методом Гауса.

    приклад.

    .

    Рішення.

    Ранг основної матриці системи дорівнює двом, оскільки мінор другого порядку відмінний від нуля. Ранг розширеної матриці також дорівнює двом, оскільки єдиний мінор третього порядку дорівнює нулю

    а розглянутий вище мінор другого порядку відмінний від нуля. З теореми Кронекера – Капеллі можна стверджувати спільність вихідної системи лінійних рівнянь, оскільки Rank(A)=Rank(T)=2 .

    Як базисний мінор візьмемо . Його утворюють коефіцієнти першого та другого рівнянь:

    Третє рівняння системи не бере участі в освіті базисного мінору, тому виключимо його із системи на підставі теореми про ранг матриці:

    Так ми отримали елементарну систему лінійних рівнянь алгебри. Вирішимо її методом Крамера:

    Відповідь:

    x 1 = 1, x 2 = 2.

    Якщо число рівнянь r отриманої СЛАУ менше числаневідомих змінних n , то лівих частинах рівнянь залишаємо доданки, утворюють базисний мінор, інші доданки переносимо у праві частини рівнянь системи з протилежним знаком.

    Невідомі змінні (їх r штук), що залишилися в лівих частинах рівнянь, називаються основними.

    Невідомі змінні (їх n - r штук), які опинилися у правих частинах, називаються вільними.

    Тепер вважаємо, що вільні невідомі змінні можуть набувати довільних значень, при цьому r основних невідомих змінних висловлюватимуться через вільні невідомі змінні єдиним чином. Їх вираз можна знайти, вирішуючи отриману СЛАУ методом Крамера, матричним методом або методом Гауса.

    Розберемо з прикладу.

    приклад.

    Розв'яжіть систему лінійних алгебраїчних рівнянь .

    Рішення.

    Знайдемо ранг основної матриці системи методом обрамляють мінорів. Як ненульовий мінор першого порядку візьмемо a 1 1 = 1 . Почнемо пошук ненульового мінору другого порядку, що облямовує даний мінор:

    Так ми знайшли ненульовий мінор другого порядку. Почнемо пошук ненульового мінера третього порядку, що облямовує:

    Таким чином, ранг основної матриці дорівнює трьом. Ранг розширеної матриці також дорівнює трьом, тобто система спільна.

    Знайдений ненульовий мінор третього порядку візьмемо як базисний.

    Для наочності покажемо елементи, що утворюють базовий мінор:

    Залишаємо в лівій частині рівнянь системи доданки, що беруть участь у базисному мінорі, інші переносимо з протилежними знаками у праві частини:

    Надамо вільним невідомим змінним x 2 і x 5 довільні значення, тобто, приймемо де - довільні числа. При цьому СЛАУ набуде вигляду

    Отриману елементарну систему лінійних рівнянь алгебри вирішимо методом Крамера:

    Отже, .

    У відповіді не забуваємо зазначити вільні невідомі змінні.

    Відповідь:

    Де – довільні числа.

Підведемо підсумок.

Щоб вирішити систему лінійних рівнянь алгебри загального виду, спочатку з'ясовуємо її спільність, використовуючи теорему Кронекера - Капеллі. Якщо ранг основної матриці не дорівнює рангу розширеної матриці, то робимо висновок про несумісність системи.

Якщо ранг основної матриці дорівнює рангу розширеної матриці, вибираємо базисний мінор і відкидаємо рівняння системи, які беруть участь у освіті обраного базисного мінора.

Якщо порядок базисного мінору дорівнює кількості невідомих змінних, то СЛАУ має єдине рішення, яке знаходимо будь-яким відомим нам методом.

Якщо порядок базисного мінору менше числа невідомих змінних, то лівої частини рівнянь системи залишаємо доданки з основними невідомими змінними, інші доданки переносимо у праві частини і надаємо вільним невідомим змінним довільні значення. З отриманої системи лінійних рівнянь знаходимо основні невідомі змінні методом Крамера, матричним методом чи методом Гаусса.

Метод Гауса для вирішення систем лінійних рівнянь алгебри загального виду.

Методом Гауса можна вирішувати системи лінійних рівнянь алгебри будь-якого виду без попереднього їх дослідження на спільність. Процес послідовного виключення невідомих змінних дозволяє дійти невтішного висновку як про спільності, і про несумісності СЛАУ, а разі існування рішення дає можливість знайти його.

З погляду обчислювальної роботи метод Гауса є кращим.

Дивіться його докладний описі розібрані приклади у статті метод Гауса для вирішення систем лінійних рівнянь алгебри загального виду .

Запис загального рішення однорідних та неоднорідних систем алгебраїчних ліній за допомогою векторів фундаментальної системи рішень.

У цьому розділі мова піде про спільні однорідні і неоднорідні системи лінійних рівнянь алгебри, що мають безліч рішень.

Розберемося спочатку з однорідними системами.

Фундаментальною системою рішеньоднорідної системи з p лінійних рівнянь алгебри з n невідомими змінними називають сукупність (n – r) лінійно незалежних рішень цієї системи, де r – порядок базисного мінору основної матриці системи.

Якщо визначити лінійно незалежні рішення однорідної СЛАУ як X (1) , X (2) , …, X (n-r) (X (1) , X (2) , …, X (n-r) – це матриці стовпці розмірності n на 1 ) , то загальне рішення цієї однорідної системи представляється у вигляді лінійної комбінації векторів фундаментальної системи рішень з довільними постійними коефіцієнтамиЗ 1, З 2, …, З (n-r), тобто, .

Що означає термін загальне рішення однорідної системи лінійних рівнянь алгебри (орослау)?

