Метод гауса ступінчастий вигляд. Зворотний хід методу гауса


Метод Гаусачудово підходить для вирішення систем лінійних алгебраїчних рівнянь(СЛАУ). Він має низку переваг у порівнянні з іншими методами:

  • по-перше, немає потреби попередньо дослідити систему рівнянь на спільність;
  • по-друге, методом Гаусса можна вирішувати не тільки СЛАУ, в яких кількість рівнянь збігається з кількістю невідомих змінних та основна матриця системи невироджена, а й системи рівнянь, в яких кількість рівнянь не збігається з кількістю невідомих змінних або визначник основної матриці дорівнює нулю;
  • по-третє, метод Гауса призводить до результату при порівняно невеликій кількості обчислювальних операцій.

Короткий огляд статті.

Спочатку дамо необхідні визначення та введемо позначення.

Далі опишемо алгоритм методу Гауса для найпростішого випадку, тобто, для систем лінійних рівнянь алгебри, кількість рівнянь в яких збігається з кількістю невідомих змінних і визначник основної матриці системи не дорівнює нулю. При вирішенні таких систем рівнянь найвиразніше видно суть методу Гаусса, яка полягає у послідовному виключенні невідомих змінних. Тому метод Гауса також називають методом послідовного виключенняневідомих. Покажемо докладні рішеннякількох прикладів.

У висновку розглянемо рішення методом Гауса систем лінійних рівнянь алгебри, основна матриця яких або прямокутна, або вироджена. Рішення таких систем має деякі особливості, які ми розберемо на прикладах.

Навігація на сторінці.

Основні визначення та позначення.

Розглянемо систему з p лінійних рівняньз n невідомими (p може дорівнювати n ):

Де – невідомі змінні, – числа (дійсні чи комплексні), – вільні члени.

Якщо , то система лінійних рівнянь алгебри називається однорідний, в іншому випадку - неоднорідний.

Сукупність значення невідомих змінних , у яких всі рівняння системи перетворюються на тотожності, називається рішенням СЛАУ.

Якщо існує хоча б одне рішення системи лінійних рівнянь алгебри, то вона називається спільної, в іншому випадку - несумісний.

Якщо СЛАУ має єдине рішення, то вона називається певною. Якщо рішень більше одного, то система називається невизначеною.

Кажуть, що система записана у координатної формиякщо вона має вигляд
.

Ця система в матричній формізапису має вигляд , де - основна матриця СЛАУ; - матриця стовпець невідомих змінних; - матриця вільних членів.

Якщо до матриці А додати як (n+1)-ого ​​стовпця матрицю-стовпець вільних членів, то отримаємо так звану розширену матрицюсистеми лінійних рівнянь Зазвичай розширену матрицю позначають буквою Т , а стовпець вільних членів відокремлюють вертикальною лінією від інших стовпців, тобто,

Квадратна матриця А називається виродженоюякщо її визначник дорівнює нулю. Якщо , то матриця А називається невиродженою.

Слід зазначити наступний момент.

Якщо з системою лінійних рівнянь алгебри зробити наступні дії

  • поміняти місцями два рівняння,
  • помножити обидві частини будь-якого рівняння на довільне та відмінне від нуля дійсне (або комплексне) число k ,
  • до обох частин якогось рівняння додати відповідні частини іншого рівняння, помножені на довільне число k ,

то вийде еквівалентна система, яка має такі ж рішення (або як і вихідна не має рішень).

Для розширеної матриці системи лінійних рівнянь алгебри ці дії означатимуть проведення елементарних перетвореньз рядками:

  • перестановку двох рядків місцями,
  • множення всіх елементів будь-якого рядка матриці T на відмінне від нуля число k ,
  • додавання до елементів якогось рядка матриці відповідних елементів іншого рядка, помножених на довільне число k .

Тепер можна переходити до опису методу Гаусса.

Рішення систем лінійних рівнянь алгебри, в яких число рівнянь дорівнює числу невідомих і основна матриця системи невироджена, методом Гаусса.

Як би ми вчинили у школі, якби отримали завдання знайти рішення системи рівнянь .

Деякі зробили б так.

Зауважимо, що додавши до лівої частини другого рівняння ліву частину першого, а до правої частини - праву, можна позбутися невідомих змінних x 2 і x 3 і відразу знайти x 1 :

Підставляємо знайдене значення x 1 =1 у перше та третє рівняння системи:

Якщо помножити обидві частини третього рівняння системи на -1 і додати їх до відповідних частин першого рівняння, ми позбудемося невідомої змінної x 3 і зможемо знайти x 2 :

Підставляємо отримане значення x 2 =2 в третє рівняння і знаходимо невідому змінну x 3 :

Інші вчинили б інакше.

Дозволимо перше рівняння системи щодо невідомої змінної x 1 і підставимо отриманий вираз у друге та третє рівняння системи, щоб виключити з них цю змінну:

Тепер розв'яжемо друге рівняння системи щодо x 2 і підставимо отриманий результат у третє рівняння, щоб виключити з нього невідому змінну x 2 :

З третього рівняння системи видно, що х 3 =3. З другого рівняння знаходимо , та якщо з першого рівняння отримуємо .

Знайомі способи рішення, чи не так?

Найцікавіше тут те, що другий спосіб рішення по суті і є методом послідовного виключення невідомих, тобто методом Гауса. Коли ми висловлювали невідомі змінні (спочатку x 1 , наступному етапі x 2 ) і підставляли в інші рівняння системи, тим самим виключали їх. Виняток ми проводили до того моменту, поки в останньому рівнянні не залишилася єдина невідома змінна. Процес послідовного виключення невідомих називається прямим ходом методу Гауса. Після завершення прямого ходу у нас з'являється можливість обчислити невідому змінну, яка знаходиться в останньому рівнянні. З її допомогою з передостаннього рівняння знаходимо наступну невідому змінну тощо. Процес послідовного знаходження невідомих змінних під час руху від останнього рівняння до першого називається зворотним ходом методу Гауса.

Слід зазначити, що коли ми виражаємо x 1 через x 2 і x 3 у першому рівнянні, а потім підставляємо отриманий вираз у друге та третє рівняння, то до такого ж результату наводять такі дії:

Справді, така процедура також дозволяє виключити невідому змінну x 1 із другого та третього рівнянь системи:

Нюанси за винятком невідомих змінних за методом Гаусса виникають тоді, коли рівняння системи не містять деяких змінних.

Наприклад, у СЛАУ у першому рівнянні відсутня невідома змінна x 1 (іншими словами, коефіцієнт перед нею дорівнює нулю). Тому ми можемо дозволити перше рівняння системи щодо x 1 , щоб унеможливити цю невідому змінну з інших рівнянь. Виходом із цієї ситуації є перестановка місцями рівнянь системи. Так як ми розглядаємо системи лінійних рівнянь, визначники основних матриць яких відмінні від нуля, то завжди існує рівняння, в якому є потрібна нам змінна, і ми це рівняння можемо переставити на потрібну нам позицію. Для нашого прикладу достатньо поміняти місцями перше та друге рівняння системи , Далі можна дозволити перше рівняння щодо x 1 і виключити її з інших рівнянь системи (хоча в другому рівнянні x 1 вже немає).

Сподіваємося, що суть Ви вловили.

Опишемо алгоритм методу Гауса.

Нехай нам потрібно вирішити систему з n лінійних рівнянь алгебри з n невідомими змінними виду і нехай визначник її основної матриці відмінний від нуля.

