Які матриці мають зворотну. зворотна матриця

Ця тема є однією з найненависніших серед студентів. Гірше, мабуть, лише визначники.

Фішка в тому, що саме поняття зворотного елемента (і я зараз не лише про матриці) відсилає нас до операції множення. Навіть у шкільній програмімноження вважається складною операцією, а множення матриць — взагалі окрема тема, якій у мене присвячений цілий параграф і відеоурок.

Сьогодні ми не будемо вдаватися до подробиць матричних обчислень. Просто згадаємо: як позначаються матриці, як вони множаться і що з цього випливає.

Повторення: множення матриць

Насамперед домовимося про позначення. Матрицею $A$ розміру $\left[ m\times n \right]$ називається просто таблиця з чисел, в якій рівно $m$ рядків і $n$ стовпців:

\=\underbrace(\left[ \begin(matrix) ((a)_(11)) & ((a)_(12)) & ... & ((a)_(1n)) \\ (( a)_(21)) & ((a)_(22)) & ... & ((a)_(2n)) \\ ... & ... & ... & ... \\ ((a)_(m1)) & ((a)_(m2)) & ... & ((a)_(mn)) \\\end(matrix) \right])_(n)\]

Щоб випадково не переплутати рядки та стовпці місцями (повірте, на іспиті можна і одиницю з двійкою переплутати — що вже казати про якісь там рядки), просто погляньте на картинку:

Визначення індексів для клітин матриці

Що відбувається? Якщо розмістити стандартну систему координат $OXY$ у лівому верхньому кутку і направити осі так, щоб вони охоплювали всю матрицю, то кожній клітині цієї матриці можна однозначно зіставити координати $\left(x;y \right)$ - це і буде номер рядка і номер стовпця.

Чому система координат розміщена саме у лівому верхньому кутку? Бо саме звідти ми починаємо читати будь-які тексти. Це просто запам'ятати.

А чому вісь $x$ спрямована саме вниз, а не праворуч? Знову все просто: візьміть стандартну систему координат (вісь $x$ йде вправо, вісь $y$ вгору) і поверніть її так, щоб вона охоплювала матрицю. Це поворот на 90 градусів за годинниковою стрілкою – його результат ми й бачимо на картинці.

Загалом, як визначити індекси у елементів матриці, ми розібралися. Тепер розберемося з множенням.

Визначення. Матриці $A=\left[ m\times n \right]$ і $B=\left[ n\times k \right]$, коли кількість стовпців у першій збігається з кількістю рядків у другій, називаються узгодженими.

Саме у такому порядку. Можна сумніватися і сказати, мовляв, матриці $A$ і $B$ утворюють впорядковану пару $\left(A;B \right)$: якщо вони узгоджені в такому порядку, то необов'язково, що $B$ і $A$, тобто. пара $ \ left (B; A \ right) $ - теж узгоджена.

Помножувати можна лише узгоджені матриці.

Визначення. Твір узгоджених матриць $A=\left[m\times n\right]$ і $B=\left[n\times k \right]$ - це нова матриця $C=\left[m\times k \right]$ елементи якої $((c)_(ij))$ вважаються за формулою:

\[((c)_(ij))=\sum\limits_(k=1)^(n)(((a)_(ik)))\cdot ((b)_(kj))\]

Іншими словами: щоб отримати елемент $((c)_(ij))$ матриці $C=A\cdot B$, потрібно взяти $i$-рядок першої матриці, $j$-й стовпець другої матриці, а потім попарно перемножити елементи з цього рядка та стовпця. Результати скласти.

Так, ось таке суворе визначення. З нього відразу випливає кілька фактів:

  1. Множення матриць, взагалі кажучи, некомутативно: $ A \ cdot B \ ne B \ cdot A $;
  2. Однак множення асоціативно: $ \ left (A cdot B \ right) \ cdot C = A \ cdot \ left (B \ cdot C \ right) $;
  3. І навіть дистрибутивно: $ \ left (A + B \ right) \ cdot C = A cdot C + B cdot C $;
  4. І ще раз дистрибутивно: $ A \ cdot \ left (B + C \ right) = A \ cdot B + A \ cdot C $.

Дистрибутивність множення довелося окремо описувати для лівого та правого множника-суми якраз через некомутативність операції множення.

Якщо все ж таки виходить так, що $A cdot B = B cdot A $, такі матриці називаються перестановочними.

Серед усіх матриць, які там на щось множаться, є особливі ті, які при множенні на будь-яку матрицю $A$ знову дають $A$:

Визначення. Матриця $E$ називається одиничною, якщо $A\cdot E=A$ або $E\cdot A=A$. У випадку з квадратною матрицею $A$ можемо записати:

Поодинока матриця – частий гість при вирішенні матричних рівнянь. І взагалі найчастіший гість у світі матриць.:)

А ще через цю $E$ дехто вигадав всю ту дичину, яка буде написана далі.

Що таке зворотна матриця

Оскільки множення матриць - дуже трудомістка операція (доводиться перемножувати купу рядків і стовпців), то поняття зворотної матриці теж виявляється не найбільш очевидним. І потребує деяких пояснень.

Ключове визначення

Що ж, настав час пізнати істину.

Визначення. Матриця $B$ називається зворотною до матриці $A$ , якщо

Зворотна матриця позначається через $((A)^(-1))$ (не плутати зі ступенем!), тому визначення можна переписати так:

Здавалося б, все дуже просто і ясно. Але під час аналізу такого визначення відразу виникає кілька питань:

  1. Чи завжди є зворотна матриця? І якщо не завжди, то як визначити: коли вона існує, а коли ні?
  2. А хто сказав, що така матриця одно? Раптом для деякої вихідної матриці $A$ знайдеться ціла юрба зворотних?
  3. Як виглядають усі ці «зворотні»? І як, власне, їх рахувати?

Щодо алгоритмів обчислення – про це ми поговоримо трохи згодом. Але на інші питання відповімо зараз. Оформимо їх у вигляді окремих тверджень-лем.

Основні властивості

Почнемо з того, як у принципі має виглядати матриця $A$, щоб для неї існувала $((A)^(-1))$. Зараз ми переконаємося в тому, що обидві ці матриці повинні бути квадратними, причому одного розміру: $ \ left [n \ times n \ right] $.

Лемма 1 . Дана матриця $A$ і обернена їй $((A)^(-1))$. Тоді обидві ці матриці квадратні, причому однакового порядку $ n $.

Доведення. Все просто. Нехай матриця $A=\left[m\times n \right]$, $((A)^(-1))=\left[ a\times b \right]$. Оскільки добуток $A\cdot ((A)^(-1))=E$ за визначенням існує, матриці $A$ і $((A)^(-1))$ узгоджені у вказаному порядку:

\[\begin(align) & \left[ m\times n \right]\cdot \left[ a\times b \right]=\left[ m\times b \right] \\ & n=a \end( align)\]

Це прямий наслідок алгоритму перемноження матриць: коефіцієнти $n$ і $a$ є «транзитними» і мають бути рівними.

Водночас визначено і зворотне множення: $((A)^(-1))\cdot A=E$, тому матриці $((A)^(-1))$ і $A$ також узгоджені у вказаному порядку:

\[\begin(align) & \left[ a\times b \right]\cdot \left[ m\times n \right]=\left[ a\times n \right] \\ & b=m \end( align)\]

Отже, без обмеження спільності можемо вважати, що $A=\left[ m\times n \right]$, $((A)^(-1))=\left[ n\times m \right]$. Однак згідно з визначенням $A\cdot ((A)^(-1))=((A)^(-1))\cdot A$, тому розміри матриць суворо збігаються:

\[\begin(align) & \left[ m\times n \right]=\left[ n\times m \right] \\ & m=n \end(align)\]

Ось і виходить, що всі три матриці - $ A $, $ ((A) ^ (-1)) $ і $ E $ - є квадратними розміром $ \ left [n \ times n \ right] $. Лемма доведена.