Сенс простий: формула задає всі можливі рішення вихідної СЛАУ, іншими словами, взявши будь-який набір значень довільних постійних С1, С2, …, С(n-r), за формулою ми отримаємо одне з рішень вихідної однорідної СЛАУ.

Таким чином, якщо ми знайдемо фундаментальну систему рішень, ми зможемо задати всі рішення цієї однорідної СЛАУ як .

Покажемо процес побудови фундаментальної системи рішень однорідної СЛАУ.

Вибираємо базовий мінор вихідної системи лінійних рівнянь, виключаємо всі інші рівняння із системи та переносимо у праві частини рівнянь системи з протилежними знаками всі складові, що містять вільні невідомі змінні. Надамо вільним невідомим змінним значення 1,0,0,...,0 і обчислимо основні невідомі, вирішивши отриману елементарну систему лінійних рівнянь будь-яким способом, наприклад, методом Крамера. Так буде отримано X(1) – перше рішення фундаментальної системи. Якщо надати вільним невідомим значення 0,1,0,0,…,0 і обчислити у своїй основні невідомі, отримаємо X (2) . І так далі. Якщо вільним невідомим змінним надамо значення 0,0, ..., 0,1 і обчислимо основні невідомі, то отримаємо X (n-r). Так буде побудовано фундаментальну систему рішень однорідної СЛАУ і може бути записано її загальне рішення у вигляді.

Для неоднорідних систем лінійних рівнянь алгебри загальне рішення подається у вигляді , де - загальне рішення відповідної однорідної системи, а - приватне рішення вихідної неоднорідної СЛАУ, яке ми отримуємо, надавши вільним невідомим значення 0,0, ..., 0 і обчисливши значення основних невідомих.

Розберемо з прикладів.

приклад.

Знайдіть фундаментальну систему рішень та загальне рішення однорідної системи лінійних рівнянь алгебри .

Рішення.

Ранг основної матриці однорідних систем лінійних рівнянь завжди дорівнює рангу розширеної матриці. Знайдемо ранг основної матриці методом обрамляють мінорів. Як ненульовий мінор першого порядку візьмемо елемент a 1 1 = 9 основний матриці системи. Знайдемо ненульовий мінор другого порядку, що облямовує:

Мінор другого порядку, відмінний від нуля, знайдено. Переберемо його мінори третього порядку в пошуках ненульового:

Всі обрамляють мінори третього порядку дорівнюють нулю, отже, ранг основної і розширеної матриці дорівнює двом. Базисним мінором візьмемо. Зазначимо для наочності елементи системи, що його утворюють:

Третє рівняння вихідної СЛАУ не бере участі в утворенні базисного мінору, тому може бути виключено:

Залишаємо у правих частинах рівнянь доданки, що містять основні невідомі, а у праві частини переносимо доданки з вільними невідомими:

Побудуємо фундаментальну систему розв'язків вихідної однорідної системи лінійних рівнянь. Фундаментальна система рішень даної СЛАУ складається з двох рішень, оскільки вихідна СЛАУ містить чотири невідомі змінні, а порядок її базисного мінору дорівнює двом. Для знаходження X (1) надамо вільним невідомим змінним значення x 2 = 1, x 4 = 0 тоді основні невідомі знайдемо з системи рівнянь
.

Рішення. A = . Знайдемо r(А). Так як матрицяА має порядок 3х4, то найвищий порядокмінорів дорівнює 3. При цьому всі мінори третього порядку дорівнюють нулю (перевірити самостійно). Значить, r(А)< 3. Возьмем главный базисний мінор = -5-4 = -9 0. Отже r(А) =2.

Розглянемо матрицю З = .

Мінор третього порядку 0. Отже, r(C) = 3.

Оскільки r(А) r(C) , система несумісна.

приклад 2.Визначити спільність системи рівнянь

Вирішити цю систему, якщо вона виявиться спільною.

Рішення.

A = , C = . Очевидно, що r(А) ≤ 3, r(C) ≤ 4. Оскільки detC = 0, то r(C)< 4. Розглянемо мінор третього порядку, розташований у лівому верхньому кутку матриці А і С: = -23 0. Отже, r(А) = r(C) = 3.

Число невідомих у системі n=3. Отже система має єдине рішення. При цьому четверте рівняння становить суму перших трьох і його можна не брати до уваги.

За формулами Крамераотримуємо x1=-98/23, x2=-47/23, x3=-123/23.

2.4. Матричний метод. Mетод Гауса

Систему nлінійних рівняньз nневідомими можна вирішувати матричним методомза формулою X = A -1 B (при Δ 0), яка виходить із (2) множенням обох частин на А-1.

Приклад 1. Розв'язати систему рівнянь

матричним методом (у параграфі 2.2 цю систему було вирішено за формулами Крамера)

Рішення. Δ = 10 0 А = – невироджена матриця.

= (переконайтеся у цьому самостійно, здійснивши необхідні обчислення).

A -1 = (1/Δ)х = .

Х = A -1 В = х = .

Відповідь: .

З практичного поглядуматричний метод та формули Крамерапов'язані з великим обсягом обчислень, тому перевага надається методом Гауса, який полягає у послідовному виключенні невідомих. Для цього систему рівнянь приводять до еквівалентної системи з трикутною розширеною матрицею (всі елементи нижче головної діагоналі рівні нулю). Ці дії називають прямим ходом. З отриманої трикутної системи змінні знаходять за допомогою послідовних підстановок (зворотний хід).

Приклад 2. Методом Гауса вирішити систему

(Вище ця система була вирішена за формулою Крамера та матричним методом).

Рішення.

Прямий хід. Запишемо розширену матрицю та за допомогою елементарних перетвореньнаведемо її до трикутного вигляду:

~ ~ ~ ~ .