Вважатимемо, що , оскільки ми можемо цього домогтися перестановкою місцями рівнянь системи. Виключимо невідому змінну x 1 зі всіх рівнянь системи, починаючи з другого. Для цього до другого рівняння системи додамо перше, помножене на , до третього рівняння додамо перше, помножене на , і так далі, до n-го рівняння додамо перше, помножене на . Система рівнянь після таких перетворень набуде вигляду

де , а .

До такого ж результату ми дійшли б, якби висловили x 1 через інші невідомі змінні в першому рівнянні системи і отриманий вираз підставили у всі інші рівняння. Таким чином, змінна x 1 виключена зі всіх рівнянь, починаючи з другого.

Далі діємо аналогічно, але лише з частиною отриманої системи, яка зазначена на малюнку

Для цього до третього рівняння системи додамо друге, помножене на , до четвертого рівняння додамо друге, помножене на , і так далі, до n-го рівняння додамо друге, помножене на . Система рівнянь після таких перетворень набуде вигляду

де , а . Таким чином, змінна x 2 виключена зі всіх рівнянь, починаючи з третього.

Далі приступаємо до виключення невідомої x 3 при цьому діємо аналогічно з зазначеною на малюнку частиною системи

Так продовжуємо прямий хід методу Гаусса доки система не набуде вигляду

З цього моменту починаємо зворотний хід методу Гауса: обчислюємо x n з останнього рівняння як за допомогою отриманого значення x n знаходимо x n-1 з передостаннього рівняння, і так далі, знаходимо x 1 з першого рівняння.

Розберемо алгоритм з прикладу.

приклад.

методом Гауса.

Рішення.

p align="justify"> Коефіцієнт a 11 відмінний від нуля, так що приступимо до прямого ходу методу Гаусса, тобто, до виключення невідомої змінної x 1 з усіх рівнянь системи, крім першого. Для цього до лівої та правої частин другого, третього та четвертого рівняння додамо ліву та праву частини першого рівняння, помножені відповідно на , і :

Невідому змінну x 1 виключили, переходимо до виключення x 2 . До лівих та правих частин третього та четвертого рівнянь системи додаємо ліву та праву частини другого рівняння, помножені відповідно на і :

Для завершення прямого ходу методу Гауса нам залишилося виключити невідому змінну x 3 з останнього рівняння системи. Додамо до лівої та правої частин четвертого рівняння відповідно ліву та праву частинутретього рівняння, помножену на :

Можна розпочинати зворотний хід методу Гаусса.

З останнього рівняння маємо ,
з третього рівняння отримуємо ,
з другого,
з першого.

Для перевірки можна підставити отримані значення невідомих змінних вихідну систему рівнянь. Всі рівняння звертаються до тотожності, що говорить про те, що рішення за методом Гауса знайдено правильно.

Відповідь:

Нині ж наведемо рішення цього прикладу методом Гаусса в матричної формі записи.

приклад.

Знайдіть розв'язок системи рівнянь методом Гауса.

Рішення.

Розширена матриця системи має вигляд . Зверху над кожним стовпцем записані невідомі змінні, яким відповідають елементи матриці.

Прямий хід методу Гаусса тут передбачає приведення розширеної матриці системи до трапецеїдальний вид за допомогою елементарних перетворень. Цей процес схожий із винятком невідомих змінних, яке ми проводили із системою в координатній формі. Зараз Ви в цьому переконаєтесь.

Перетворимо матрицю так, щоб усі елементи в першому стовпці, починаючи з другого, стали нульовими. Для цього до елементів другого, третього та четвертого рядків додамо відповідні елементи першого рядка помножені на , і відповідно:

Далі отриману матрицю перетворимо так, щоб у другому стовпці всі елементи, починаючи з третього, стали нульовими. Це відповідатиме виключенню невідомої змінної x 2 . Для цього до елементів третього та четвертого рядків додамо відповідні елементи першого рядка матриці, помножені відповідно на і :

Залишилося виключити невідому змінну x 3 із останнього рівняння системи. Для цього до елементів останнього рядка отриманої матриці додамо відповідні елементи передостаннього рядка, помножені на :

Слід зазначити, що ця матриця відповідає системі лінійних рівнянь

яка була отримана раніше після прямого ходу.

Настав час зворотного ходу. У матричній формі запису зворотний хід методу Гауса передбачає таке перетворення отриманої матриці, щоб матриця, зазначена на малюнку

стала діагональною, тобто, набула вигляду

де – деякі числа.

Ці перетворення аналогічні перетворенням прямого ходу методу Гаусса, але виконуються не від першого рядка до останнього, а від останнього до першого.

Додамо до елементів третього, другого та першого рядків відповідні елементи останнього рядка, помножені на , на та на відповідно:

Тепер додамо до елементів другого та першого рядків відповідні елементи третього рядка, помножені на і відповідно:

на останньому кроцізворотного ходу методу Гауса до елементів першого рядка додаємо відповідні елементи другого рядка, помножені на :

Отримана матриця відповідає системі рівнянь , звідки знаходимо невідомі змінні

Відповідь:

ЗВЕРНІТЬ УВАГУ.

При використанні методу Гауса для вирішення систем лінійних рівнянь алгебри слід уникати наближених обчислень, так як це може призвести до абсолютно невірних результатів. Рекомендуємо не округляти десяткові дроби. Краще від десяткових дробівпереходити до звичайних дробів.

приклад.

Розв'яжіть систему з трьох рівнянь методом Гауса .

Рішення.

Зазначимо, що в цьому прикладі невідомі змінні мають інше позначення (не x 1 x 2 x 3 а x, y, z). Перейдемо до звичайних дробів:

Виключимо невідому x з другого та третього рівнянь системи:

В отриманій системі у другому рівнянні відсутня невідома змінна y, а в третьому рівнянні y присутня, тому, переставимо місцями друге та третє рівняння:

На цьому прямий хід методу Гауса закінчено (з третього рівняння не потрібно виключати y, оскільки цієї невідомої змінної вже немає).

Приступаємо до зворотного ходу.

З останнього рівняння знаходимо ,
з передостаннього


з першого рівняння маємо

Відповідь:

X = 10, y = 5, z = -20.

Рішення систем лінійних рівнянь алгебри, в яких число рівнянь не збігається з числом невідомих або основна матриця системи вироджена, методом Гаусса.

Системи рівнянь, основна матриця яких прямокутна або квадратна вироджена, можуть мати рішень, можуть мати єдине рішення, а можуть мати безліч рішень.

Зараз ми розберемося, як метод Гауса дозволяє встановити спільність чи несумісність системи лінійних рівнянь, а разі її спільності визначити всі рішення (чи одне єдине рішення).

У принципі, процес виключення невідомих змінних у разі таких СЛАУ залишається таким самим. Однак слід докладно зупинитись на деяких ситуаціях, які можуть виникнути.

Переходимо до найважливішого етапу.

Отже, припустимо, що система лінійних рівнянь алгебри після завершення прямого ходу методу Гаусса набула вигляду і жодне рівняння не звелося до (у цьому випадку ми зробили б висновок про несумісність системи). Виникає логічне питання: Що робити далі?

Випишемо невідомі змінні, які стоять на першому місці всіх рівнянь отриманої системи:

У прикладі це x 1 , x 4 і x 5 . У лівих частинах рівнянь системи залишаємо лише ті доданки, які містять виписані невідомі змінні x 1 , x 4 і x 5 , решту доданків переносимо у праву частину рівнянь із протилежним знаком:

Надамо невідомим змінним, які перебувають у правих частинах рівнянь, довільні значення , де - довільні числа:

Після цього в правих частинах всіх рівнянь нашої СЛАУ знаходяться числа і можна починати зворотний хід методу Гауса.

