Піраміда з круглою основою. Піраміда

Вступ

Коли ми почали вивчати стереометричні фігури, торкнулися теми «Піраміда». Нам сподобалася ця тема, тому що піраміда часто-густо вживається в архітектурі. І оскільки наша майбутня професіяархітектора, надихнувшись цією фігурою, ми думаємо, що вона зможе підштовхнути нас до чудових проектів.

Міцність архітектурних споруд, найважливіша їх якість. Зв'язуючи міцність, по-перше, з тими матеріалами, з яких вони створені, а, по-друге, з особливостями конструктивних рішень, виявляється, міцність споруди пов'язана безпосередньо з тією геометричною формою, яка є для нього базовою.

Іншими словами, йдеться про ту геометричну фігуру, яка може розглядатися як модель відповідної архітектурної форми. Виявляється, що геометрична форма також визначає міцність архітектурної споруди.

Найміцнішою архітектурною спорудою з давніх-давен вважаються єгипетські піраміди. Як відомо, вони мають форму правильних чотирикутних пірамід.

Саме ця геометрична форма забезпечує найбільшу стійкість за рахунок великої площі основи. З іншого боку, форма піраміди забезпечує зменшення маси зі збільшенням висоти над землею. Саме ці дві властивості роблять піраміду стійкою, а отже, і міцною в умовах земного тяжіння.

Мета проекту: дізнатися щось нове про піраміди, поглибити знання та знайти практичне застосування

Для досягнення поставленої мети потрібно вирішити такі завдання:

· Дізнатися історичні відомості про піраміду

· Розглянути піраміду, як геометричну фігуру

· Знайти застосування в житті та архітектурі

· Знайти подібність та відмінність пірамід, розташованих у різних частинахсвітла


Теоретична частина

Історичні відомості

Початок геометрії піраміди було покладено в Стародавньому Єгипті та Вавилоні, проте активний розвиток отримав у Стародавню Грецію. Першим, хто встановив, чому дорівнює обсяг піраміди, був Демокріт, а довів Євдокс Кнідський. Давньогрецький математик Евклід систематизував знання про піраміду в XII томі своїх «Почав», а також вивів перше визначення піраміди: тілесна фігура, обмежена площинами, які сходяться в одній точці.

Усипальниці єгипетських фараонів. Найбільші з них - піраміди Хеопса, Хефрена і Мікеріна в Ель-Гізі в давнину вважалися одним із Семи чудес світу. Зведення піраміди, в якому вже греки і римляни бачили пам'ятник небаченої гордині царів і жорстокості, що прирік весь народ Єгипту на безглузде будівництво, було найважливішим культовим діянням і мало висловлювати, мабуть, містичне тотожність країни та її правителя. Населення країни працювало на будівництві гробниці у вільну від сільськогосподарських робіт частину року. Ряд текстів свідчить про ту увагу і турботу, які самі царі (щоправда, пізнішого часу) приділяли зведенню своєї гробниці та її будівельникам. Відомо також про особливі культові почесті, які виявлялися самій піраміді.


Основні поняття

Пірамідоюназивається багатогранник, основа якого – багатокутник, інші грані – трикутники, мають загальну вершину.

Апофема- висота бічної грані правильної піраміди, Проведена з її вершини;



Бічні грані- трикутники, що сходяться у вершині;

Бічні ребра- загальні сторони бічних граней;

Вершина піраміди- точка, що з'єднує бічні ребра і не лежить у площині основи;

Висота- відрізок перпендикуляра, проведеного через вершину піраміди до площини її основи (кінцями цього відрізка є вершина піраміди та основа перпендикуляра);

Діагональний переріз піраміди- переріз піраміди, що проходить через вершину та діагональ основи;

підстава- багатокутник, якому належить вершина піраміди.

Основні властивості правильної піраміди

Бічні ребра, бічні грані та апофеми відповідно рівні.

Двогранні кути при основі рівні.

Двогранні кути при бічних ребрах рівні.

Кожна точка висоти рівновіддалена від усіх вершин основи.

Кожна точка висоти рівновіддалена від усіх бічних граней.


Основні формули піраміди

Площа бічний та повної поверхніпіраміди.

Площею бічної поверхні піраміди (повної та усіченої) називається сума площ усіх її бічних граней, площею повної поверхні – сума площ усіх її граней.

Теорема: Площа бічної поверхні правильної піраміди дорівнює половині добутку периметра основи апофему піраміди.

p- периметр основи;

h- Апофема.

Площа бічної та повної поверхонь усіченої піраміди.

p 1, p 2 - периметри основ;

h- Апофема.

Р- площа повної поверхні правильної усіченої піраміди;

S бік- площа бічної поверхні правильної усіченої піраміди;

S 1 + S 2- площі основи

Об'єм піраміди

форм вузла об'єму використовується для пірамід будь-якого виду.