Отримаємо систему

Зворотній хід.З останнього рівняння знаходимо х 3 = -6 і підставимо це значення на друге рівняння:

х 2 = - 11/2 - 1/4х 3 = - 11/2 - 1/4(-6) = - 11/2 + 3/2 = -8/2 = -4.

х 1 = 2 -х 2 + х 3 = 2+4-6 = 0.

Відповідь: .

2.5. Загальне рішення системи лінійних рівнянь

Нехай дана система лінійних рівнянь = b i(i=). Нехай r(A) = r(C) = r, тобто. система спільна. Будь-який мінор порядку r, відмінний від нуля, є базисним мінором.Не обмежуючи спільності, вважатимемо, що базисний мінор розташовується в перших r (1 ≤ r ≤ min(m,n)) рядках і стовпцях матриці А. Відкинувши останні m-r рівняньсистеми, запишемо укорочену систему:


яка еквівалентна вихідній. Назвемо невідомі х 1 ,….х rбазисними, а х r +1 ,…, х rвільними та перенесемо доданки, що містять вільні невідомі, у праву частину рівнянь укороченої системи. Отримуємо систему щодо базисних невідомих:

кототора для кожного набору значень вільних невідомих х r +1 = З 1, ..., х n = З n-rмає єдине рішення х 1 (З 1, ..., З n-r), ..., х r (З 1, ..., З n-r),що знаходиться за правилом Крамера.

Відповідне рішенняукороченої, а отже, і вихідної системи має вигляд:

Х(З 1, ..., З n-r) = - загальне рішення системи.

Якщо у загальному рішенні вільним невідомим надати якісь числові значення, то отримаємо рішення лінійної системи, називане приватним .

приклад. Встановити спільність та знайти загальне рішення системи

Рішення. А = , З = .

Так як r(A)= r(C) = 2 (переконайтеся у цьому самостійно), то вихідна система спільна і має безліч рішень (оскільки r< 4).

Системи рівнянь набули широкого застосування в економічній галузі при математичному моделюванні різних процесів. Наприклад, під час вирішення завдань управління та планування виробництва, логістичних маршрутів (транспортне завдання) чи розміщення устаткування.

Системи рівняння використовуються у галузі математики, а й фізики, хімії та біології, під час вирішення завдань з знаходження чисельності популяції.

Системою лінійних рівнянь називають два і більше рівняння з кількома змінними, котрим необхідно знайти загальне рішення. Таку послідовність чисел, коли всі рівняння стануть вірними рівностями чи довести, що послідовності немає.

Лінійне рівняння

Рівняння виду ax+by=c називають лінійними. Позначення x, y – це невідомі, значення яких треба знайти, b, a – коефіцієнти при змінних, c – вільний член рівняння.
Рішення рівняння шляхом побудови його графіка матиме вигляд прямої, всі точки якої є рішенням багаточлена.

Види систем лінійних рівнянь

Найбільш простими вважаються приклади систем лінійних рівнянь із двома змінними X та Y.

F1(x, y) = 0 і F2(x, y) = 0, де F1,2 – функції, а (x, y) – змінні функцій.

Розв'язати систему рівнянь - це означає знайти такі значення (x, y), при яких система перетворюється на правильну рівність або встановити, що відповідних значень x та y не існує.

Пара значень (x, y), записана як координат точки, називається рішенням системи лінійних рівнянь.

Якщо системи мають одне загальне рішення чи рішення немає їх називають рівносильними.

Однорідними системами лінійних рівнянь є системи права частинаяких дорівнює нулю. Якщо права після знака " рівність " частина має значення чи виражена функцією, така система неоднорідна.

Кількість змінних може бути набагато більше двох, тоді слід говорити про приклад системи лінійних рівнянь із трьома змінними або більше.

Зіткнувшись із системами школярі припускають, що кількість рівнянь обов'язково має збігатися з кількістю невідомих, але це не так. Кількість рівнянь у системі залежить від змінних, їх може бути скільки завгодно багато.

Прості та складні методи вирішення систем рівнянь

Немає загального аналітичного способу вирішення подібних систем, всі методи засновані на чисельних рішеннях. У шкільному курсі математики докладно описані такі методи як перестановка, алгебраїчне додавання, підстановка, а також графічний і матричний спосібрішення методом Гауса.

Основне завдання при навчанні способів вирішення – це навчити правильно аналізувати систему та знаходити оптимальний алгоритмрішення для кожного прикладу. Головне не визубрити систему правил та дій для кожного способу, а зрозуміти принципи застосування того чи іншого методу

Розв'язання прикладів систем лінійних рівнянь 7 класу програми загальноосвітньої школиДосить просте і пояснено дуже докладно. У будь-якому підручнику математики цьому розділу приділяється достатньо уваги. Рішення прикладів систем лінійних рівнянь методом Гаусса і Крамера докладніше вивчають перших курсах вищих навчальних закладів.

Рішення систем методом підстановки

Дії методу підстановки спрямовані вираз значення однієї змінної через другу. Вираз підставляється в рівняння, що залишилося, потім його приводять до вигляду з однією змінною. Дія повторюється в залежності від кількості невідомих у системі

Наведемо рішення прикладу системи лінійних рівнянь 7 класу методом підстановки:

Як видно з прикладу, змінна x була виражена через F(X) = 7 + Y. Отриманий вираз, підставлений у 2-е рівняння системи на місце X, допоміг отримати одну змінну Y у 2-му рівнянні. Рішення цього прикладу не викликає труднощів і дозволяє отримати значення Y. Останній крокце перевірка набутих значень.