Що ж, уже непогано. Ми, що оборотними бувають лише квадратні матриці. Тепер переконаємося, що зворотна матриця завжди одна.

Лемма 2 . Дана матриця $A$ і обернена їй $((A)^(-1))$. Тоді ця зворотна матриця єдина.

Доведення. Підемо від протилежного: нехай матриця $A$ має хоча б два екземпляри зворотних —$B$ і $C$. Тоді, згідно з визначенням, вірні такі рівності:

\[\begin(align) & A\cdot B=B\cdot A=E; \ & A \ cdot C = C \ cdot A = E. \\ \end(align)\]

З леми 1 ми укладаємо, що всі чотири матриці - $ A $, $ B $, $ C $ і $ E $ - є квадратними однакового порядку: $ \ left [n \ times n \ right] $. Отже, визначено твір:

Оскільки множення матриць асоціативно (але не комутативно!), ми можемо записати:

\\\\\begin(align) & B\cdot A\cdot C=\left(B\cdot A \right)\cdot C=E\cdot C=C; \ \ & B \ cdot A \ cdot C = B \ cdot \ left (A \ cdot C \ right) = B \ cdot E = B; \ & B \ cdot A \ cdot C = C = B \ Rightarrow B = C. \\ \end(align)\]

Отримали єдино можливий варіант: два екземпляри зворотної матриці рівні. Лемма доведена.

Наведені міркування майже дослівно повторюють доказ єдиність зворотного елемента всім дійсних чисел $b\ne 0$. Єдине істотне доповнення - облік розмірності матриць.

Втім, ми досі нічого не знаємо про те, чи квадратна матриця є оборотною. Тут нам на допомогу приходить визначник це ключова характеристика для всіх квадратних матриць.

Лемма 3 . Дано матрицю $A$. Якщо зворотна до неї матриця $((A)^(-1))$ існує, то визначник вихідної матриці відмінний від нуля:

\[\left| A \right|\ne 0\]

Доведення. Ми вже знаємо, що $A$ і $((A)^(-1))$ — квадратні матриці розміру $\left[ n\times n \right]$. Отже, кожної з них можна обчислити визначник: $\left| A \right|$ і $\left| ((A)^(-1)) \right|$. Проте визначник твору дорівнює твору визначників:

\[\left| A\cdot B \right|=\left| A \right|\cdot \left| B \right|\Rightarrow \left| A\cdot ((A)^(-1)) \right|=\left| A \right|\cdot \left| ((A)^(-1)) \right|\]

Але згідно з визначенням $A\cdot ((A)^(-1))=E$, а визначник $E$ завжди дорівнює 1, тому

\[\begin(align) & A\cdot ((A)^(-1))=E; \\ & \left| A\cdot ((A)^(-1)) \right|=\left| E \right|; \\ & \left| A \right|\cdot \left| ((A)^(-1)) \right|=1. \\ \end(align)\]

Добуток двох чисел дорівнює одиниці тільки в тому випадку, коли кожне з цих чисел відмінно від нуля:

\[\left| A \right|\ne 0;\quad \left| ((A)^(-1)) \right|\ne 0.\]

Ось і виходить, що $ \ left | A \right|\ne 0$. Лемма доведена.

Насправді ця вимога є цілком логічною. Зараз ми розберемо алгоритм знаходження зворотної матриці - і стане зрозуміло, чому за нульового визначника ніякої зворотної матриці в принципі не може існувати.

Але для початку сформулюємо «допоміжне» визначення:

Визначення. Вироджена матриця - це квадратна матриця розміру $ \ left [n \ times n \ right] $, чий визначник дорівнює нулю.

Таким чином, ми можемо стверджувати, що будь-яка оборотна матриця є невиродженою.

Як знайти зворотну матрицю

Зараз розглянемо універсальний алгоритм знаходження зворотних матриць. Взагалі, існує два загальноприйняті алгоритми, і другий ми також сьогодні розглянемо.

Той, який буде розглянутий зараз, дуже ефективний для матриць розміру $ \ left [2 \ times 2 \ right] $ і - частково - розміру $ \ left [3 \ times 3 \ right] $. А ось починаючи з розміру $ \ left [4 \ times 4 \ right] $ його краще не застосовувати. Чому зараз самі все зрозумієте.

Алгебраїчні доповнення

Готуйтеся. Нині буде біль. Ні, не хвилюйтеся: до вас не йде красива медсестра у спідниці, панчохах з мереживом і не зробить укол у сідницю. Все куди прозаїчніше: до вас йдуть алгебраїчні доповнення та її Величність «Союзна Матриця».

Почнемо з головного. Нехай є квадратна матриця розміру $ A = \ left [n \ times n \ right] $, елементи якої іменуються $ ((a)_ (ij)) $. Тоді для кожного такого елемента можна визначити додаток алгебри:

Визначення. Алгебраїчне доповнення $((A)_(ij))$ до елемента $((a)_(ij))$, що стоїть у $i$-му рядку і $j$-му стовпці матриці $A=\left[ n \times n \right]$ - це конструкція виду

\[((A)_(ij))=((\left(-1 \right))^(i+j))\cdot M_(ij)^(*)\]

Де $M_(ij)^(*)$ — визначник матриці, отриманої з вихідної $A$ викреслюванням того самого $i$-го рядка і $j$-го стовпця.

Ще раз. Додаток алгебри до елемента матриці з координатами $\left(i;j \right)$ позначається як $((A)_(ij))$ і вважається за схемою:

  1. Спочатку викреслюємо з вихідної матриці $i$-рядок і $j$-й стовпець. Отримаємо нову квадратну матрицю і її визначник ми позначаємо як $M_(ij)^(*)$.
  2. Потім множимо цей визначник на $((\left(-1 \right))^(i+j))$ — спочатку цей вираз може здатися мозковиносним, але по суті ми просто з'ясовуємо знак перед $M_(ij)^(*) $.
  3. Вважаємо - отримуємо конкретне число. Тобто. Додаток алгебри — це саме число, а не якась нова матриця і т.д.

Саму матрицю $M_(ij)^(*)$ називають додатковим мінором до елемента $((a)_(ij))$. І в цьому сенсі наведене вище визначення алгебраїчного доповнення є окремим випадком складнішого визначення того, що ми розглядали в уроці про визначник.

Важливе зауваження. Загалом у «дорослій» математиці алгебраїчні доповнення визначаються так:

  1. Беремо у квадратній матриці $k$ рядків і $k$ стовпців. На їх перетині вийде матриця розміру $ \ left [k \ times k \ right] $ - її визначник називається мінором порядку $ k $ і позначається $ ((M)_ (k)) $.
  2. Потім викреслюємо ці «вибрані» $k$ рядків і $k$ стовпців. Знову вийде квадратна матриця - її визначник називається додатковим мінором і позначається $ M_(k) ^ (*) $.
  3. Помножуємо $M_(k)^(*)$ на $((\left(-1 \right))^(t))$, де $t$ — це (ось зараз увага!) сума номерів усіх вибраних рядків та стовпців . Це і буде додаток алгебри.

Погляньте на третій крок: там взагалі сума $2k$ доданків! Інша річ, що для $k=1$ ми отримаємо лише 2 доданків — це будуть ті самі $i+j$ — «координати» елемента $((a)_(ij))$, для якого ми шукаємо алгебраїчне доповнення.