H- Висота піраміди.


Кути піраміди

Кути, які утворені бічною гранню та основою піраміди, називаються двогранними кутами при основі піраміди.

Двогранний кут утворюється двома перпендикулярами.

Щоб визначити цей кут, часто потрібно використовувати теорему про три перпендикуляри.

Кути, які утворені бічним ребром та його проекцією на площину основи, називаються кутами між бічним ребром і площиною основи.

Кут, який утворений двома бічними гранями, називається двогранним кутом при бічному ребрі піраміди.

Кут, який утворений двома бічними ребрами однієї грані піраміди, називається кутом при вершині піраміди.


Перерізи піраміди

Поверхня піраміди – це поверхня багатогранника. Кожна її грань є площиною, тому переріз піраміди, заданої січною площиною - це ламана лінія, що складається з окремих прямих.

Діагональний переріз

Перетин піраміди площиною, що проходить через два бічні ребра, що не лежать на одній грані, називається діагональним перетиномпіраміди.

Паралельні перерізи

Теорема:

Якщо піраміда перетнута площиною, паралельною основі, то бічні ребра та висоти піраміди діляться цією площиною на пропорційні частини;

Перерізом цієї площини є багатокутник, подібний до основи;

Площі перерізу та основи відносяться один до одного як квадрати їх відстаней від вершини.

Види піраміди

Правильна піраміда– піраміда, основою якої є правильний багатокутник, і вершина піраміди проектується в центр основи.

У правильної піраміди:

1. бічні ребра рівні

2. бічні грані рівні

3. апофеми рівні

4. двогранні кути при основі рівні

5. двогранні кути при бічних ребрах рівні

6. кожна точка висоти рівновіддалена від усіх вершин основи

7. кожна точка висоти рівновіддалена від усіх бічних граней

Усічена піраміда– частина піраміди, укладена між її основою та січною площиною, паралельною основі.

Підстава та відповідні переріз усіченої піраміди називаються основами усіченої піраміди.

Перпендикуляр, проведений з будь-якої точки однієї основи на площину іншої, називається висотою усіченої піраміди.


Завдання

№1. У правильній чотирикутній піраміді точка О – центр основи, SO=8 см, BD=30 см. Знайдіть бічне ребро SA.


Розв'язання задач

№1. У правильній піраміді всі грані та ребра рівні.

Розглянемо OSB: OSB-прямокутний прямокутник, т.к.

SB 2 =SO 2 +OB 2

SB 2 = 64 +225 = 289

Піраміда в архітектурі

Піраміда - монументальна споруда у формі звичайної правильної геометричної піраміди, в якій бічні сторони сходяться в одній точці. За функціональним призначенням піраміди в давнину були місцем поховання або поклоніння культу. Основа піраміди може бути трикутною, чотирикутною або у формі багатокутника з довільним числом вершин, але найпоширенішою версією є чотирикутна основа.

Відомо чимала кількість пірамід, побудованих різними культурамиСтародавній світ в основному як храми або монументи. До великих пірамід відносяться єгипетські піраміди.

По всій землі можна побачити архітектурні споруди у вигляді пірамід. Будівлі-піраміди нагадують про давні часи і дуже гарно виглядають.

Єгипетські піраміди найбільші архітектурні пам'ятники Стародавнього Єгипту, Серед яких одне із «Семи чудес світу» піраміда Хеопса. Від підніжжя до вершини вона досягає 137, 3 м, а до того, як втратила верхівку, висота її була 146, 7 м.

Будівля радіостанції в столиці Словаччини, що нагадує перевернуту піраміду, була побудована в 1983 р. Крім офісів та службових приміщень, всередині обсягу знаходиться досить місткий концертна залаякий має один з найбільших органів у Словаччині.

Лувр, який "мовчить незмінно і велично, як піраміда", протягом століть переніс чимало змін перш, ніж перетворитися на найбільший музейсвіту. Він народився як фортеця, споруджена Пилипом Августом у 1190 р., яка незабаром перетворилася на королівську резиденцію. У 1793 р. палац стає музеєм. Колекції збагачуються завдяки заповітам чи покупкам.

піраміда. Усічена піраміда

Пірамідоюназивається багатогранник, одна з граней якого багатокутник ( основа ), а всі інші грані – трикутники із загальною вершиною ( бічні грані ) (рис. 15). Піраміда називається правильною якщо її основою є правильний багатокутник і вершина піраміди проектується в центр основи (рис. 16). Трикутна піраміда, у якої всі ребра рівні, називається тетраедром .