Вирішити приклад системи лінійних рівнянь підстановкою не завжди можливо. Рівняння можуть бути складними і вираз змінної через другу невідому виявиться надто громіздким для подальших обчислень. Коли невідомих у системі більше трьох рішень підстановкою також недоцільно.

Розв'язання прикладу системи лінійних неоднорідних рівнянь:

Рішення за допомогою алгебраїчної складання

При пошуку рішенні систем шляхом додавання роблять почленное складання і множення рівнянь різні числа. Кінцевою метою математичних процесів є рівняння з однією змінною.

Для застосування даного методунеобхідна практика та спостережливість. Вирішити систему лінійних рівнянь шляхом додавання при кількості змінних 3 і більше складно. Алгебраїчне додавання зручно застосовувати коли в рівняннях присутні дроби та десяткові числа.

Алгоритм дій рішення:

  1. Помножити обидві частини рівняння деяке число. В результаті арифметичної дії один із коефіцієнтів при змінній повинен стати рівним 1.
  2. Почленно скласти отриманий вираз і знайти один із невідомих.
  3. Підставити отримане значення у 2-е рівняння системи для пошуку змінної, що залишилася.

Спосіб вирішення запровадженням нової змінної

Нову змінну можна вводити, якщо в системі потрібно знайти рішення не більше ніж для двох рівнянь, кількість невідомих теж має бути не більшою за два.

Спосіб використовується, щоб спростити одне із рівнянь, введенням нової змінної. Нове рівняння вирішується щодо введеної невідомої, а отримане значення використовується визначення початкової змінної.

З прикладу видно, що ввівши нову змінну t вдалося звести 1 рівняння системи до стандартного квадратного тричлену. Вирішити многочлен можна знайшовши дискримінант.

Необхідно знайти значення дискримінанта за відомою формулою: D = b2 - 4*a*c, де D - дискримінант, що шукається, b, a, c - множники многочлена. У заданому прикладі a=1, b=16, c=39, отже, D=100. Якщо дискримінант більший за нуль, то рішень два: t = -b±√D / 2*a, якщо дискримінант менший за нуль, то рішення одне: x= -b / 2*a.

Рішення для отриманих у результаті системи знаходять шляхом складання.

Наочний метод вирішення систем

Підходить для систем з трьома рівняннями. Метод полягає у побудові на координатній осі графіків кожного рівняння, що входить до системи. Координати точок перетину кривих і будуть загальним рішенням системи.

Графічний метод має низку аспектів. Розглянемо кілька прикладів розв'язання систем лінійних рівнянь наочним способом.

Як видно з прикладу, для кожної прямої було побудовано дві точки, значення змінної x були обрані довільно: 0 і 3. Виходячи зі значень x, знайдені значення для y: 3 і 0. Точки з координатами (0, 3) та (3, 0) були відзначені на графіку та з'єднані лінією.

Події необхідно повторити для другого рівняння. Точка перетину прямих є розв'язком системи.

У наступному прикладі потрібно знайти графічне рішеннясистеми лінійних рівнянь: 0,5x-y+2=0 та 0,5x-y-1=0.

Як видно з прикладу, система не має рішення, тому що графіки паралельні і не перетинаються по всьому своєму протязі.

Системи з прикладів 2 і 3 схожі, але при побудові стає очевидним, що їх рішення різні. Слід пам'ятати, що не завжди можна сказати, чи має система рішення чи ні, завжди необхідно побудувати графік.

Матриця та її різновиди

Матриці використовують для короткого запису системи лінійних рівнянь. Матрицею називають таблицю спеціального виду, Заповнену числами. n*m має n - рядків та m - стовпців.

Матриця є квадратною, коли кількість стовпців і рядків дорівнює між собою. Матрицею - вектором називається матриця з одного стовпця з нескінченно можливою кількістю рядків. Матриця з одиницями по одній із діагоналей та іншими нульовими елементами називається одиничною.

Зворотна матриця - це така матриця при множенні на яку вихідна перетворюється на одиничну, така матриця існує тільки для вихідної квадратної.

Правила перетворення системи рівнянь на матрицю

Стосовно систем рівнянь як чисел матриці записують коефіцієнти і вільні члени рівнянь, одне рівняння - один рядок матриці.

Рядок матриці називається ненульовим, якщо хоча б один елемент рядка не дорівнює нулю. Тому якщо в якомусь із рівнянь кількість змінних відрізняється, то необхідно на місці відсутньої невідомої вписати нуль.

Стовпці матриці повинні суворо відповідати змінним. Це означає, що коефіцієнти змінної x можуть бути записані тільки в один стовпець, наприклад перший, коефіцієнт невідомої y - тільки в другий.

При множенні матриці всі елементи матриці послідовно множаться число.

Варіанти знаходження зворотної матриці

Формула знаходження зворотної матриці досить проста: K -1 = 1 / | K |, де K -1 - Зворотна матриця, а | K | - Визначник матриці. |K| не повинен дорівнювати нулю, тоді система має рішення.

Визначник легко обчислюється для матриці два на два, необхідно лише помножити один на одного елементи по діагоналі. Для варіанта "три на три" існує формула | K | b 2 c 1 . Можна скористатися формулою, а можна запам'ятати що необхідно взяти по одному елементу з кожного рядка та кожного стовпця так, щоб у творі не повторювалися номери стовпців та рядків елементів.

Розв'язання прикладів систем лінійних рівнянь матричним методом

Матричний спосіб пошуку рішення дозволяє скоротити громіздкі записи під час вирішення систем із великою кількістю змінних і рівнянь.

У прикладі a nm – коефіцієнти рівнянь, матриця – вектор x n – змінні, а b n – вільні члени.