З останнього рівнянь системи маємо, з передостаннього рівняння знаходимо, з першого рівняння отримуємо

Рішенням системи рівнянь є сукупність значень невідомих змінних

Надаючи числам різні значення, ми будемо отримувати різні рішеннясистеми рівнянь. Тобто наша система рівнянь має безліч рішень.

Відповідь:

де - Довільні числа.

Для закріплення матеріалу докладно розберемо рішення ще кількох прикладів.

приклад.

Вирішіть однорідну системулінійних рівнянь алгебри методом Гауса.

Рішення.

Виключимо невідому змінну x з другого та третього рівнянь системи. Для цього до лівої та правої частини другого рівняння додамо відповідно ліву та праву частини першого рівняння, помножені на , а до лівої та правої частини третього рівняння - ліву та праву частини першого рівняння, помножені на :

Тепер виключимо y із третього рівняння отриманої системи рівнянь:

Отримана СЛАУ рівносильна системі .

Залишаємо в лівій частині рівнянь системи тільки доданки, що містять невідомі змінні x і y, а доданки з невідомою змінною z переносимо в праву частину:

Вирішення систем лінійних рівнянь методом Гаусса.Нехай нам потрібно знайти рішення системи з nлінійних рівнянь з nневідомими змінними
визначник основної матриці якої відмінний від нуля.

Суть методу Гаусаполягає у послідовному виключенні невідомих змінних: спочатку виключається x 1з усіх рівнянь системи, починаючи з другого, далі виключається x 2з усіх рівнянь, починаючи з третього, і так далі, поки в останньому рівнянні залишиться лише невідома змінна x n. Такий процес перетворення рівнянь системи для послідовного виключення невідомих змінних називається прямим ходом методу Гауса. Після завершення прямого ходу методу Гауса з останнього рівняння перебуває x n, за допомогою цього значення з передостаннього рівняння обчислюється x n-1, і так далі, з першого рівняння знаходиться x 1. Процес обчислення невідомих змінних під час руху від останнього рівняння системи до першого називається зворотним ходом методу Гауса.

Коротко опишемо алгоритм виключення невідомих змінних.

Вважатимемо, що , оскільки ми можемо цього домогтися перестановкою місцями рівнянь системи. Виключимо невідому змінну x 1із усіх рівнянь системи, починаючи з другого. Для цього до другого рівняння системи додамо перше, помножене на , до третього рівняння додамо перше, помножене на , і так далі, до n-омурівняння додамо перше, помножене на . Система рівнянь після таких перетворень набуде вигляду

де , а .

До такого ж результату ми дійшли б, якби висловили x 1через інші невідомі змінні у першому рівнянні системи та отриманий вираз підставили у всі інші рівняння. Таким чином, змінна x 1виключена зі всіх рівнянь, починаючи з другого.

Далі діємо аналогічно, але лише з частиною отриманої системи, яка зазначена на малюнку

Для цього до третього рівняння системи додамо друге, помножене на , до четвертого рівняння додамо друге, помножене на , і так далі, до n-омурівняння додамо друге, помножене на . Система рівнянь після таких перетворень набуде вигляду

де , а . Таким чином, змінна x 2виключена зі всіх рівнянь, починаючи з третього.

Далі приступаємо до виключення невідомої x 3, при цьому діємо аналогічно із зазначеною на малюнку частиною системи

Так продовжуємо прямий хід методу Гаусса доки система не набуде вигляду

З цього моменту починаємо зворотний хід методу Гауса: обчислюємо x nз останнього рівняння як , за допомогою отриманого значення x nзнаходимо x n-1з передостаннього рівняння, і так далі знаходимо x 1з першого рівняння.


приклад.

Розв'яжіть систему лінійних рівнянь методом Гауса.

У цій статті метод сприймається як спосіб розв'язання систем лінійних рівнянь (СЛАУ). Метод є аналітичним, тобто дозволяє написати алгоритм рішення у загальному виглядіа потім уже підставляти туди значення з конкретних прикладів. На відміну від матричного методу або формул Крамера, при вирішенні системи лінійних рівнянь методом Гауса можна працювати і з тими, що мають нескінченно багато рішень. Або не мають його зовсім.

Що означає вирішити методом Гаусса?

Для початку необхідно нашу систему рівнянь записати у вигляд це наступним чином. Береться система:

Коефіцієнти записуються як таблиці, а справа окремим стовпчиком - вільні члени. Стовпець з вільними членами відокремлюється для зручності Матриця, що включає цей стовпець, називається розширеною.

Далі основну матрицю з коефіцієнтами слід призвести до верхньої трикутної форми. Це основний момент вирішення системи методом Гаусса. Простіше кажучи, після певних маніпуляцій матриця має виглядати так, щоб у її лівій нижній частині стояли одні нулі:

Тоді, якщо записати нову матрицю знову як систему рівнянь, можна помітити, що в останньому рядку вже міститься значення одного з коренів, яке потім підставляється в рівняння вище знаходиться ще один корінь, і так далі.

Це опис рішення методом Гауса в самих загальних рисах. А що вийде, якщо раптом система не має рішення? Чи їх нескінченно багато? Щоб відповісти на ці та ще безліч питань, необхідно розглянути окремо всі елементи, що використовуються під час вирішення методом Гауса.

Матриці, їх властивості

Ніякого прихованого сенсуу матриці немає. Це просто зручний спосіб запису даних для подальших операцій із ними. Боятися їх не треба навіть школярам.

Матриця завжди прямокутна, бо так зручніше. Навіть у методі Гауса, де все зводиться до побудови матриці трикутного вигляду, у записі фігурує прямокутник, тільки з нулями на тому місці, де немає чисел. Нулі можна не записувати, але вони маються на увазі.

Матриця має розмір. Її "ширина" – число рядків (m), "довжина" – число стовпців (n). Тоді розмір матриці A (для їх позначення зазвичай використовуються великі Латинські букви) позначатиметься як A m×n . Якщо m=n, то ця квадратна матриця, і m=n - її порядок. Відповідно, будь-який елемент матриці A можна позначити через номер рядка і стовпця: a xy ; x - номер рядка, змінюється, y - номер стовпця, змінюється.

В – це основний момент рішення. В принципі, всі операції можна виконувати безпосередньо з самими рівняннями, проте запис вийде набагато громіздкіший, і в ньому буде набагато легше заплутатися.

Визначник

Ще матриця має визначника. Це надзвичайно важлива характеристика. З'ясовувати його сенс зараз не варто, можна просто показати, як він обчислюється, а потім розповісти, які характеристики матриці він визначає. Найбільш простий спосіб знаходження визначника – через діагоналі. У матриці проводяться уявні діагоналі; елементи, що знаходяться на кожній з них, перемножуються, а потім отримані твори складаються: діагоналі з нахилом праворуч - зі знаком "плюс", з нахилом вліво - зі знаком "мінус".

Дуже важливо відзначити, що обчислювати визначник можна лише у квадратної матриці. Для прямокутної матриціможна зробити наступне: із кількості рядків і кількості стовпців вибрати найменше (нехай це буде k), а потім у матриці довільним чином відзначити k стовпців і k рядків. Елементи, що знаходяться на перетині вибраних стовпців і рядків, становитимуть нову квадратну матрицю. Якщо визначник такої матриці буде числом, відмінним від нуля, назветься базисним мінором початкової прямокутної матриці.