Боковим ребромпіраміди називається сторона бічної грані, що не належить основи Висотою піраміди називається відстань від її вершини до площини основи. Усі бічні ребра правильної піраміди рівні між собою, всі бічні грані – рівні рівнобедрені трикутники. Висота бічної грані правильної піраміди, проведена з вершини, називається апофемою . Діагональним перетином називається переріз піраміди площиною, що проходить через два бічні ребра, що не належать одній грані.

Площею бічної поверхніпіраміди називається сума площ усіх бічних граней. Площею повної поверхні називається сума площ усіх бічних граней та підстави.

Теореми

1. Якщо у піраміді всі бічні ребра рівнонахилені до площини основи, то вершина піраміди проектується в центр кола описаного біля основи.

2. Якщо в піраміді всі бічні ребра мають рівні довжини, то вершина піраміди проектується в центр кола описаного біля основи.

3. Якщо в піраміді всі грані рівнонахилені до площини основи, то вершина піраміди проектується в центр кола, вписаного в основу.

Для обчислення обсягу довільної піраміди вірна формула:

де V- Об `єм;

S осн– площа основи;

H- Висота піраміди.

Для правильної піраміди вірні формули:

де p– периметр основи;

h а- Апофема;

H- Висота;

S повний

S бік

S осн– площа основи;

V- Об'єм правильної піраміди.

Усіченою пірамідоюназивається частина піраміди, укладена між основою та січною площиною, паралельною основі піраміди (рис. 17). Правильною усіченою пірамідою називається частина правильної піраміди, укладена між основою та січною площиною, паралельною основі піраміди.

Підставизрізаної піраміди – подібні багатокутники. Бічні грані - Трапеції. Висотою усіченої піраміди називається відстань між її основами. Діагоналлю усіченої піраміди називається відрізок, що з'єднує її вершини, що не лежать в одній грані. Діагональним перетином називається переріз усіченої піраміди площиною, що проходить через два бічні ребра, що не належать одній грані.


Для усіченої піраміди справедливі формули:

(4)

де S 1 , S 2 – площі верхнього та нижньої основ;

S повний- Площа повної поверхні;

S бік- Площа бічної поверхні;

H- Висота;

V- Об'єм зрізаної піраміди.

Для правильної усіченої піраміди вірна формула:

де p 1 , p 2 – периметри основ;

h а- Апофема правильної усіченої піраміди.

приклад 1.У правильній трикутній піраміді двогранний кут при підставі дорівнює 60 º. Знайти тангенс кута нахилу бокового ребра до площини основи.

Рішення.Зробимо рисунок (рис. 18).


Піраміда правильна, отже, в основі рівносторонній трикутник і всі бічні грані рівні рівнобедрені трикутники. Двогранний кут при основі – це кут нахилу бічної грані піраміди до площини основи. Лінійним кутом буде кут aміж двома перпендикулярами: і. Вершина піраміди проектується в центрі трикутника (центр описаного кола та вписаного кола в трикутник АВС). Кут нахилу бокового ребра (наприклад SB) – це кут між самим ребром та його проекцією на площину основи. Для ребра SBцим кутом буде кут SBD. Щоб знайти тангенс необхідно знати катети SOі OB. Нехай довжина відрізка BDдорівнює 3 а. Крапкою Провідрізок BDділиться на частини: і З знаходимо SO: З знаходимо:

Відповідь:

приклад 2.Знайти об'єм правильної усіченої чотирикутної піраміди, Якщо діагоналі її основ дорівнюють см і см, а висота 4 см.

Рішення.Для знаходження об'єму зрізаної піраміди скористаємося формулою (4). Щоб знайти площі основ необхідно знайти сторони квадратів-підстав, знаючи їх діагоналі. Сторони підстав рівні відповідно 2 см і 8 см. Значить площі підстав і Підставивши всі дані у формулу, обчислимо обсяг усіченої піраміди:

Відповідь: 112 см 3 .

приклад 3.Знайти площу бічної грані правильної трикутної усіченої піраміди, сторони основ якої дорівнюють 10 см і 4 см, а висота піраміди 2 см.

Рішення.Зробимо рисунок (рис. 19).


Бічна грань цієї піраміди є рівнобокою трапецією. Для обчислення площі трапеції необхідно знати основи та висоту. Підстави дано за умовою, залишається невідомою лише висота. Її знайдемо з де А 1 Еперпендикуляр з точки А 1 на площину нижньої основи, A 1 D- Перпендикуляр з А 1 на АС. А 1 Е= 2 см, оскільки це висота піраміди. Для знаходження DEзробимо додатково малюнок, у якому зобразимо вид зверху (рис. 20). Крапка Про– проекція центрів верхньої та нижньої основ. оскільки (див. рис. 20) і з іншого боку ОК– радіус вписаної в коло та ОМ- Радіус вписаної в колі:

MK = DE.