Рішення систем методом Гауса

У вищій математиці метод Гаусса вивчають разом із методом Крамера, а процес пошуку рішення систем і називається метод рішення Гаусса - Крамера. Дані методи застосовують при знаходженні змінних систем з великою кількістю лінійних рівнянь.

Метод Гауса дуже схожий на рішення за допомогою підстановок і алгебраїчної складанняале більш систематичний. У шкільному курсі рішення способом Гаусса застосовується для систем із 3 та 4 рівнянь. Мета методу полягає у приведенні системи до виду перевернутої трапеції. Шляхом перетворень алгебри і підстановок знаходиться значення однієї змінної в одному з рівнянні системи. Друге рівняння є виразом з двома невідомими, а 3 і 4 - відповідно з трьома і чотирма змінними.

Після приведення системи до описаного виду, подальше рішення зводиться до послідовної підстановки відомих змінних рівняння системи.

У шкільних підручникахдля 7 класу приклад рішення методом Гауса описаний таким чином:

Як видно з прикладу, на кроці (3) було отримано два рівняння 3x3 -2x4 = 11 і 3x3 +2x4 =7. Рішення будь-якого рівняння дозволить дізнатися одну зі змінних x n .

Теорема 5, про яку згадується в тексті, свідчить, що якщо одне з рівнянь системи замінити рівносильним, то отримана система буде також рівносильна вихідній.

Метод Гауса важкий для сприйняття учнів середньої школи, але є одним з найбільш цікавих способівдля розвитку кмітливості дітей, які навчаються за програмою поглибленого вивчення у математичних та фізичних класах.

Для простоти запису обчислень прийнято робити так:

Коефіцієнти рівнянь та вільні члени записуються у вигляді матриці, де кожен рядок матриці співвідноситься з одним із рівнянь системи. відокремлює ліву частину рівняння від правої. Римськими цифрами позначаються номери рівнянь у системі.

Спочатку записують матрицю, з якою належить працювати, потім усі дії, що проводяться з одного з рядків. Отриману матрицю записують після знака "стрілка" та продовжують виконувати необхідні алгебраїчні діїдо результату.

У результаті повинна вийти матриця в якій по одній з діагоналей стоять 1, а всі інші коефіцієнти дорівнюють нулю, тобто матрицю призводять до поодинокого вигляду. Не можна забувати робити обчислення з цифрами обох частин рівняння.

Цей спосіб запису менш громіздкий і дозволяє не відволікатися на перелік численних невідомих.

Вільне застосування будь-якого способу вирішення потребує уважності та певного досвіду. Не всі методи мають прикладний характер. Якісь способи пошуку рішень більш переважні в тій іншій галузі діяльності людей, інші існують з метою навчання.

Однак на практиці широко поширені ще два випадки:

- Система несумісна (не має рішень);
– Система спільна і має безліч рішень.

Примітка : термін «спільність» має на увазі, що система має хоч якесь рішення. У ряді завдань потрібно попередньо дослідити систему на спільність, як це зробити – див. рангу матриць.

Для цих систем застосовують найбільш універсальний із усіх способів вирішення – метод Гауса. Насправді, до відповіді призведе і «шкільний» спосіб, але у вищій математиці прийнято використовувати гаусівський метод послідовного виключення невідомих. Ті, хто не знайомий з алгоритмом методу Гауса, будь ласка, спочатку вивчіть урок метод Гауса для чайників.

Самі елементарні перетворення матриці – такі самі, різниця буде наприкінці рішення. Спочатку розглянемо кілька прикладів, коли система немає рішень (несовместная).

Приклад 1

Що відразу впадає в око в цій системі? Кількість рівнянь – менше, ніж кількість змінних. Якщо кількість рівнянь менша, ніж кількість змінних, то відразу можна сказати, що система або несумісна, або має безліч рішень. І це залишилося лише з'ясувати.

Початок рішення цілком звичайний - запишемо розширену матрицю системи і за допомогою елементарних перетворень наведемо її до ступінчастого вигляду:

(1) На лівій верхній сходинці нам потрібно отримати +1 або –1. Таких чисел у першому стовпці немає, тож перестановка рядків нічого не дасть. Одиниці доведеться організувати самостійно, і зробити це можна кількома способами. Я вчинив так: До першого рядка додаємо третій рядок, помножений на -1.

(2) Тепер отримуємо два нулі у першому стовпці. До другого рядка додаємо перший рядок, помножений на 3. До третього рядка додаємо перший рядок, помножений на 5.

(3) Після виконаного перетворення завжди доцільно подивитися, а чи не можна спростити отримані рядки? Можна, можливо. Другий рядок ділимо на 2, заразом отримуючи необхідну -1 на другій сходинці. Третій рядок ділимо на -3.

(4) До третього рядка додаємо другий рядок.

Напевно, всі звернули увагу на поганий рядок, який вийшов у результаті елементарних перетворень: . Зрозуміло, що так не може бути. Дійсно, перепишемо отриману матрицю назад у систему лінійних рівнянь:

Якщо результаті елементарних перетворень отримано рядок виду , де – число, відмінне від нуля, система несумісна (немає рішень) .

Як записати закінчення завдання? Намалюємо білою крейдою: «в результаті елементарних перетворень отримано рядок виду , де» і дамо відповідь: система не має рішень (несумісна).

Якщо ж за умовою потрібно ДОСЛІДЖУВАТИ систему на спільність, тоді необхідно оформити рішення у більш солідному стилі із залученням поняття рангу матриці та теореми Кронекера-Капеллі.

Зверніть увагу, що тут немає жодного зворотного ходу алгоритму Гауса – рішень немає і знаходити нічого.