Перед тим, як приступити до вирішення системи рівнянь методом Гауса, не заважає порахувати визначник. Якщо він виявиться нульовим, то відразу можна говорити, що у матриці кількість рішень або нескінченно, або взагалі немає. У такому сумному випадку треба йти далі і дізнаватися про ранг матриці.

Класифікація систем

Існує таке поняття, як ранг матриці. Це максимальний порядок її визначника, відмінного від нуля (якщо згадати про базовий мінор, можна сказати, що ранг матриці - порядок базового мінору).

По тому, як справи з рангом, СЛАУ можна розділити на:

  • Спільні. Успільних систем ранг основної матриці (що складається лише з коефіцієнтів) збігається з рангом розширеної (зі стовпцем вільних членів). Такі системи мають рішення, але необов'язково одне, тому додатково спільні системиділять на:
  • - певні- мають єдине рішення. У певних системах рівні ранг матриці і кількість невідомих (або число стовпців, що є одне й те саме);
  • - невизначені -з нескінченною кількістю рішень. Ранг матриць таких систем менше кількості невідомих.
  • Несумісні. Утаких систем ранги основної та розширеної матриць не збігаються. Несумісні системи рішення немає.

Метод Гауса хороший тим, що дозволяє в ході рішення отримати або однозначний доказ несумісності системи (без обчислення визначників великих матриць), або рішення в загальному вигляді для системи з нескінченним числом рішень.

Елементарні перетворення

Перш ніж приступити безпосередньо до вирішення системи, можна зробити її менш громіздкою і зручнішою для обчислень. Це досягається за рахунок елементарних перетворень - таких, що їхнє виконання ніяк не змінює кінцеву відповідь. Слід зазначити, що з наведених елементарних перетворень дійсні лише матриць, вихідниками яких послужили саме СЛАУ. Ось перелік цих перетворень:

  1. Перестановка рядків. Вочевидь, що у записи системи змінити порядок рівнянь, то рішення це ніяк не вплине. Отже, в матриці цієї системи також можна міняти місцями рядки, не забуваючи, звичайно, про стовпець вільних членів.
  2. Збільшення всіх елементів рядка на деякий коефіцієнт. Дуже корисно! За допомогою нього можна скоротити великі числау матриці або прибрати нулі. Багато рішень, як завжди, не зміниться, а виконувати подальші операції стане зручніше. Головне, щоб коефіцієнт не дорівнював нулю.
  3. Видалення рядків із пропорційними коефіцієнтами. Це частково випливає з попереднього пункту. Якщо два або більше рядки в матриці мають пропорційні коефіцієнти, то при множенні/розподілі одного з рядків на коефіцієнт пропорційності виходять два (або, знову ж таки, більше) абсолютно однакові рядки, і можна забрати зайві, залишивши тільки один.
  4. Видалення нульового рядка. Якщо в ході перетворень десь вийшов рядок, в якому всі елементи, включаючи вільний член, - нуль, то такий рядок можна назвати нульовим і викинути з матриці.
  5. Додаток до елементів одного рядка елементів іншого (за відповідними стовпцями), помножених на певний коефіцієнт. Найнеочевидніше і найважливіше перетворення з усіх. На ньому варто зупинитися докладніше.

Додавання рядка, помноженого на коефіцієнт

Для простоти розуміння варто розібрати цей процес кроками. Беруться два рядки з матриці:

a 11 a 12 ... a 1n | b1

a 21 a 22 ... a 2n | b 2

Допустимо, необхідно до другої додати першу, помножену на коефіцієнт "-2".

a" 21 = a 21 + -2×a 11

a" 22 = a 22 + -2×a 12

a" 2n = a 2n + -2×a 1n

Потім у матриці другий рядок замінюється на новий, а перший залишається без змін.

a 11 a 12 ... a 1n | b1

a" 21 a" 22 ... a" 2n | b 2

Необхідно помітити, що коефіцієнт множення можна підібрати таким чином, щоб в результаті складання двох рядків один з елементів нового рядка дорівнював нулю. Отже, можна отримати рівняння у системі, де на одну невідому буде менше. А якщо отримати два такі рівняння, то операцію можна зробити ще раз і отримати рівняння, яке міститиме вже на дві невідомі менше. А якщо щоразу перетворювати на нуль один коефіцієнт у всіх рядків, що стоять нижче за вихідну, то можна, як по сходах, спуститися до самого низу матриці і отримати рівняння з однією невідомою. Це називається вирішити систему методом Гаусса.

Загалом

Нехай існує система. Вона має m рівнянь та n коренів-невідомих. Записати її можна так:

З коефіцієнтів системи складається основна матриця. До розширеної матриці додається стовпець вільних членів і для зручності відокремлюється рисою.

  • перший рядок матриці множиться на коефіцієнт k = (-a 21 /a 11);
  • перший змінений рядок і другий рядок матриці складаються;
  • замість другого рядка в матрицю вставляється результат додавання з попереднього пункту;
  • тепер перший коефіцієнт у новою другоюрядку дорівнює a 11 × (-a 21 /a 11) + a 21 = -a 21 + a 21 = 0.

Тепер виконується та ж серія перетворень, тільки беруть участь перший і третій рядки. Відповідно, у кожному кроці алгоритму елемент a21 замінюється на a31. Потім все повторюється для a 41 ... a m1. У результаті виходить матриця, де у рядках перший елемент дорівнює нулю. Тепер потрібно забути про рядок номер один і виконати той самий алгоритм, починаючи з другого рядка:

  • коефіцієнт k = (-a 32/a 22);
  • з "поточним" рядком складається другий змінений рядок;
  • результат додавання підставляється в третій, четвертий і так далі рядки, а перший і другий залишаються незмінними;
  • у рядках матриці вже два перші елементи дорівнюють нулю.

Алгоритм треба повторювати, доки з'явиться коефіцієнт k = (-a m,m-1 /a mm). Це означає, що в останній разалгоритм виконувався лише для нижнього рівняння. Тепер матриця схожа на трикутник, або має ступінчасту форму. У нижньому рядку є рівність a mn × x n = b m. Коефіцієнт і вільний член відомі і корінь виражається через них: x n = b m /a mn . Отриманий корінь підставляється у верхній рядок, щоб знайти x n-1 = (b m-1 - m-1,n ×(b m /a mn))÷a m-1,n-1 . І так далі за аналогією: у кожному наступному рядку знаходиться новий корінь, і, діставшись "верху" системи, можна знайти безліч рішень. Воно буде єдиним.

Коли немає рішень

Якщо в одному з матричних рядків усі елементи, крім вільного члена, дорівнюють нулю, то рівняння, що відповідає цьому рядку, виглядає як 0 = b. Воно немає рішення. І оскільки таке рівняння укладено в систему, то й безліч рішень усієї системи – порожня, тобто вона є виродженою.

Коли рішень нескінченна кількість

Може вийти так, що в наведеній трикутній матриці немає рядків з одним елементом-коефіцієнтом рівняння і одним - вільним членом. Є тільки такі рядки, які під час переписування мали б вигляд рівняння з двома чи більше змінними. Отже, система має нескінченну кількість рішень. У разі відповідь можна дати як загального рішення. Як це зробити?

Всі змінні в матриці поділяються на базові та вільні. Базисні - це ті, що стоять "з краю" рядків у ступінчастій матриці. Інші – вільні. У загальному рішенні базисні змінні записуються через вільні.