Таким чином, сьогодні ми використовуємо злегка спрощене визначення. Але як ми побачимо надалі, його виявиться більш ніж достатньо. Куди важливіша наступна штука:

Визначення. Союзна матриця $S$ до квадратної матриці $A=\left[ n\times n \right]$ — це нова матриця розміру $\left[ n\times n \right]$, яка виходить із $A$ заміною $(( a)_(ij))$ алгебраїчними доповненнями $((A)_(ij))$:

\\Rightarrow S=\left[ \begin(matrix) ((A)_(11)) & ((A)_(12)) & ... & ((A)_(1n)) \\ (( A)_(21)) & ((A)_(22)) & ... & ((A)_(2n)) \\ ... & ... & ... & ... \\ ((A)_(n1)) & ((A)_(n2)) & ... & ((A)_(nn)) \\\end(matrix) \right]\]

Перша думка, що виникає в момент усвідомлення цього визначення - це скільки ж доведеться всього вважати! Розслабтеся: вважати доведеться, але не так вже й багато.

Що ж, все це дуже мило, але навіщо це потрібне? А ось навіщо.

Основна теорема

Повернемося трохи тому. Пам'ятайте, в Лемме 3 стверджувалося, що оборотна матриця $A$ завжди не вироджена (тобто її визначник відмінний від нуля: $ \ left | A \ right | \ ne 0 $).

Так ось, вірно і зворотне: якщо матриця $ A $ не вироджена, вона завжди оборотна. І навіть існує схема пошуку $((A)^(-1))$. Зацініть:

Теорема про зворотну матрицю. Нехай дана квадратна матриця $ A = \ left [n \ times n \ right] $, причому її визначник відмінний від нуля: $ \ left | A \right|\ne 0$. Тоді зворотна матриця $((A)^(-1))$ існує і вважається за формулою:

\[((A)^(-1))=\frac(1)(\left| A \right|)\cdot ((S)^(T))\]

А тепер — все те саме, але розбірливим почерком. Щоб знайти зворотну матрицю, потрібно:

  1. Порахувати визначник $ \ left | A \right|$ і переконатися, що він відмінний від нуля.
  2. Скласти союзну матрицю $S$, тобто. порахувати 100500 додатків алгебри $((A)_(ij))$ і розставити їх на місці $((a)_(ij))$.
  3. Транспонувати цю матрицю $S$, а потім помножити її на деяке число $q=(1)/(\left|A \right|)\;$.

І все! Зворотну матрицю $((A)^(-1))$ знайдено. Давайте подивимося на приклади:

\[\left[ \begin(matrix) 3 & 1 \\ 5 & 2 \\\end(matrix) \right]\]

Рішення. Перевіримо оборотність. Порахуємо визначник:

\[\left| A \right|=\left| \begin(matrix) 3 & 1 \\ 5 & 2 \\\end(matrix) \right|=3\cdot 2-1\cdot 5=6-5=1\]

Визначник відмінний від нуля. Значить, матриця оборотна. Складемо союзну матрицю:

Порахуємо додатки алгебри:

\[\begin(align) & ((A)_(11))=((\left(-1 \right))^(1+1))\cdot \left| 2 \right|=2; \\ ((A)_(12))=((\left(-1 \right))^(1+2))\cdot \left| 5 \right|=-5; \\ ((A)_(21))=((\left(-1 \right))^(2+1))\cdot \left| 1 \right|=-1; \\ & ((A)_(22))=((\left(-1 \right))^(2+2))\cdot \left| 3 \right|=3. \\ \end(align)\]

Зверніть увагу: визначники | 2 |, | 5 |, | 1 | та |3| - це саме визначники матриць розміру $ \ left [1 \ times 1 \ right] $, а не модулі. Тобто. якщо в визначниках стояли негативні числа, прибирати мінус не треба.

Отже, наша союзна матриця виглядає так:

\[((A)^(-1))=\frac(1)(\left| A \right|)\cdot ((S)^(T))=\frac(1)(1)\cdot ( (\left[ \begin(array)(*(35)(r)) 2 & -5 \\ -1 & 3 \\\end(array) \right])^(T))=\left[ \begin (array)(*(35)(r)) 2 & -1 \\ -5 & 3 \\\end(array) \right]\]

Ну от і все. Завдання вирішено.

Відповідь. $\left[ \begin(array)(*(35)(r)) 2 & -1 \\ -5 & 3 \\\end(array) \right]$

Завдання. Знайдіть зворотну матрицю:

\[\left[ \begin(array)(*(35)(r)) 1 & -1 & 2 \\ 0 & 2 & -1 \\ 1 & 0 & 1 \\end(array) \right] \]

Рішення. Знову вважаємо визначник:

\[\begin(align) & \left| \begin(array)(*(35)(r)) 1 & -1 & 2 \\ 0 & 2 & -1 \\ 1 & 0 & 1 \\end(array) \right|=\begin(matrix ) \left(1\cdot 2\cdot 1+\left(-1 \right)\cdot \left(-1 \right)\cdot 1+2\cdot 0\cdot 0 \right)- \\ -\left (2\cdot 2\cdot 1+\left(-1 \right)\cdot 0\cdot 1+1\cdot \left(-1 \right)\cdot 0 \right) \\end(matrix)= \ \ & =\left(2+1+0 \right)-\left(4+0+0 \right)=-1\ne 0. \\ \end(align)\]

Визначник відмінний від нуля - матриця оборотна. А ось зараз буде найжорсткіша: треба порахувати аж 9 (дев'ять, мати їх!) алгебраїчних доповнень. І кожне з них міститиме визначник $\left[2\times 2\right]$. Полетіли:

\[\begin(matrix) ((A)_(11))=((\left(-1 \right))^(1+1))\cdot \left| \begin(matrix) 2 & -1 \\ 0 & 1 \\\end(matrix) \right|=2; \((A)_(12))=((\left(-1 \right))^(1+2))\cdot \left| \begin(matrix) 0 & -1 \\ 1 & 1 \\\end(matrix) \right|=-1; \((A)_(13))=((\left(-1 \right))^(1+3))\cdot \left| \begin(matrix) 0 & 2 \\ 1 & 0 \\\end(matrix) \right|=-2; \\ ... \\ ((A)_(33))=((\left(-1 \right))^(3+3))\cdot \left| \begin(matrix) 1 & -1 \\ 0 & 2 \\\end(matrix) \right|=2; \\ \end(matrix)\]

Коротше, союзна матриця виглядатиме так:

Отже, зворотна матриця буде такою:

\[((A)^(-1))=\frac(1)(-1)\cdot \left[ \begin(matrix) 2 & -1 & -2 \\ 1 & -1 & -1 \\ -3 & 1 & 2 \\end(matrix) \right]=\left[ \begin(array)(*(35)(r))-2 & -1 & 3 \\ 1 & 1 & -1 \ \ 2 & 1 & -2 \\\end(array) \right]\]

Ось і все. Ось і відповідь.

Відповідь. $\left[ \begin(array)(*(35)(r)) -2 & -1 & 3 \\ 1 & 1 & -1 \\ 2 & 1 & -2 \\end(array) \right ]$

Як бачите, наприкінці кожного прикладу ми виконували перевірку. У зв'язку з цим важливе зауваження:

Не лінуйтеся виконувати перевірку. Помножте вихідну матрицю на знайдену зворотну - має вийти $E$.

Виконати цю перевірку набагато простіше та швидше, ніж шукати помилку у подальших обчисленнях, коли, наприклад, ви вирішуєте матричне рівняння.

Альтернативний спосіб

Як я і говорив, теорема про зворотну матрицю чудово працює для розмірів $ \ left [2 \ times 2 \ right] $ і $ \ left [3 \ times 3 \ right] $ (в останньому випадку - вже не так вже й "прекрасно" »), а ось для матриць великих розмірів починається прямий смуток.