Приклад 2

Розв'язати систему лінійних рівнянь

Це приклад самостійного рішення. Повне рішеннята відповідь наприкінці уроку. Знову нагадую, що ваш хід рішення може відрізнятися від мого ходу рішення, алгоритм Гауса не має сильної «жорсткості».

Ще одна технічна особливість рішення: елементарні перетворення можна припиняти одразу жяк тільки з'явився рядок виду, де. Розглянемо умовний приклад: припустимо, що після першого ж перетворення вийшла матриця . Матриця ще не приведена до ступінчастого вигляду, але в подальших елементарних перетвореннях немає жодної необхідності, тому що з'явився рядок виду , де . Слід одразу дати відповідь, що система несумісна.

Коли система лінійних рівнянь не має рішень – це майже подарунок, зважаючи на те, що виходить коротке рішення, іноді буквально на 2-3 дії.

Але все в цьому світі врівноважене, і завдання, в якому система має безліч рішень – якраз довше.

Приклад 3

Розв'язати систему лінійних рівнянь

Тут 4 рівнянь і 4 невідомих, таким чином, система може мати або єдине рішення, або не мати рішень, або мати безліч рішень. Як би там не було, але метод Гауса у будь-якому випадку приведе нас до відповіді. У цьому й універсальність.

Початок знову стандартний. Запишемо розширену матрицю системи та за допомогою елементарних перетворень наведемо її до ступінчастого вигляду:

Ось і все, а ви боялися.

(1) Зверніть увагу, що всі числа в першому стовпці поділяються на 2, тому на лівій верхній сходинці нас влаштовує двійка. До другого рядка додаємо перший рядок, помножений на -4. До третього рядка додаємо перший рядок, помножений на -2. До четвертого рядка додаємо перший рядок, помножений на -1.

Увага!У багатьох може виникнути спокуса з четвертого рядка віднятиперший рядок. Так робити можна, але не потрібно, досвід показує, що ймовірність помилки у обчисленнях збільшується у кілька разів. Тільки складаємо: До четвертого рядка додаємо перший рядок, помножений на –1 – саме так!

(2) Останні три рядки пропорційні, два з них можна видалити.

Тут знову треба виявити підвищена увага, а чи справді рядки пропорційні? Для перестрахування (особливо, чайнику) не зайвим буде другий рядок помножити на -1, а четвертий рядок розділити на 2, отримавши в результаті три однакові рядки. І лише після цього видалити дві з них.

В результаті елементарних перетворень розширена матриця системи наведена до ступінчастого вигляду:

При оформленні завдання у зошиті бажано для наочності робити такі самі позначки олівцем.

Перепишемо відповідну систему рівнянь:

"Звичайним" єдиним рішенням системи тут і не пахне. Поганого рядка теж немає. Значить, це третій випадок, що залишився – система має нескінченно багато рішень. Іноді за умовою слід досліджувати спільність системи (тобто довести, що рішення взагалі існує), про це можна прочитати в останньому параграфі статті Як знайти ранг матриці?Але поки що розбираємо ази:

Безліч рішень системи коротко записують у вигляді так званого загального вирішення системи .

Спільне рішенняСистеми знайдемо за допомогою зворотного ходу методу Гауса.

Спочатку потрібно визначити, які змінні у нас є базисними, а які змінні вільними. Не обов'язково морочитися термінами лінійної алгебри, досить запам'ятати, що ось такі базисні змінніі вільні змінні.

Базисні змінні завжди сидять строго на сходах матриці..
У цьому прикладі базовими змінними є і

Вільні змінні – це все рештазмінні, яким не дісталося сходинки. У нашому випадку їх дві: вільні змінні.

Тепер потрібно всі базисні зміннівисловити тільки через вільні змінні.

Зворотний хід алгоритму Гауса традиційно працює знизу нагору.
З другого рівняння системи виражаємо базисну змінну:

Тепер дивимося на перше рівняння: . Спочатку в нього підставляємо знайдений вираз:

Залишилося висловити базисну змінну через вільні змінні:

У результаті вийшло те, що потрібно – всібазисні змінні (і) виражені тільки черезвільні змінні:

Власне, загальне рішення готове:

Як правильно записати загальне рішення?
Вільні змінні записуються у загальне рішення «самі собою» і суворо своїх місцях. У цьому випадку вільні змінні слід записати на другій та четвертій позиції:
.

Отримані вирази для базисних змінних і, очевидно, потрібно записати на першій та третій позиції:

Надаючи вільним змінним довільні значення, можна знайти нескінченно багато приватних рішень. Найпопулярнішими значеннями є нулі, оскільки приватне рішення виходить найпростіше. Підставимо у загальне рішення:

- Приватне рішення.

Іншою солодкою парочкою є одиниці, підставимо у загальне рішення:

- Ще одне приватне рішення.

Легко помітити, що система рівнянь має нескінченно багато рішень(оскільки вільним змінним ми можемо надати будь-якізначення)

кожнеприватне рішення має задовольняти кожномурівняння системи. На цьому ґрунтується «швидка» перевірка правильності рішення. Візьміть, наприклад, часткове рішення і підставте його в ліву частину кожного рівняння вихідної системи:

Все має зійтися. І з будь-яким отриманим вами приватним рішенням – також все має зійтися.

Але, строго кажучи, перевірка приватного рішення іноді дурить, тобто. якесь приватне рішення може задовольняти кожному рівнянню системи, а загальне рішення насправді знайдено неправильно.

Тому ґрунтовніша і надійніша перевірка загального рішення. Як перевірити отримане загальне рішення ?

Це нескладно, але досить нудно. Потрібно взяти вирази базиснихзмінних, у разі і , і підставити їх у ліву частину кожного рівняння системи.