Для зручності матриця спочатку переписується у систему рівнянь. Потім в останньому з них, там, де точно залишилася тільки одна базова змінна, вона залишається з одного боку, а все інше переноситься в іншу. Так робиться для кожного рівняння з однією базовою змінною. Потім до інших рівнянь, там, де це можливо, замість базисної змінної підставляється отриманий нею вираз. Якщо в результаті знову з'явився вираз, що містить тільки одну базисну змінну, вона звідти знову виражається, і так далі, поки кожна базова змінна не буде записана у вигляді виразу з вільними змінними. Це і є спільним рішенням СЛАУ.

Можна також знайти базисне рішення системи - дати вільним змінним будь-які значення, та був цього конкретного випадку порахувати значення базисних змінних. Приватних рішень можна навести дуже багато.

Рішення на конкретних прикладах

Ось система рівнянь.

Для зручності краще відразу скласти її матрицю

Відомо, що при вирішенні методом Гауса рівняння, що відповідає першому рядку, наприкінці перетворень залишиться незмінним. Тому вигідніше буде, якщо верхній лівий елемент матриці буде найменшим - тоді перші елементи інших рядків після операцій звернуться в нуль. Значить, у складеній матриці вигідно буде на місце першого рядка поставити другий.

другий рядок: k = (-a 21 /a 11) = (-3/1) = -3

a" 21 = a 21 + k×a 11 = 3 + (-3)×1 = 0

a" 22 = a 22 + k×a 12 = -1 + (-3)×2 = -7

a" 23 = a 23 + k×a 13 = 1 + (-3)×4 = -11

b" 2 = b 2 + k×b 1 = 12 + (-3)×12 = -24

третій рядок: k = (-a 3 1 /a 11) = (-5/1) = -5

a" 3 1 = a 3 1 + k×a 11 = 5 + (-5)×1 = 0

a" 3 2 = a 3 2 + k×a 12 = 1 + (-5)×2 = -9

a" 3 3 = a 33 + k×a 13 = 2 + (-5)×4 = -18

b" 3 = b 3 + k×b 1 = 3 + (-5)×12 = -57

Тепер, щоб не заплутатися, необхідно записати матрицю із проміжними результатами перетворень.

Очевидно, що таку матрицю можна зробити зручнішою для сприйняття за допомогою деяких операцій. Наприклад, з другого рядка можна усунути всі "мінуси", помножуючи кожен елемент на "-1".

Варто також зауважити, що у третьому рядку всі елементи кратні трьом. Тоді можна скоротити рядок на це число, помножуючи кожен елемент на "-1/3" (мінус - заразом, щоб прибрати від'ємні значення).

Виглядає набагато приємніше. Тепер треба дати спокій перший рядок і попрацювати з другого і третього. Завдання - додати до третього рядка другий, помножений на такий коефіцієнт, щоб елемент a 32 став дорівнює нулю.

k = (-a 32 /a 22) = (-3/7) = -3/7 (якщо в ході деяких перетворень у відповіді вийшло не ціле число, рекомендується для дотримання точності обчислень залишити його "як є", у вигляді звичайного дробу, а вже потім, коли отримані відповіді, вирішувати, чи варто округляти та переводити в іншу форму запису)

a" 32 = a 32 + k×a 22 = 3 + (-3/7)×7 = 3 + (-3) = 0

a" 33 = a 33 + k×a 23 = 6 + (-3/7)×11 = -9/7

b" 3 = b 3 + k×b 2 = 19 + (-3/7)×24 = -61/7

Знову записується матриця із новими значеннями.

1 2 4 12
0 7 11 24
0 0 -9/7 -61/7

Очевидно, отримана матриця вже має ступінчастий вигляд. Тому подальші перетворення системи методом Гаусса не потрібні. Що тут можна зробити, то це прибрати з третього рядка загальний коефіцієнт "-1/7".

Тепер все гарно. Справа за малим - записати матрицю знову у вигляді системи рівнянь та обчислити коріння

x + 2y + 4z = 12 (1)

7y + 11z = 24 (2)

Той алгоритм, за яким зараз будуть корені, називається зворотним ходом у методі Гауса. Рівняння (3) містить значення z:

y = (24 - 11×(61/9))/7 = -65/9

І перше рівняння дозволяє знайти x:

x = (12 - 4z - 2y)/1 = 12 - 4×(61/9) - 2×(-65/9) = -6/9 = -2/3

Таку систему ми маємо право назвати спільною, та ще й певною, тобто такою, що має єдине рішення. Відповідь записується у такій формі:

x 1 = -2/3, y = -65/9, z = 61/9.

Приклад невизначеної системи

Варіант вирішення певної системи методом Гауса розібраний, тепер необхідно розглянути випадок, якщо система невизначена, тобто для неї можна знайти безліч рішень.

х 1 + х 2 + х 3 + х 4 + х 5 = 7 (1)

3х 1 + 2х 2 + х 3 + х 4 - 3х 5 = -2 (2)

х 2 + 2х 3 + 2х 4 + 6х 5 = 23 (3)

5х 1 + 4х 2 + 3х 3 + 3х 4 - х 5 = 12 (4)

Сам вид системи вже насторожує, тому що кількість невідомих n = 5, а ранг матриці системи вже точно менша від цього числа, тому що кількість рядків m = 4, тобто найбільший порядок визначника-квадрату - 4. Значить, рішень існує безліч, і треба шукати його загальний вигляд. Метод Гауса для лінійних рівнянь дозволяє це зробити.

Спочатку, як завжди, складається розширена матриця.

Другий рядок: коефіцієнт k = (-a 21/a 11) = -3. У третьому рядку перший елемент - ще до перетворень, тому не треба нічого чіпати, треба залишити як є. Четвертий рядок: k = (-а 4 1/а 11) = -5

Помноживши елементи першого рядка на кожен їх коефіцієнт по черзі і склавши їх з потрібними рядками, отримуємо матрицю наступного виду:

Як можна бачити, другий, третій і четвертий рядки складаються з елементів, пропорційних один одному. Друга і четверта взагалі однакові, тому одну з них можна прибрати відразу, а решту помножити на коефіцієнт "-1" і отримати рядок номер 3. І знову з двох однакових рядків залишити один.

Вийшла така матриця. Поки ще записана система, треба тут визначити базисні змінні - які стоять при коефіцієнтах a 11 = 1 і a 22 = 1, і вільні - й інші.

У другому рівнянні є лише одна базисна змінна - x2. Значить, її можна висловити звідти, записавши через змінні x 3 x 4 x 5 які є вільними.

Підставляємо отриманий вираз у перше рівняння.

Вийшло рівняння, в якому єдина базова змінна - x1. Зробимо з нею те саме, що і з x 2 .

Усі базисні змінні, яких дві, виражені через три вільні, тепер можна записувати у загальному вигляді.

Також можна вказати одне із приватних рішень системи. Для таких випадків як значення для вільних змінних вибирають, як правило, нулі. Тоді відповіддю буде:

16, 23, 0, 0, 0.

Приклад несумісної системи

Розв'язання несумісних систем рівнянь методом Гауса – найшвидше. Воно закінчується відразу, як тільки на одному з етапів виходить рівняння, яке не має рішення. Тобто етап з обчисленням коренів, досить довгий і нудний, відпадає. Розглядається така система:

x + y - z = 0 (1)

2x - y - z = -2 (2)

4x + y - 3z = 5 (3)

Як завжди, складається матриця:

1 1 -1 0
2 -1 -1 -2
4 1 -3 5

І наводиться до східчастого вигляду:

k 1 = -2k 2 = -4

1 1 -1 0
0 -3 1 -2
0 0 0 7

Після першого ж перетворення у третьому рядку міститься рівняння виду

не має рішення. Отже, система несумісна, і відповіддю буде безліч.