Але не переживайте: є альтернативний алгоритм, за допомогою якого можна незворушно знайти зворотну хоч для матриці $ \ left [10 \ times 10 \ right] $. Але, як це часто буває, для розгляду цього алгоритму нам знадобиться невелика теоретична вступна.

Елементарні перетворення

Серед різноманітних перетворень матриці є кілька особливих їх називають елементарними. Таких перетворень рівно три:

  1. множення. Можна взяти $i$-й рядок (стовпець) і помножити його на будь-яке число $k\ne 0$;
  2. Додавання. Додати до $i$-го рядка (стовпця) будь-який інший $j$-й рядок (стовпець), помножений на будь-яке число $k\ne 0$ (можна, звичайно, і $k=0$, але який у цьому сенс ? Нічого не зміниться ж).
  3. Перестановка. Взяти $i$-ю і $j$-ю рядки (стовпці) і поміняти місцями.

Чому ці перетворення називаються елементарними (для великих матриць вони виглядають не такими вже елементарними) і чому їх лише три ці питання виходять за рамки сьогоднішнього уроку. Тому не вдаватимемося в подробиці.

Важливо інше: всі ці збочення ми повинні виконувати над приєднаною матрицею. Так, так: ви не дочули. Зараз буде ще одне визначення – останнє у сьогоднішньому уроці.

Приєднана матриця

Напевно, у школі ви вирішували системи рівнянь методом складання. Ну, там, відняти з одного рядка інший, помножити якийсь рядок на число - ось це все.

Так ось: зараз буде все те саме, але вже «по-дорослому». Чи готові?

Визначення. Нехай дана матриця $ A = \ left [n \ times n \ right] $ і одинична матриця $ E $ такого ж розміру $ n $. Тоді приєднана матриця $ \ left [ A \ left | E \right. \right]$ — це нова матриця розміру $\left[ n\times 2n \right]$, яка виглядає так:

\[\left[ A\left| E \right. \right]=\left[ \begin(array)(rrrr|rrrr)((a)_(11)) & ((a)_(12)) & ... & ((a)_(1n)) & 1 & 0 & ... & 0 \\((a)_(21)) & ((a)_(22)) & ... & ((a)_(2n)) & 0 & 1 & ... & 0 \\... & ... & ... & ... & ... & ... & ... & ... \\((a)_(n1)) & ((a)_(n2)) & ... & ((a)_(nn)) & 0 & 0 & ... & 1 \\\end(array) \right]\]

Коротше кажучи, беремо матрицю $A$, праворуч приписуємо до неї одиничну матрицю $E$ потрібного розміру, розділяємо їх вертикальною рисою для краси - ось вам і приєднана.

У чому прикол? А ось у чому:

Теорема. Нехай матриця $A$ оборотна. Розглянемо приєднану матрицю $ \ left [ A \ left | E \right. \right]$. Якщо за допомогою елементарних перетвореньрядківпривести її до вигляду $ \ left [ E \ left | B \right. \right]$, тобто. шляхом множення, віднімання та перестановки рядків отримати з $A$ матрицю $E$ праворуч, то отримана зліва матриця $B$ - це зворотна до $A$:

\[\left[ A\left| E \right. \right]\to \left[ E\left| B \right. \right]\Rightarrow B=((A)^(-1))\]

Ось так просто! Коротше кажучи, алгоритм знаходження зворотної матриці виглядає так:

  1. Записати приєднану матрицю $\left[ A\left| E \right. \right]$;
  2. Виконувати елементарні перетворення рядків доти, доки права замість $A$ не з'явиться $E$;
  3. Зрозуміло, ліворуч теж щось з'явиться якась матриця $B$. Це і буде обернена;
  4. PROFIT!:)

Звісно, ​​сказати набагато простіше, ніж зробити. Тому давайте розглянемо кілька прикладів: для розмірів $\left[ 3\times 3 \right]$ і $\left[ 4\times 4 \right]$.

Завдання. Знайдіть зворотну матрицю:

\[\left[ \begin(array)(*(35)(r)) 1 & 5 & 1 \\ 3 & 2 & 1 \\ 6 & -2 & 1 \\\end(array) \right]\ ]

Рішення. Складаємо приєднану матрицю:

\[\left[ \begin(array)(rrr|rrr) 1 & 5 & 1 & 1 & 0 & 0 \\ 3 & 2 & 1 & 0 & 1 & 0 \\ 6 & -2 & 1 & 0 & 0 & 1 \\\end(array) \right]\]

Оскільки останній стовпець вихідної матриці заповнений одиницями, віднімемо перший рядок з інших:

\[\begin(align) & \left[ \begin(array)(rrr|rrr) 1 & 5 & 1 & 1 & 0 & 0 \\ 3 & 2 & 1 & 0 & 1 & 0 \\ 6 & - 2 & 1 & 0 & 0 & 1 \endend(array) \right]\begin(matrix) \downarrow \\ -1 \\ -1 \\end(matrix)\to \\ & \to \left [ \begin(array)(rrr|rrr) 1 & 5 & 1 & 1 & 0 & 0 \\ 2 & -3 & 0 & -1 & 1 & 0 \\ 5 & -7 & 0 & -1 & 0 & 1 \\\end(array) \right] \\ \end(align)\]

Більше одиниць немає, окрім першого рядка. Але її ми не чіпаємо, інакше в третьому стовпці почнуть «розмножуватися» щойно прибрані одиниці.

Зате можемо відняти другий рядок двічі з останнього — отримаємо одиницю в нижньому лівому кутку:

\[\begin(align) & \left[ \begin(array)(rrr|rrr) 1 & 5 & 1 & 1 & 0 & 0 \\ 2 & -3 & 0 & -1 & 1 & 0 \\ 5 &-7 & 0 & -1 & 0 & 1 \endend(array) \right]\begin(matrix) \\ \downarrow \\ -2 \\end(matrix)\to \\ & \left [ \begin(array)(rrr|rrr) 1 & 5 & 1 & 1 & 0 & 0 \\ 2 & -3 & 0 & -1 & 1 & 0 \\ 1 & -1 & 0 & 1 & -2 & 1 \\\end(array) \right] \\ \end(align)\]

Тепер можна відняти останній рядок з першого і двічі з другого — таким чином ми «занулимо» перший стовпець:

\[\begin(align) & \left[ \begin(array)(rrr|rrr) 1 & 5 & 1 & 1 & 0 & 0 \\ 2 & -3 & 0 & -1 & 1 & 0 \\ 1 & -1 & 0 & 1 & -2 & 1 \end(array) \right]\begin(matrix) -1 \\ -2 \\ \uparrow \\end(matrix)\to \ \ \ to \left[ \begin(array)(rrr|rrr) 0 & 6 & 1 & 0 & 2 & -1 \\ 0 & -1 & 0 & -3 & 5 & -2 \\ 1 & -1 & 0 & 1 & -2 & 1 \\end(array) \right] \\ \end(align)\]

Помножимо другий рядок на −1, а потім віднімемо його 6 разів з першого і додамо 1 раз до останнього:

\[\begin(align) & \left[ \begin(array)(rrr|rrr) 0 & 6 & 1 & 0 & 2 & -1 \\ 0 & -1 & 0 & -3 & 5 & -2 \ \ 1 & -1 & 0 & 1 & -2 & 1 \\end(array) \right]\begin(matrix) \ \\ \left| \cdot \left(-1 \right) \right. \\ \\\end(matrix)\to \\ & \to \left[ \begin(array)(rrr|rrr) 0 & 6 & 1 & 0 & 2 & -1 \\ 0 & 1 & 0 & 3 & -5 & 2 \\ 1 & -1 & 0 & 1 & -2 & 1 \\\end(array) \right]\begin(matrix) -6 \\ \updownarrow \\ +1 \\\end (matrix) \to \\ & \to \left[ \begin(array)(rrr|rrr) 0 & 0 & 1 & -18 & 32 & -13 \\ 0 & 1 & 0 & 3 & -5 & 2 \\ 1 & 0 & 0 & 4 & -7 & 3 \\end(array) \right] \\ \end(align)\]

Залишилося лише поміняти місцями рядки 1 та 3:

\[\left[ \begin(array)(rrr|rrr) 1 & 0 & 0 & 4 & -7 & 3 \\ 0 & 1 & 0 & 3 & -5 & 2 \\ 0 & 0 & 1 & - 18 & 32 & -13 \\\end(array) \right]\]

Готово! Праворуч - шукана зворотна матриця.