У ліву частину першого рівняння системи:


У ліву частину другого рівняння системи:


Отримано праву частину вихідного рівняння.

Приклад 4

Вирішити систему методом Гаусса. Знайти спільне рішення та два приватні. Зробити перевірку загального рішення.

Це приклад самостійного рішення. Тут, до речі, знову кількість рівнянь менша, ніж кількість невідомих, а отже, відразу зрозуміло, що система буде або несумісною, або з безліччю рішень. Що важливо у самому процесі вирішення? Увага, і ще раз увага. Повне рішення та відповідь наприкінці уроку.

І ще пара прикладів для закріплення матеріалу

Приклад 5

Розв'язати систему лінійних рівнянь. Якщо система має нескінченно багато рішень, знайти два приватних рішення та зробити перевірку загального рішення

Рішення: Запишемо розширену матрицю системи та за допомогою елементарних перетворень наведемо її до ступінчастого вигляду:

(1) До другого рядка додаємо перший рядок. До третього рядка додаємо перший рядок, помножений на 2. До четвертого рядка додаємо перший рядок, помножений на 3.
(2) До третього рядка додаємо другий рядок, помножений на –5. До четвертого рядка додаємо другий рядок, помножений на -7.
(3) Третій і четвертий рядки однакові, один з них видаляємо.

Ось така краса:

Базисні змінні сидять на сходах, тому базисні змінні.
Вільна змінна, якій не дісталося сходинки тут лише одна:

Зворотній хід:
Висловимо базисні змінні через вільну змінну:
Із третього рівняння:

Розглянемо друге рівняння і підставимо в нього знайдений вираз:


Розглянемо перше рівняння і підставимо в нього знайдені вирази:

Так, все-таки зручний калькулятор, який вважає прості дроби.

Таким чином, загальне рішення:

Ще раз, як воно вийшло? Вільна змінна самотньо сидить на своєму законному четвертому місці. Отримані висловлювання для базисних змінних теж зайняли свої порядкові місця.

Відразу здійснимо перевірку загального рішення. Робота для негрів, але вона у мене вже виконана, тому ловіть =)

Підставляємо трьох богатирів , у ліву частину кожного рівняння системи:

Отримано відповідні праві частини рівнянь, таким чином, загальне рішення знайдено правильно.

Тепер із знайденого загального рішення отримаємо два приватні рішення. Шеф-кухарем тут виступає єдина вільна змінна. Ламати голову не треба.

Нехай тоді - Приватне рішення.
Нехай тоді - Ще одне приватне рішення.

Відповідь: Спільне рішення: , приватні рішення: , .

Даремно я тут про негрів згадав... ...бо в голову полізли всілякі садистські мотиви і згадалася відома фотожаба, на якій ляльки-кланці в білих балахонах біжать полем за чорношкірим футболістом. Сиджу, тихо посміхаюсь. Знаєте, як відволікає….

Багато математики шкідливе, тому схожий заключний приклад самостійного рішення.

Приклад 6

Знайти загальне рішення системи лінійних рівнянь.

Перевірку загального рішення в мене вже зроблено, відповіді можна довіряти. Ваш хід рішення може відрізнятись від мого ходу рішення, головне, щоб збіглися загальні рішення.

Напевно, багато хто помітив неприємний момент у рішеннях: дуже часто при зворотному ходіметоду Гауса нам довелося возитися з звичайними дробами. Насправді це справді так, випадки, коли дробів немає – зустрічаються значно рідше. Будьте готові морально і, найголовніше, технічно.

Зупинюся на деяких особливостях рішення, які не зустрілися у прикладах, які вирішують.

До загального рішення системи іноді може входити константа (або константи), наприклад: . Тут з базисних змінних дорівнює постійному числу: . У цьому немає нічого екзотичного, то буває. Очевидно, що в даному випадку будь-яке приватне рішення міститиме п'ятірку на першій позиції.

Рідко, але зустрічаються системи, у яких кількість рівнянь більше кількостізмінних. Метод Гауса працює в самих суворих умовахслід незворушно привести розширену матрицю системи до ступінчастого вигляду за стандартним алгоритмом. Така система може бути несумісною, може мати безліч рішень, і, як не дивно, може мати єдине рішення.

Метод Гауса має ряд недоліків: не можна дізнатися, спільна система чи ні, доки не будуть проведені всі перетворення, необхідні в методі Гауса; метод Гауса не придатний для систем із літерними коефіцієнтами.

Розглянемо інші методи розв'язання систем лінійних рівнянь. Ці методи використовують поняття рангу матриці та зводять рішення будь-якої спільної системидо рішення системи, до якої застосовується правило Крамера.

приклад 1.Знайти загальне рішення наступної системи лінійних рівнянь за допомогою фундаментальної системи рішень наведеної однорідної системи та приватного розв'язання неоднорідної системи.

1. Складаємо матрицю Aта розширену матрицю системи (1)

2. Досліджуємо систему (1) на спільність. Для цього знаходимо ранги матриць Aі https://pandia.ru/text/78/176/images/image006_90.gif" width="17" height="26 src=">). (1) несумісна. Якщо ж отримаємо, що , то ця система спільна і ми її вирішуватимемо. (Дослідження на спільність засноване на теоремі Кронекера-Капеллі).

a. Знаходимо rA.

Щоб знайти rA, будемо розглядати послідовно відмінні від нуля мінори першого, другого і т. д. порядків матриці Aі мінори, що їх облямують.

М1=1≠0 (1 беремо з лівого верхнього кута матриці А).

Облямовуємо М1другим рядком і другим стовпцем цієї матриці. . Продовжуємо облямовувати М1другим рядком і третім стовпцем..gif" width="37" height="20 src=">. М2′другого порядку.