Переваги та недоліки методу

Якщо вибирати, яким методом вирішувати СЛАУ на папері ручкою, то метод, який було розглянуто у цій статті, виглядає найпривабливіше. В елементарних перетвореннях набагато важче заплутатися, ніж у тому трапляється, якщо доводиться шукати вручну визначник або якусь хитру зворотну матрицю. Однак, якщо використовувати програми для роботи з даними такого типу, наприклад, електронні таблиці, то виявляється, що в таких програмах вже закладені алгоритми обчислення основних параметрів матриць - визначник, мінори, зворотна і таке інше. А якщо бути впевненим у тому, що машина вважатиме ці значення сама і не помилиться, доцільніше використовувати вже матричний метод або формул Крамера, тому що їх застосування починається і закінчується обчисленням визначників і зворотними матрицями.

Застосування

Оскільки рішення методом Гауса представляє собою алгоритм, а матриця - це, фактично, двовимірний масив, його можна використовувати при програмуванні. Але оскільки стаття позиціонує себе як керівництво "для чайників", слід сказати, що найпростіше, куди метод можна запхати - це електронні таблиці, наприклад, Excel. Знову ж таки, всякі СЛАУ, занесені в таблицю у вигляді матриці, Excel буде розглядати як двовимірний масив. А для операцій з ними існує безліч приємних команд: додавання (складати можна тільки матриці однакових розмірів!), множення на число, перемноження матриць (також з певними обмеженнями), знаходження зворотної та транспонованої матриць і, найголовніше, обчислення визначника. Якщо це трудомістке заняття замінити однією командою, можна швидше визначати ранг матриці і, отже, встановлювати її спільність чи несовместность.

Сьогодні розбираємося з методом Гауса для вирішення систем лінійних рівнянь алгебри. Про те, що це за системи, можна почитати у попередній статті, присвяченій рішенню тих самих СЛАУ методом Крамера. Метод Гауса не вимагає якихось специфічних знань, потрібна лише уважність та послідовність. Незважаючи на те, що з точки зору математики для його застосування вистачить і шкільної підготовки, у студентів освоєння цього методу часто викликає труднощі. У цій статті спробуємо звести їх нанівець!

Метод Гауса

М етод Гауса- Найбільш універсальний методрішення СЛАУ (за винятком ну вже дуже великих систем). На відміну від розглянутого раніше, він підходить не тільки для систем, що мають єдине рішення, але і для систем, у яких рішень безліч. Тут можливі три варіанти.

  1. Система має єдине рішення (визначник головної матриці системи не дорівнює нулю);
  2. Система має безліч рішень;
  3. Рішень немає, система несумісна.

Отже, ми маємо систему (нехай у неї буде одне рішення), і ми збираємося вирішувати її методом Гауса. Як це працює?

Метод Гауса складається з двох етапів – прямого та зворотного.

Прямий хід методу Гауса

Спочатку запишемо розширену матрицю системи. Для цього до головної матриці додаємо стовпець вільних членів.

Вся суть методу Гауса полягає в тому, щоб шляхом елементарних перетворень привести цю матрицю до ступінчастого (або як ще кажуть трикутного) вигляду. У такому вигляді під (або над) головною діагоналлю матриці мають бути одні нулі.

Що можна робити:

  1. Можна переставляти рядки матриці місцями;
  2. Якщо у матриці є однакові (або пропорційні) рядки, можна видалити їх усі, крім одного;
  3. Можна множити чи ділити рядок на будь-яке число (крім нуля);
  4. Нульові рядки видаляються;
  5. Можна додавати до рядка рядок, помножений на число, відмінне від нуля.

Зворотний хід методу Гауса

Після того як ми перетворимо систему таким чином, одна невідома Xn стає відома, і можна в зворотному порядку знайти всі невідомі, підставляючи вже відомі ікси в рівняння системи, аж до першого.

Коли інтернет завжди під рукою, можна вирішити систему рівнянь методом Гаусса онлайн.Достатньо лише вбити в онлайн-калькулятор коефіцієнти. Але погодьтеся, набагато приємніше усвідомлювати, що приклад вирішено не комп'ютерною програмою, а Вашим власним мозком.

Приклад розв'язання системи рівнянь методом Гаусс

А тепер – приклад, щоб усе стало наочно та зрозуміло. Нехай дана система лінійних рівнянь і потрібно вирішити її методом Гауса:

Спочатку запишемо розширену матрицю:

Тепер займемося перетвореннями. Пам'ятаємо, що нам потрібно досягти трикутного вигляду матриці. Помножимо 1-ий рядок на (3). Помножимо 2-й рядок на (-1). Додамо 2-й рядок до 1-го і отримаємо:

Потім помножимо 3-й рядок на (-1). Додамо 3-й рядок до 2-го:

Помножимо 1-ий рядок на (6). Помножимо 2-й рядок на (13). Додамо 2-й рядок до 1-го:

Вуаля – система наведена до відповідного виду. Залишилось знайти невідомі:

Система у цьому прикладі має єдине рішення. Вирішення систем з безліччю рішень ми розглянемо в окремій статті. Можливо, спочатку Ви не знатимете, з чого почати перетворення матриці, але після відповідної практики наб'єте руку і клацатимете СЛАУ методом Гауса як горішки. А якщо Ви раптом зіткнетеся зі СЛАУ, яка виявиться занадто міцним горішком, звертайтесь до наших авторів! ви можете, залишивши заявку у Заочнику. Разом ми вирішимо будь-яке завдання!

Метод Гауса – це просто!Чому? Відомий німецький математик Йоган Карл Фрідріх Гаусс ще за життя отримав визнання найбільшого математика всіх часів, генія і навіть прізвисько «короля математики». А все геніальне, як відомо просто!До речі, на гроші потрапляють не лише лохи, а ще й генії – портрет Гауса красувався на купюрі в 10 дойчмарок (до введення євро), і Гаус досі загадково посміхається німцям зі звичайних поштових марок.

Метод Гауса простий тим, що для його освоєння ДОСИТЬ ЗНАНЬ П'ЯТИКЛАСНИКА. Необхідно вміти складати та множити!Невипадково метод послідовного виключення невідомих викладачі часто розглядають на шкільних математичних факультативах. Парадокс, але у студентів метод Гауса викликає найбільші складнощі. Нічого дивного – вся річ у методиці, і я постараюся в доступній формі розповісти про алгоритм методу.

Спочатку трохи систематизуємо знання про системи лінійних рівнянь. Система лінійних рівнянь може:

1) Мати єдине рішення.
2) Мати безліч рішень.
3) Не мати рішень (бути несумісний).

Метод Гауса – найбільш потужний та універсальний інструмент для знаходження рішення будь-якийсистеми лінійних рівнянь Як ми пам'ятаємо, правило Крамера та матричний методнепридатні у випадках, коли система має нескінченно багато рішень чи несовместна. А метод послідовного виключення невідомих в будь-якому випадкуприведе нас до відповіді! На цьому уроці ми знову розглянемо метод Гауса для випадку №1 (єдине рішення системи), під ситуації пунктів №2-3 відведено статтю. Зауважу, що сам алгоритм методу у всіх трьох випадках працює однаково.

Повернемося до найпростішою системіз уроку Як розв'язати систему лінійних рівнянь?
і вирішимо її методом Гауса.

На першому етапі слід записати розширену матрицю системи:
. За яким принципом записані коефіцієнти, гадаю, всім видно. Вертикальна характеристика всередині матриці не несе ніякого математичного сенсу - це просто накреслення для зручності оформлення.