Відповідь. $\left[ \begin(array)(*(35)(r))4 & -7 & 3 \\ 3 & -5 & 2 \\ -18 & 32 & -13 \\end(array) \right ]$

Завдання. Знайдіть зворотну матрицю:

\[\left[ \begin(matrix) 1 & 4 & 2 & 3 \\ 1 & -2 & 1 & -2 \\ 1 & -1 & 1 & 1 \\ 0 & -10 & -2 & -5 \\end(matrix) \right]\]

Рішення. Знову складаємо приєднану:

\[\left[ \begin(array)(rrrr|rrrr) 1 & 4 & 2 & 3 & 1 & 0 & 0 & 0 \\ 1 & -2 & 1 & -2 & 0 & 1 & 0 & 0 \ \ 1 & -1 & 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & -10 & -2 & -5 & 0 & 0 & 0 & 1 \\\end(array) \right]\]

Трохи позалимаємо, потурбуємося від того, скільки зараз доведеться рахувати... і почнемо рахувати. Для початку «обнулили» перший стовпець, віднімаючи рядок 1 з рядків 2 та 3:

\[\begin(align) & \left[ \begin(array)(rrrr|rrrr) 1 & 4 & 2 & 3 & 1 & 0 & 0 & 0 \\ 1 & -2 & 1 & -2 & 0 & 1 & 0 & 0 \\ 1 & -1 & 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & -10 & -2 & -5 & 0 & 0 & 0 & 1 \\end(array) \right]\begin(matrix) \downarrow \\ -1 \\ -1 \\ \\\end(matrix)\to \\ & \to \left[ \begin(array)(rrrr|rrrr) 1 & 4 & 2 & 3 & 1 & 0 & 0 & 0 \\ 0 & -6 & -1 & -5 & -1 & 1 & 0 & 0 \\ 0 & -5 & -1 & -2 & -1 & 0 & 1 & 0 \\ 0 & -10 & -2 & -5 & 0 & 0 & 0 & 1 \\\end(array) \right] \\ \end(align)\]

Спостерігаємо дуже багато «мінусів» у рядках 2—4. Помножимо всі три рядки на −1, а потім випалимо третій стовпець, віднімаючи рядок 3 з інших:

\[\begin(align) & \left[ \begin(array)(rrrr|rrrr) 1 & 4 & 2 & 3 & 1 & 0 & 0 & 0 \\ 0 & -6 & -1 & -5 & - 1 & 1 & 0 & 0 \\ 0 & -5 & -1 & -2 & -1 & 0 & 1 & 0 \\ 0 & -10 & -2 & -5 & 0 & 0 & 0 & 1 \\ \end(array) \right]\begin(matrix) \ \\ \left| \cdot \left(-1 \right) \right. \\ \left| \cdot \left(-1 \right) \right. \\ \left| \cdot \left(-1 \right) \right. \\\end(matrix)\to \\ & \to \left[ \begin(array)(rrrr|rrrr) 1 & 4 & 2 & 3 & 1 & 0 & 0 & 0 \\ 0 & 6 & 1 & 5 & ​​1 & -1 & 0 & 0 \\ 0 & 5 & 1 & 2 & 1 & 0 & -1 & 0 \\ 0 & 10 & 2 & 5 & 0 & 0 & 0 & -1 \\\end (array) \right]\begin(matrix) -2 \\ -1 \\ \updownarrow \\ -2 \\end(matrix)\to \\ & \to \left[ \begin(array)(rrrr| rrrr) 1 & -6 & 0 & -1 & -1 & 0 & 2 & 0 \\ 0 & 1 & 0 & 3 & 0 & -1 & 1 & 0 \\ 0 & 5 & 1 & 2 & 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 & -2 & 0 & 2 & -1 \\end(array) \right] \\ \end(align)\]

Тепер саме час «підсмажити» останній стовпець вихідної матриці: віднімаємо рядок 4 з інших:

\[\begin(align) & \left[ \begin(array)(rrrr|rrrr) 1 & -6 & 0 & -1 & -1 & 0 & 2 & 0 \\ 0 & 1 & 0 & 3 & 0 & -1 & 1 & 0 \\ 0 & 5 & 1 & 2 & 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 & -2 & 0 & 2 & -1 \\end(array ) \right]\begin(matrix) +1 \\ -3 \\ -2 \\ \uparrow \\end(matrix)\to \\ & \to \left[ \begin(array)(rrrr|rrrr) 1 & -6 & 0 & 0 & -3 & 0 & 4 & -1 \\ 0 & 1 & 0 & 0 & 6 & -1 & -5 & 3 \\ 0 & 5 & 1 & 0 & 5 & 0 & -5 & 2 \\ 0 & 0 & 0 & 1 & -2 & 0 & 2 & -1 \\\end(array) \right] \\ \end(align)\]

Фінальний кидок: «випалюємо» другий стовпець, віднімаючи рядок 2 з рядка 1 та 3:

\[\begin(align) & \left[ \begin(array)(rrrr|rrrr) 1 & -6 & 0 & 0 & -3 & 0 & 4 & -1 \\ 0 & 1 & 0 & 0 & 6 & -1 & -5 & 3 \\ 0 & 5 & 1 & 0 & 5 & 0 & -5 & 2 \\ 0 & 0 & 0 & 1 & -2 & 0 & 2 & -1 \\end( array) \right]\begin(matrix) 6 \\ \updownarrow \\ -5 \\ \\end(matrix)\to \\ & \to \left[ \begin(array)(rrrr|rrrr) 1 & 0 & 0 & 0 & 33 & -6 & -26 & -17 \\ 0 & 1 & 0 & 0 & 6 & -1 & -5 & 3 \\ 0 & 0 & 1 & 0 & -25 & 5 & 20 & -13 \\ 0 & 0 & 0 & 1 & -2 & 0 & 2 & -1 \\end(array) \right] \\ \end(align)\]

І знову зліва одинична матриця, значить праворуч - зворотна.:)

Відповідь. $\left[ \begin(matrix) 33 & -6 & -26 & 17 \\ 6 & -1 & -5 & 3 \\ -25 & 5 & 20 & -13 \\ -2 & 0 & 2 & - 1 \\\end(matrix) \right]$

Знаходження зворотної матриці- завдання, яке найчастіше вирішується двома методами:

  • методом додатків алгебри, при якому потрібно знаходити визначники і транспонувати матриці;
  • методом виключення невідомих Гаусса, при якому потрібно проводити елементарні перетворення матриць (складати рядки, множити рядки на те саме число і т. д.).

Для особливо допитливих існують інші методи, наприклад, метод лінійних перетворень. На цьому уроці розберемо три згадані методи та алгоритми знаходження зворотної матриці цими методами.