Маємо: (т. до. два перші стовпці однакові)

(Тобто другий і третій рядки пропорційні).

Ми бачимо, що rA=2, а - базовий мінор матриці A.

b. Знаходимо.

Достатньо базисний мінор М2′матриці Aобрамити стовпцем вільних членів і всіма рядками (у нас тільки останнім рядком).

. Звідси випливає, що й М3′′залишається базовим мінором матриці width="168" (2)

Так як М2′- базисний мінор матриці Aсистеми (2) , то ця система еквівалентна системі (3) , що складається з перших двох рівнянь системи (2) (бо М2′знаходиться у перших двох рядках матриці A).

(3)

Так як базисний мінор width="153" (4)

У цій системі два вільні невідомі ( x2 і x4 ). Тому ФСР системи (4) складається із двох рішень. Щоб їх знайти, надамо вільним невідомим у (4) спочатку значення x2=1 , x4=0 , а потім - x2=0 , x4=1 .

При x2=1 , x4=0 отримаємо:

.

Ця система вже має єдине рішення (його можна знайти за правилом Крамера або будь-яким іншим способом). Віднімаючи з другого рівняння перше, отримаємо:

Її рішенням буде x1= -1 , x3=0 . Враховуючи значення x2 і x4 , які ми додали, отримуємо перше фундаментальне рішеннясистеми (2) : .

Тепер гадаємо у (4) x2=0 , x4=1 . Отримаємо:

.

Вирішуємо цю систему за теоремою Крамера:

.

Отримуємо друге фундаментальне рішення системи (2) : .

Рішення β1 , β2 і становлять ФСР системи (2) . Тоді її спільним рішенням буде

γ= З 1 β1+С2β2=С1(‑1, 1, 0, 0)+С2(5, 0, 4, 1)=(‑С1+5С2, С1, 4С2, С2)

Тут З 1 , С2 - Довільні постійні.

4. Знайдемо одне приватне Рішення неоднорідної системи(1) . Як і у пункті 3 замість системи (1) розглянемо еквівалентну їй систему (5) , що складається з перших двох рівнянь системи (1) .

(5)

Перенесемо у праві частини вільні невідомі x2і x4.

(6)

Надамо вільним невідомим x2 і x4 довільні значення, наприклад, x2=2 , x4=1 і підставимо їх у (6) . Отримаємо систему

Ця система має єдине рішення (бо її визначник М2′0). Вирішуючи її (за теоремою Крамера або методом Гауса), отримаємо x1=3 , x3=3 . Враховуючи значення вільних невідомих x2 і x4 , отримаємо приватне вирішення неоднорідної системи(1)α1=(3,2,3,1).

5. Тепер залишилось записати загальне рішення α неоднорідної системи(1) : воно дорівнює сумі приватного рішенняцієї системи та загального вирішення її наведеної однорідної системи (2) :

α=α1+γ=(3, 2, 3, 1)+(С1+5С2, С1, 4С2, С2).

Це означає: (7)

6. Перевірка.Щоб перевірити, чи правильно ви вирішили систему (1) , Треба загальне рішення (7) підставити в (1) . Якщо кожне рівняння обернеться в тотожність ( З 1 і С2 повинні знищитися), то рішення знайдено правильно.

Ми підставимо (7) для прикладу лише останнє рівняння системи (1) (x1 + x2 + x3 ‑9 x4 =‑1) .

Отримаємо: (3–С1+5С2)+(2+С1)+(3+4С2)–9(1+С2)=–1

(С1–С1)+(5С2+4С2–9С2)+(3+2+3–9)=–1

Звідки –1=–1. Здобули тотожність. Так чинимо з усіма іншими рівняннями системи (1) .

Зауваження.Перевірка зазвичай досить громіздка. Можна рекомендувати таку «часткову перевірку»: у загальному вирішенні системи (1) довільним постійним надати деякі значення і підставити отримане приватне рішення тільки у відкинуті рівняння (тобто ті рівняння з (1) , які не увійшли до (5) ). Якщо отримаєте тотожності, то, швидше за все, вирішення системи (1) знайдено правильно (але повної гарантії правильності така перевірка не дає!). Наприклад, якщо в (7) покласти С2=- 1 , С1 = 1, Отримаємо: x1=-3, x2=3, x3=-1, x4=0. Підставляючи останнє рівняння системи (1), маємо: - 3+3 - 1 - 9∙0= - 1 , Т. е. -1 = -1. Здобули тотожність.

приклад 2.Знайти загальне рішення системи лінійних рівнянь (1) висловивши основні невідомі через вільні.

Рішення.як і в приклад 1, складаємо матриці Aі цих матриць. Залишаємо тепер тільки ті рівняння системи (1) , Коефіцієнти з яких входять в цей базисний мінор (тобто у нас - перші два рівняння) і розглядаємо систему, що складається з них, еквівалентну системі (1).

Перенесемо у праві частини цих рівнянь вільні невідомі.

Систему (9) вирішуємо шляхом Гаусса, вважаючи праві частини вільними членами.

https://pandia.ru/text/78/176/images/image035_21.gif" width="202 height=106" height="106">

Варіант 2.

https://pandia.ru/text/78/176/images/image039_16.gif" width="192" height="106 src=">

Варіант 4.

https://pandia.ru/text/78/176/images/image042_14.gif" width="172" height="80">

Варіант 5.

https://pandia.ru/text/78/176/images/image044_12.gif" width="179 height=106" height="106">

Варіант 6

https://pandia.ru/text/78/176/images/image046_11.gif" width="195" height="106">

Поділіться з друзями або збережіть для себе:

Завантаження...