Довідка :рекомендую запам'ятати термінилінійної алгебри. Матриця системи– це матриця, складена лише з коефіцієнтів при невідомих, у цьому прикладі матриця системы: . Розширена матриця системи– це та сама матриця системи плюс стовпець вільних членів, у разі: . Будь-яку з матриць можна для стислості називати просто матрицею.

Після того, як розширена матриця системи записана, з нею необхідно виконати деякі дії, які також називаються елементарними перетвореннями.

Існують такі елементарні перетворення:

1) Рядкиматриці можна, можливо переставлятимісцями. Наприклад, у матриці можна безболісно переставити перший і другий рядки:

2) Якщо в матриці є (або з'явилися) пропорційні (як окремий випадок – однакові) рядки, слід вилучитиз матриці всі ці рядки крім одного. Розглянемо, наприклад, матрицю . У цій матриці останні три рядки пропорційні, тому достатньо залишити лише одну з них: .

3) Якщо в матриці в ході перетворень з'явився нульовий рядок, то його також слідує вилучити. Малювати не буду, зрозуміло, нульовий рядок – це рядок, у якому одні нулі.

4) Рядок матриці можна помножити (розділити)на будь-яке число, відмінне від нуля. Розглянемо, наприклад, матрицю. Тут доцільно перший рядок розділити на –3, а другий рядок – помножити на 2: . Ця діядуже корисно, оскільки полегшує подальші перетворення матриці.

5) Це перетворення викликає найбільші труднощі, але насправді нічого складного також немає. До рядка матриці можна додати інший рядок, помножений на число, відмінне від нуля. Розглянемо нашу матрицю з практичного прикладу: . Спочатку я розпишу перетворення дуже докладно. Помножуємо перший рядок на -2: , і до другого рядка додаємо перший рядок помножений на –2: . Тепер перший рядок можна розділити «назад» на –2: . Як бачите, рядок, який ПРИДБА ЧИне змінилася. Завждизмінюється рядок, ДО ЯКОГО ДОДАТИ ЮТ.

Насправді так докладно, звісно, ​​не розписують, а пишуть коротше:

Ще раз: до другого рядка додали перший рядок, помножений на -2. Помножують рядок зазвичай усно або на чернетці, при цьому уявний хід розрахунків приблизно такий:

«Переписую матрицю та переписую перший рядок: »

«Спочатку перший стовпець. Внизу мені потрібно отримати нуль. Тому одиницю вгорі множу на –2: , і до другого рядка додаю перший: 2 + (–2) = 0. Записую результат у другий рядок: »

«Тепер другий стовпець. Угорі –1 множу на –2: . До другого рядка додаю перший: 1 + 2 = 3. Записую результат до другого рядка: »

«І третій стовпець. Угорі –5 множу на –2: . До другого рядка додаю перший: –7 + 10 = 3. Записую результат до другого рядка: »

Будь ласка, ретельно осмисліть цей приклад і розберіться в послідовному алгоритмі обчислень, якщо ви це зрозуміли, то метод Гауса практично «в кишені». Але, звісно, ​​над цим перетворенням ми ще попрацюємо.

Елементарні перетворення не змінюють рішення системи рівнянь

! УВАГА: розглянуті маніпуляції не можна використовуватиякщо Вам запропоновано завдання, де матриці дано «самі по собі». Наприклад, при «класичних» діях з матрицямищось переставляти всередині матриць в жодному разі не можна!

Повернемося до нашої системи. Вона практично розібрана по кісточках.

Запишемо розширену матрицю системи та за допомогою елементарних перетворень наведемо її до східчастого вигляду:

(1) До другого рядка додали перший рядок, помножений на -2. І знову: чому перший рядок множимо саме на -2? Для того щоб внизу отримати нуль, а значить, позбавитися однієї змінної в другому рядку.

(2) Ділимо другий рядок на 3.

Ціль елементарних перетвореньпривести матрицю до ступінчастого вигляду: . В оформленні завдання прямо так і наголошують простим олівцем"сходи", а також обводять кружальцями числа, які розташовуються на "сходинках". Сам термін «ступінчастий вигляд» не цілком теоретичний, у науковій та навчальної літературивін часто називається трапецієподібний виглядабо трикутний вигляд.

В результаті елементарних перетворень отримано еквівалентнавихідна система рівнянь:

Тепер систему потрібно «розкрутити» у зворотному напрямку – знизу нагору, цей процес називається зворотним ходом методу Гауса.

У нижньому рівнянні ми вже готовий результат: .

Розглянемо перше рівняння системи та підставимо до нього вже відоме значення«Ігрек»:

Розглянемо найпоширенішу ситуацію, коли методом Гауса потрібно вирішити систему трьохлінійних рівнянь із трьома невідомими.

Приклад 1

Розв'язати методом Гауса систему рівнянь:

Запишемо розширену матрицю системи:

Зараз я одразу намалюю результат, до якого ми прийдемо під час рішення:

І повторюся, наша мета – за допомогою елементарних перетворень привести матрицю до східчастого вигляду. З чого розпочати дії?

Спочатку дивимося на ліве верхнє число:

Майже завжди тут має бути одиниця. Взагалі кажучи, влаштує і –1 (а іноді й інші числа), але якось традиційно склалося, що туди зазвичай поміщають одиницю. Як організувати одиницю? Дивимось на перший стовпець – готова одиниця у нас є! Перетворення перше: міняємо місцями перший і третій рядки:

Тепер перший рядок у нас залишиться незмінним до кінця рішення. Вже легше.

Одиниця у лівому верхньому кутку організована. Тепер потрібно отримати нулі на цих місцях:

Нулі отримуємо саме за допомогою «важкого» перетворення. Спочатку знаємося з другим рядком (2, -1, 3, 13). Що потрібно зробити, щоби на першій позиції отримати нуль? Потрібно до другого рядка додати перший рядок, помножений на –2. Подумки чи чернетці множимо перший рядок на –2: (–2, –4, 2, –18). І послідовно проводимо (знову ж таки подумки або на чернетці) додавання, до другого рядка додаємо перший рядок, вже помножений на –2:

Результат записуємо у другий рядок:

Аналогічно розуміємося з третім рядком (3, 2, -5, -1). Щоб отримати на першій позиції нуль, потрібно до третього рядка додати перший рядок, помножений на –3. Подумки чи чернетці множимо перший рядок на –3: (–3, –6, 3, –27). І до третього рядка додаємо перший рядок, помножений на –3:

Результат записуємо у третій рядок:

Насправді ці дії зазвичай виконуються усно і записуються за один крок:

Не треба рахувати все відразу і одночасно. Порядок обчислень та «вписування» результатів послідовнийі зазвичай такий: спочатку переписуємо перший рядок, і пихкаємо собі потихеньку - НАСЛІДНО і Уважно:


А уявний хід самих розрахунків я вже розглянув вище.

У цьому прикладі це зробити легко, другий рядок ділимо на –5 (оскільки там усі числа діляться на 5 без залишку). Заодно ділимо третій рядок на -2, чим менше числа, тим простіше рішення:

На заключному етапі елементарних перетворень потрібно отримати ще один нуль:

Для цього до третього рядка додаємо другий рядок, помножений на –2:


Спробуйте розібрати цю дію самостійно - помножте другий рядок на -2 і проведіть додавання.

Остання виконана дія – зачіска результату, ділимо третій рядок на 3.

В результаті елементарних перетворень отримано еквівалентну вихідну систему лінійних рівнянь:

Круто.