Зворотною матрицею А, називається така матриця

А
. (1)

Зворотною матрицею , яку потрібно знайти для цієї квадратної матриці А, називається така матриця

твір на яку матриці Аправоруч є одиничною матрицею, тобто,
. (1)

Одиничною матрицею називається діагональна матриця, яка має всі діагональні елементи рівні одиниці.

Теорема.Для кожної неособливої ​​(невиродженої, несингулярної) квадратної матриці можна знайти зворотну матрицю, і до того ж лише одну. Для особливої ​​(виродженої, сингулярної) квадратної матриці зворотна матриця немає.

Квадратна матриця називається неособливою(або невиродженою, несингулярною), якщо її визначник не дорівнює нулю, та особливою(або виродженою, сингулярною), якщо її визначник дорівнює нулю.

Зворотну матрицю можна знайти тільки для квадратної матриці. Звичайно, зворотна матриця також буде квадратною і того ж порядку, що і ця матриця. Матриця, на яку може бути знайдена зворотна матриця, називається оборотною матрицею.

Для зворотної матриці існує доречна аналогія зі зворотним числом. Для кожного числа a, не рівного нулю, існує таке число b, що твір aі bодно одиниці: ab= 1. Число bназивається зворотним для числа b. Наприклад, число 7 зворотним є число 1/7, оскільки 7*1/7=1.

Знаходження зворотної матриці методом додатків алгебри (союзної матриці)

Для неособливої ​​квадратної матриці Азворотною є матриця

де - визначник матриці А, а - матриця, союзна з матрицею А.

Союзної з квадратною матрицею Aназивається матриця того ж порядку, елементами якої є доповнення алгебри відповідних елементів визначника матриці , транспонованої щодо матриці A. Таким чином, якщо

то

і

Алгоритм знаходження зворотної матриці методом додатків алгебри

1. Знайти визначник цієї матриці A. Якщо визначник дорівнює нулю, знаходження зворотної матриці припиняється, оскільки матриця вироджена і обернена не існує.

2. Знайти матрицю, транспоновану щодо A.

3. Обчислити елементи союзної матриціяк додатки алгебри мариці, знайденої на кроці 2.

4. Застосувати формулу (2): помножити число, обернене до визначника матриці Aна союзну матрицю, знайдену на кроці 4.

5. Перевірити отриманий на кроці 4 результат, помноживши цю матрицю Aна зворотну матрицю. Якщо добуток цих матриць дорівнює одиничній матриці, отже зворотна матриця була знайдена правильно. Інакше розпочати процес вирішення знову.

приклад 1.Для матриці

знайти зворотну матрицю.

Рішення. Для знаходження зворотної матриці необхідно знайти визначник матриці А. Знаходимо за правилом трикутників:

Отже, матриця А- Неособлива (невироджена, несингулярна) і для неї існує зворотна.

Знайдемо матрицю, союзну з цією матрицею А.

Знайдемо матрицю, транспоновану щодо матриці A:

Обчислюємо елементи союзної матриці як додатки алгебри матриці, транспонованої щодо матриці A:

Отже, матриця , союзна з матрицею A, має вигляд

Зауваження.Порядок обчислення елементів та транспонування матриці може бути іншим. Можна спочатку обчислити додатки алгебри матриці A, а потім транспонувати матрицю додатків алгебри. В результаті повинні вийти самі елементи союзної матриці.

Застосовуючи формулу (2), знаходимо матрицю, зворотну матриці А:

Знаходження зворотної матриці методом виключення невідомих Гаусса

Перший крок для знаходження зворотної матриці методом виключення невідомих Гаус - приписати до матриці Aодиничну матрицю того ж порядку, відокремивши їх вертикальною межею. Ми отримаємо здвоєну матрицю. Помножимо обидві частини цієї матриці на , тоді отримаємо

,

Алгоритм знаходження зворотної матриці методом виключення невідомих Гаусса

1. До матриці Aприписати одиничну матрицю того самого порядку.

2. Отриману здвоєну матрицю перетворити так, щоб у лівій її частині вийшла одинична матриця, тоді у правій частині на місці одиничної матриці автоматично вийде зворотна матриця. Матриця Aу лівій частині перетворюється на одиничну матрицю шляхом елементарних перетворень матриці.

2. Якщо у процесі перетворення матриці Aв одиничну матрицю в якомусь рядку або в якомусь стовпці виявляться тільки нулі, то визначник матриці дорівнює нулю, і, отже, матриця Aбуде виродженою, і вона не має зворотної матриці. І тут подальше перебування зворотної матриці припиняється.

приклад 2.Для матриці

знайти зворотну матрицю.

і будемо її перетворювати, так щоб у лівій частині вийшла поодинока матриця. Починаємо перетворення.

Помножимо перший рядок лівої та правої матриці на (-3) і складемо її з другим рядком, а потім помножимо перший рядок на (-4) і складемо її з третім рядком, тоді отримаємо

.

Щоб по можливості не було дробових чисел при наступних перетвореннях, заздалегідь створимо одиницю в другому рядку в лівій частині здвоєної матриці. Для цього помножимо другий рядок на 2 і віднімемо з нього третій рядок, тоді отримаємо

.

Складемо перший рядок з другим, а потім помножимо другий рядок на (-9) і складемо його з третім рядком. Тоді отримаємо

.

Розділимо третій рядок на 8, тоді

.

Помножимо третій рядок на 2 і складемо його з другим рядком. Виходить:

.

Переставимо місцями другий та третій рядок, тоді остаточно отримаємо:

.

Бачимо, що у лівій частині вийшла одинична матриця, отже, у правій частині вийшла зворотна матриця . Таким чином:

.

Можна перевірити правильність обчислень, помножимо вихідну матрицю на знайдену матрицю зворотну:

В результаті повинна вийти зворотна матриця.

приклад 3.Для матриці

знайти зворотну матрицю.

Рішення. Складаємо здвоєну матрицю

і будемо її перетворювати.

Перший рядок множимо на 3, а другий на 2, і віднімаємо з другого, а потім перший рядок множимо на 5, а третій на 2 і віднімаємо з третього рядка, тоді отримаємо

.

Перший рядок множимо на 2 і складаємо його з другого, а потім з третього рядка віднімаємо другий, тоді отримаємо

.

В третьому рядку в лівій частині всі елементи вийшли рівними нулю. Отже, матриця вироджена та зворотної матриці не має. Подальше перебування зворотної мариці припиняємо.

Визначення 1:матриця називається виродженою, якщо її визначник дорівнює нулю.

Визначення 2:матриця називається невиродженою, якщо її визначник не дорівнює нулю.

Матриця "A" називається зворотною матрицеюякщо виконується умова A*A-1 = A-1 *A = E (одиничної матриці).

Квадратна матриця оборотна тільки в тому випадку, коли вона невироджена.

Схема обчислення зворотної матриці:

1) Обчислити визначник матриці "A", якщо A = 0, то зворотної матриці немає.

2) Знайти всі додатки алгебри матриці "A".

3) Скласти матрицю з додатків алгебри (Aij )

4) Транспонувати матрицю з додатків алгебри (Aij )T

5) Помножити транспоновану матрицю на число, зворотне визначнику цієї матриці.

6) Виконати перевірку:

На перший погляд, може здатися, що це складно, але насправді все дуже просто. Усі рішення ґрунтуються на простих арифметичних діях, головне при вирішенні не плутатися зі знаками "-" та "+", і не втрачати їх.

А тепер давайте разом з Вами розв'яжемо практичне завдання, обчисливши зворотну матрицю.

Завдання: знайти зворотну матрицю "A", представлену на малюнку нижче:

Вирішуємо все точно так, як це зазначено в план-схемі обчислення зворотної матриці.

1. Перше, що потрібно зробити, це знайти визначник матриці "A":

Пояснення:

Ми спростили наш визначник, скориставшись його основними функціями. По-перше, ми додали до 2 і 3 рядків елементи першого рядка, помножені на одне число.

По-друге, ми змінили 2 і 3 стовпець визначника, і за його властивостями змінили знак перед ним.

По-третє, ми винесли загальний множник (-1) другого рядка, тим самим знову змінивши знак, і він став позитивним. Також ми спростили 3 рядок так само, як на початку прикладу.

У нас вийшов трикутний визначник, у якого елементи нижче діагоналі дорівнюють нулю, і за 7 властивістю він дорівнює добутку елементів діагоналі. У результаті ми отримали A = 26, отже зворотна матриця існує.

А11 = 1 * (3 +1) = 4

А12 = -1 * (9 +2) = -11

А13 = 1 * 1 = 1

А21 = -1 * (-6) = 6

А22 = 1 * (3-0) = 3

А23 = -1 * (1 +4) = -5

А31 = 1 * 2 = 2

А32 = -1 * (-1) = -1

А33 = 1 + (1 +6) = 7

3. Наступний крок - складання матриці з додатків:

5. Помножуємо цю матрицю на число, зворотне визначнику, тобто на 1/26:

6. Ну а тепер нам просто потрібно виконати перевірку:

У ході перевірки ми отримали одиничну матрицю, отже, рішення було виконане абсолютно правильно.

2 спосіб обчислення зворотної матриці.

1. Елементарне перетворення матриць

2. Зворотна матриця через елементарний перетворювач.

Елементарне перетворення матриць включає:

1. Множення рядка на число, що не дорівнює нулю.

2. Додаток до будь-якого рядка іншого рядка, помноженого на число.

3. Зміна місцями рядків матриці.

4. Застосовуючи ланцюжок елементарних перетворень, отримуємо іншу матрицю.

А -1 = ?

1. (A|E) ~ (E|A -1 )

2. A -1 * A = E

Розглянемо це на практичному прикладііз дійсними числами.

Завдання:Знайти обернену матрицю.

Рішення:

Виконаємо перевірку:

Невелике роз'яснення щодо рішення:

Спочатку ми переставили 1 і 2 рядок матриці, потім помножили перший рядок (-1).

Після цього помножили перший рядок (-2) і склали з другим рядком матриці. Після чого помножили 2 рядок на 1/4.

Заключним етапом перетворень стало множення другого рядка на 2 та додатком з першого. В результаті зліва у нас вийшла одинична матриця, отже зворотна матриця - це матриця справа.

Після перевірки ми переконалися у правильності рішення.

Як ви бачите, обчислення зворотної матриці – це дуже просто.

У висновку цієї лекції хотілося б також приділити трохи часу властивостям такої матриці.

Подібні на зворотні за багатьма властивостями.

Енциклопедичний YouTube

    1 / 5

    ✪ Як знаходити зворотну матрицю - bezbotvy

    ✪ Зворотна матриця (2 способи знаходження)

    ✪ Зворотня матриця #1

    ✪ 2015-01-28. Зворотня матриця 3x3

    ✪ 2015-01-27. Зворотня матриця 2х2

    Субтитри

Властивості зворотної матриці

  • det A − 1 = 1 det A (\displaystyle \det A^(-1)=(\frac (1)(\det A))), де det (\displaystyle \ \det )позначає визначник.
  • (A B) − 1 = B − 1 A − 1 (\displaystyle \ (AB)^(-1)=B^(-1)A^(-1))для двох квадратних оборотних матриць A (\displaystyle A)і B (\displaystyle B).
  • (A T) − 1 = (A − 1) T (\displaystyle \ (A^(T))^(-1)=(A^(-1))^(T)), де (. . .) T (\displaystyle (...)^(T))позначає транспоновану матрицю.
  • (k A) − 1 = k − 1 A − 1 (\displaystyle \ (kA)^(-1)=k^(-1)A^(-1))для будь-якого коефіцієнта k ≠ 0 (\displaystyle k\not = 0).
  • E − 1 = E (\displaystyle \ E^(-1)=E).
  • Якщо необхідно вирішити систему лінійних рівнянь , (b - ненульовий вектор) де x (\displaystyle x)- Шуканий вектор, і якщо A − 1 (\displaystyle A^(-1))існує, то x = A − 1 b (\displaystyle x=A^(-1)b). В іншому випадку або розмірність простору рішень більша за нуль, або їх немає зовсім.

Способи знаходження зворотної матриці

Якщо матриця оборотна, то для знаходження зворотної матриці можна скористатися одним із наступних способів:

Точні (прямі) методи

Метод Гауса-Жордана

Візьмемо дві матриці: саму Aта одиничну E. Наведемо матрицю Aдо одиничної матриці методом Гаусса-Жордана застосовуючи перетворення по рядках (можна також застосовувати перетворення і по стовпцях, але не в перемішування). Після застосування кожної операції до першої матриці застосуємо ту саму операцію до другої. Коли приведення першої матриці до одиничного вигляду буде завершено, друга матриця виявиться рівною. A −1.

При використанні методу Гауса перша матриця збільшуватиметься зліва на одну з елементарних матриць Λ i (\displaystyle \Lambda _(i))(трансвекцію або діагональну матрицю з одиницями на головній діагоналі, крім однієї позиції):

Λ 1 ⋅ ⋯ ⋅ Λ n ⋅ A = Λ A = E ⇒ Λ = A − 1 (\displaystyle \Lambda _(1)\cdot \dots \cdot \Lambda _(n)\cdot A=\Lambda A=E \Rightarrow \Lambda =A^(-1)). Λ m = [ 1 … 0 − a 1 m / a m m 0 … 0 … 0 … 1 – a m − 1 m / a m m 0 … 0 0 … 0 1 / a m m 0 … 0 0 … 0 – a m + 1 m / a m m … 0 … 0 … 0 − a n m / a m m 0 … 1 ] (\displaystyle \Lambda _(m)=(\begin(bmatrix)1&\dots &0&-a_(1m)/a_(mm)&0&\dots &0\\ &&&\dots &&&\\0&\dots &1&-a_(m-1m)/a_(mm)&0&\dots &0\\0&\dots &0&1/a_(mm)&0&\dots &0\\0&\dots &0&-a_( m+1m)/a_(mm)&1&\dots &0\\&&&\dots &&&\\0&\dots &0&-a_(nm)/a_(mm)&0&\dots &1\end(bmatrix))).

Друга матриця після застосування всіх операцій дорівнюватиме Λ (\displaystyle \Lambda )тобто буде шуканою. Складність алгоритму - O (n 3) (\displaystyle O(n^(3))).

За допомогою матриці додатків алгебри

Матриця, обернена матриці A (\displaystyle A), представна у вигляді

A − 1 = adj (A) det (A) (\displaystyle (A)^(-1)=(((\mbox(adj))(A)) \over (\det(A))))

де adj (A) (\displaystyle (\mbox(adj))(A))- приєднана матриця;

Складність алгоритму залежить від складності алгоритму розрахунку визначника O det і дорівнює O(n²) · O det.

Використання LU/LUP-розкладання

Матричне рівняння A X = I n (\displaystyle AX = I_(n))для зворотної матриці X (\displaystyle X)можна розглядати як сукупність n (\displaystyle n)систем виду A x = b (\displaystyle Ax = b). Позначимо i (\displaystyle i)-ий стовпець матриці X (\displaystyle X)через X i (\displaystyle X_(i)); тоді A X i = e i (\displaystyle AX_(i)=e_(i)), i = 1, …, n (\displaystyle i = 1, \ ldots, n),оскільки i (\displaystyle i)-м стовпцем матриці I n (\displaystyle I_(n))є одиничний вектор e i (\displaystyle e_(i)). іншими словами, перебування зворотної матриці зводиться до розв'язання n рівнянь з однією матрицею та різними правими частинами. Після виконання LUP-розкладання (час O(n³)) на розв'язання кожного з n рівнянь потрібен час O(n²), так що і ця частина роботи потребує часу O(n³).