Тепер у дію вступає зворотний перебіг методу Гаусса. Рівняння розкручуються знизу вгору.

У третьому рівнянні ми вже готовий результат:

Дивимося друге рівняння: . Значення «зет» вже відоме, таким чином:

І, нарешті, перше рівняння: . «Ігрек» і «Зет» відомі, справа за малим:


Відповідь:

Як вже неодноразово зазначалося, для будь-якої системи рівнянь можна і потрібно зробити перевірку знайденого рішення, благо це нескладно і швидко.

Приклад 2


Це приклад для самостійного рішення, зразок чистового оформлення та відповідь наприкінці уроку.

Слід зазначити, що ваш хід рішенняможе не збігтися з моїм ходом рішення, і це – особливість методу Гауса. Але відповіді обов'язково повинні вийти однаковими!

Приклад 3

Розв'язати систему лінійних рівнянь методом Гауса

Запишемо розширену матрицю системи та за допомогою елементарних перетворень наведемо її до ступінчастого вигляду:

Дивимося на ліву верхню сходинку. Там у нас має бути одиниця. Проблема полягає в тому, що у першому стовпці одиниць немає взагалі, тому перестановкою рядків нічого не вирішити. У разі одиницю треба організувати з допомогою елементарного перетворення. Зазвичай це можна зробити кількома способами. Я вчинив так:
(1) До першого рядка додаємо другий рядок, помножений на –1. Тобто подумки помножили другий рядок на –1 і виконали додавання першого і другого рядка, при цьому другий рядок у нас не змінився.

Тепер ліворуч угорі «мінус один», що нас цілком влаштує. Хто хоче отримати +1, може виконати додатковий рух тіла: помножити перший рядок на –1 (змінити у неї знак).

(2) До другого рядка додали перший рядок, помножений на 5. До третього рядка додали перший рядок, помножений на 3.

(3) Перший рядок помножили на -1, в принципі це для краси. У третього рядка також змінили знак і переставили її на друге місце, таким чином, на другому сходинці у нас з'явилася потрібна одиниця.

(4) До третього рядка додали другий рядок, помножений на 2.

(5) Третій рядок поділили на 3.

Поганою ознакою, яка свідчить про помилку в обчисленнях (рідше – про друкарську помилку), є «поганий» нижній рядок. Тобто, якби в нас унизу вийшло щось на зразок, і, відповідно, , то з великою часткою ймовірності можна стверджувати, що припущена помилка під час елементарних перетворень.

Заряджаємо зворотний хід, в оформленні прикладів часто не переписують саму систему, а рівняння "беруть прямо з наведеної матриці". Зворотній хід, нагадую, працює, знизу нагору. Та тут подарунок вийшов:


Відповідь: .

Приклад 4

Розв'язати систему лінійних рівнянь методом Гауса

Це приклад для самостійного рішення, він дещо складніший. Нічого страшного, якщо хтось заплутається. Повне рішеннята зразок оформлення наприкінці уроку. Ваше рішення може відрізнятись від мого рішення.

В останній частині розглянемо деякі особливості алгоритму Гаусса.
Перша особливість полягає в тому, що іноді в рівняннях системи відсутні деякі змінні, наприклад:

Як правильно записати розширену матрицю системи? Про цей момент я вже розповідав на уроці Правило Крамер. Матричний метод. У розширеній матриці системи на місці відсутніх змінних ставимо нулі:

До речі, це досить легкий приклад, оскільки в першому стовпці вже є один нуль, і потрібно виконати менше елементарних перетворень.

Друга особливість полягає ось у чому. У всіх розглянутих прикладах на «сходинки» ми поміщали або -1 або +1. Чи можуть там бути інші цифри? У деяких випадках можуть. Розглянемо систему: .

Тут на лівій верхній сходинці у нас двійка. Але помічаємо той факт, що всі числа в першому стовпці поділяються на 2 без залишку - й інша двійка та шістка. І двійка зліва нагорі нас влаштує! На першому кроці потрібно виконати такі перетворення: до другого рядка додати перший рядок, помножений на -1; до третього рядка додати перший рядок, помножений на -3. Таким чином, ми отримаємо потрібні нулі у першому стовпці.

Або ще такий умовний приклад: . Тут трійка на другому «сході» теж нас влаштовує, оскільки 12 (місце, де нам потрібно отримати нуль) ділиться на 3 без залишку. Необхідно провести наступне перетворення: до третього рядка додати другий рядок, помножений на -4, в результаті чого буде отримано потрібний нам нуль.

Метод Гауса універсальний, але є одна своєрідність. Впевнено навчитися вирішувати системи іншими методами (методом Крамера, матричним методом) можна буквально з першого разу - там дуже жорсткий алгоритм. Але щоб впевнено себе почувати в методі Гауса, слід «набити руку», і вирішувати хоча б 5-10 систем. Тому спочатку можливі плутанина, помилки у обчисленнях і в цьому немає нічого незвичайного чи трагічного.

Дощова осіння погода за вікном. Тому для всіх бажаючих більше складний прикладдля самостійного вирішення:

Приклад 5

Вирішити методом Гауса систему чотирьох лінійних рівнянь із чотирма невідомими.

Таке завдання практично зустрічається негаразд і рідко. Думаю, навіть чайнику, який докладно вивчив цю сторінку, інтуїтивно зрозумілий алгоритм розв'язання такої системи. Принципово так само – просто дій більше.

Випадки, коли система не має рішень (несумісна) або має безліч рішень, розглянуті на уроці Несумісні системи та системи із загальним рішенням . Там можна закріпити розглянутий алгоритм методу Гаусса.

Бажаю успіхів!

Рішення та відповіді:

Приклад 2: Рішення : Запишемо розширену матрицю системи та за допомогою елементарних перетворень наведемо її до ступінчастого вигляду.


Виконані елементарні перетворення:
(1) До другого рядка додали перший рядок, помножений на -2. До третього рядка додали перший рядок, помножений на -1. Увага!Тут може виникнути спокуса від третього рядка відняти першу, вкрай не рекомендую віднімати - сильно підвищується ризик помилки. Тільки складаємо!
(2) У другому рядку змінили знак (помножили на –1). Другий і третій рядки поміняли місцями. Зверніть увагу, Що на «сходинках» нас влаштовує не тільки одиниця, але ще й -1, що навіть зручніше.
(3) До третього рядка додали другий рядок, помножений на 5.
(4) У другому рядку змінили знак (помножили на –1). Третій рядок поділили на 14.

Зворотній хід:

Відповідь: .

Приклад 4: Рішення : Запишемо розширену матрицю системи та за допомогою елементарних перетворень наведемо її до ступінчастого вигляду:

Виконані перетворення:
(1) До першого рядка додали другий. Таким чином, організована потрібна одиниця на лівій верхній сходинці.
(2) До другого рядка додали перший рядок, помножений на 7. До третього рядка додали перший рядок, помножений на 6.

З другою «сходинкою» все гірше , «Кандидати» неї - числа 17 і 23, а нам необхідна або одиниця, або -1. Перетворення (3) та (4) будуть спрямовані на отримання потрібної одиниці

(3) До третього рядка додали другий, помножений на –1.
(4) До другого рядка додали третій, помножений на –3.
(3) До третього рядка додали другий, помножений на 4. До четвертого рядка додали другий, помножений на –1.
(4) У другому рядку змінили знак. Четвертий рядок розділили на 3 та помістили замість третього рядка.
(5) До четвертого рядка додали третій рядок, помножений на -5.

Зворотній хід:



Поділіться з друзями або збережіть для себе:

Завантаження...