Якщо матриця A невироджена, то нею можна розрахувати LUP-разложение P A = L U (\displaystyle PA = LU). Нехай P A = B (\displaystyle PA = B), B − 1 = D (\displaystyle B^(-1)=D). Тоді із властивостей зворотної матриці можна записати: D = U − 1 L − 1 (\displaystyle D=U^(-1)L^(-1)). Якщо помножити цю рівність на U і L можна отримати дві рівності виду U D = L − 1 (\displaystyle UD=L^(-1))і DL = U − 1 (\displaystyle DL=U^(-1)). Перша з цих рівностей є системою з n² лінійних рівняньдля n (n + 1) 2 (\displaystyle (\frac (n(n+1))(2)))з яких відомі праві частини (з властивостей трикутних матриць). Друге представляє також систему з n² лінійних рівнянь для n (n − 1) 2 (\displaystyle (\frac (n(n-1))(2)))з яких відомі праві частини (також із властивостей трикутних матриць). Разом вони є системою з n² рівностей. За допомогою цих рівностей можна реккурентно визначити всі n² елементів матриці D. Тоді з рівності (PA) −1 = A −1 P −1 = B −1 = D. отримуємо рівність A − 1 = DP (\displaystyle A^(-1)=DP).

У разі використання LU-розкладання не потрібно перестановки стовпців матриці D, але рішення може розійтися навіть якщо матриця A невироджена.

Складність алгоритму – O(n³).

Ітераційні методи

Методи Шульця

( Ψ k = E − A U k , U k + 1 = U k ∑ i = 0 n Ψ k i (\displaystyle (\begin(cases)\Psi _(k)=E-AU_(k),\\U_( k+1)=U_(k)\sum _(i=0)^(n)\Psi _(k)^(i)\end(cases)))

Оцінка похибки

Вибір початкового наближення

Проблема вибору початкового наближення в аналізованих тут процесах ітераційного звернення матриць не дозволяє ставитися до них як до самостійних універсальним методам, що конкурують з прямими методами обігу, заснованими, наприклад, на LU-розкладанні матриць. Є деякі рекомендації щодо вибору U 0 (\displaystyle U_(0)), що забезпечують виконання умови ρ (Ψ 0) < 1 {\displaystyle \rho (\Psi _{0})<1} (спектральний радіус матриці менше одиниці), що є необхідним та достатнім для збіжності процесу. Однак при цьому, по-перше, потрібно знати зверху оцінку спектра матриці, що звертається, A або матриці AT (\displaystyle AA^(T))(а саме, якщо A - симетрична позитивно визначена матриця та ρ (A) ≤ β (\displaystyle \rho (A)\leq \beta ), то можна взяти U 0 = α E (\displaystyle U_(0)=(\alpha )E), де; якщо ж A - довільна невироджена матриця та ρ (A A T) ≤ β (\displaystyle \rho (AA^(T))\leq \beta ), то вважають U 0 = α A T (\displaystyle U_(0)=(\alpha )A^(T)), де також α ∈ (0 , 2 β) (\displaystyle \alpha \in \left(0,(\frac (2)(\beta ))\right)); можна звичайно спростити ситуацію і, скориставшись тим, що ρ (A A T) ≤ k A A T k (\displaystyle \rho (AA^(T))\leq (\mathcal (k))AA^(T)(\mathcal (k))), покласти U 0 = A T ‖ A A T ‖ (\displaystyle U_(0)=(\frac (A^(T))(\|AA^(T)\|)))). По-друге, за такого завдання початкової матриці немає гарантії, що ‖ Ψ 0 ‖ (\displaystyle \|\Psi _(0)\|)буде малою (можливо, навіть виявиться ‖ Ψ 0 ‖ > 1 (\displaystyle \|\Psi _(0)\|>1)), і високий порядок швидкості збіжності виявиться далеко ще не відразу.

Приклади

Матриця 2х2

A − 1 = [ a b c d ]− 1 = 1 det (A) [ d − b − c a ] = 1 a d − b c [ d − b − c a ] . (\displaystyle \mathbf (A) ^(-1)=(\begin(bmatrix)a&b\c&d\\end(bmatrix))^(-1)=(\frac (1)(\det(\mathbf (A))))(\begin(bmatrix)\,\,\,d&\!\!-b\-c&\,a\\end(bmatrix))=(\frac (1)(ad- bc))(\begin(bmatrix)\,\,\,d&\!\!-b\-c&\,a\\end(bmatrix)).)

Звернення матриці 2х2 можливе лише за умови, що a d − b c = det A ≠ 0 (\displaystyle ad-bc=\det A\neq 0).

Способи знаходження зворотної матриці, . Розглянемо квадратну матрицю

Позначимо Δ =det A.

Квадратна матриця А називається невиродженою,або неособливою, якщо її визначник відмінний від нуля, та виродженою,або особливою, якщоΔ = 0.

Квадратна матриця є для квадратної матриці А того ж порядку, якщо їх добуток А В = В А = Е, де Е - одинична матриця того ж порядку, що і матриці А і В.

Теорема . Для того щоб матриця А мала зворотну матрицю, необхідно і достатньо, щоб її визначник був відмінний від нуля.

Зворотна матриця матриці А позначається через А- 1 так що В = А - 1 та обчислюється за формулою

, (1)

де А i j - додатки алгебри елементів a i j матриці A..

Обчислення A -1 за формулою (1) для матриць високого порядкудуже трудомістко, тому практично зручно знаходити A -1 з допомогою методу елементарних перетворень (ЭП). Будь-яку неособливу матрицю А шляхом ЕП тільки стовпців (або лише рядків) можна привести до одиничної матриці Е. Якщо скоєні над матрицею А ЕП у тому ж порядку застосувати до одиничної матриці Е, то в результаті вийде зворотна матриця. Зручно здійснювати ЕП над матрицями А та Е одночасно, записуючи обидві матриці поряд через межу. Зазначимо вкотре, що з відшуканні канонічного виду матриці з метою знаходження можна скористатися перетвореннями рядків і стовпців. Якщо потрібно знайти зворотну матрицю, в процесі перетворення слід використовувати тільки рядки або тільки стовпці.

Приклад 2.10. Для матриці знайти A-1.

Рішення.Знаходимо спочатку детермінант матриці А
значить, зворотна матриця існує і ми її можемо знайти за такою формулою: , де А i j (i,j = 1,2,3) - додатки алгебри елементів а i j вихідної матриці.

Звідки .

Приклад 2.11. p align="justify"> Методом елементарних перетворень знайти A -1 для матриці: А = .

Рішення.Приписуємо до вихідної матриці праворуч одиничну матрицю того ж порядку: . За допомогою елементарних перетворень стовпців наведемо ліву "половину" до одиничної, здійснюючи одночасно такі перетворення над правою матрицею.
Для цього поміняємо місцями перший та другий стовпці:
~ . До третього стовпця додамо перший, а до другого - перший, помножений на -2: . З першого стовпця віднімемо подвоєний другий, та якщо з третього - помножений на 6 другий; . Додамо третій стовпець до першого та другого: . Помножимо останній стовпець на -1: . Отримана праворуч від вертикальної межі квадратна матриця є зворотною матрицею до даної матриці А. Отже,
.

Поділіться з друзями або збережіть для себе:

Завантаження...