За теоремою Піфагора з

Площа бічної грані:


Відповідь:

приклад 4.В основі піраміди лежить рівнобока трапеція, основа якої аі b (a> b). Кожна бічна грань утворює з площиною основи піраміди кут рівний j. Знайти площу повної поверхні піраміди.

Рішення.Зробимо рисунок (рис. 21). Площа повної поверхні піраміди SABCDдорівнює сумі площ та площі трапеції ABCD.

Скористаємося твердженням, що й усі грані піраміди рівнонахилені до площині основи, то вершина проектується у центр вписаної основу окружности. Крапка Про- Проекція вершини Sна основу піраміди. Трикутник SODє ортогональною проекцією трикутника CSDна площину основи. За теоремою про площу ортогональної проекції плоскої фігури отримаємо:


Аналогічно і означає Таким чином, завдання звелося до знаходження площі трапеції. АВСD. Зобразимо трапецію ABCDокремо (рис.22). Крапка Про- Центр вписаної в трапецію кола.


Так як в трапецію можна вписати коло, то або З по теоремі Піфагора маємо

Цей відеоурок допоможе користувачам отримати уявлення про тему Піраміда. Правильна піраміда. У цьому занятті ми познайомимося з поняттям піраміди, дамо їй визначення. Розглянемо, що таке правильна піраміда і які властивості вона має. Потім доведемо теорему про бічній поверхні правильної піраміди.

У цьому занятті ми познайомимося з поняттям піраміди, дамо їй визначення.

Розглянемо багатокутник А 1 А 2...А n, який лежить у площині α, та точку P, яка не лежить у площині (рис. 1). З'єднаємо точку Pз вершинами А 1, А 2, А 3, … А n. Отримаємо nтрикутників: А 1 А 2 Р, А 2 А 3 Рі так далі.

Визначення. Багатогранник РА 1 А 2 …А n, складений з n-кутника А 1 А 2...А nі nтрикутників РА 1 А 2, РА 2 А 3РА n А n-1 , називається n-вугільною пірамідою. Рис. 1.

Рис. 1

Розглянемо чотирикутну піраміду PABCD(Рис. 2).

Р- Вершина піраміди.

ABCD- основа піраміди.

РА- Бокове ребро.

АВ- ребро основи.

З точки Ропустимо перпендикуляр РНна площину основи АВСD. Проведений перпендикуляр є висотою піраміди.

Рис. 2

Повна поверхня піраміди складається з поверхні бічної, тобто площі всіх бічних граней, і площі основи:

S повн = S бік + S осн

Піраміда називається правильною, якщо:

  • її основа - правильний багатокутник;
  • відрізок, що з'єднує вершину піраміди з центром основи є її висотою.

Пояснення на прикладі правильної чотирикутної піраміди

Розглянемо правильну чотирикутну піраміду PABCD(Рис. 3).

Р- Вершина піраміди. Заснування піраміди АВСD- правильний чотирикутник, тобто квадрат. Крапка Про, точка перетину діагоналей є центром квадрата. Значить, РВ- Це висота піраміди.

Рис. 3

Пояснення: у правильному n-кутник центр вписаного і центр описаного кола збігається. Цей центр називається центром багатокутника. Іноді кажуть, що вершина проектується до центру.

Висота бічної грані правильної піраміди, проведена з її вершини, називається апофемоюі позначається h а.

1. всі бічні ребра правильної піраміди рівні;

2. бічні грані є рівними рівнобедреними трикутниками.

Доказ цих властивостей наведемо з прикладу правильної чотирикутної піраміди.

Дано: РАВСD- правильна чотирикутна піраміда,

АВСD- Квадрат,

РВ- Висота піраміди.

Довести:

1. РА = РВ = РС = РD

2.∆АВР = ∆ВCР =∆СDР =∆DAP Див. 4.

Рис. 4

Доведення.

РВ- Висота піраміди. Тобто, пряма РВперпендикулярна площині АВС, А значить, і прямим АТ, ВО, СОі , що лежить у ньому. Отже, трикутники РОА, РІВ, РІС, РОD- Прямокутні.

Розглянемо квадрат АВСD. З властивостей квадрата випливає, що АТ = ВО = СО = ДО.

Тоді у прямокутних трикутників РОА, РІВ, РІС, РОDкатет РВ- загальний та катети АТ, ВО, СОі рівні, отже, ці трикутники рівні за двома катетами. З рівності трикутників випливає рівність відрізків, РА = РВ = РС = РD.Пункт 1 доведено.

Відрізки АВі НДрівні, оскільки є сторонами одного квадрата, РА = РВ = РС. Отже, трикутники АВРі ВCР -рівнобедрені та рівні по трьох сторонах.

Аналогічно отримуємо, що трикутники АВР, ВCР, СDР, DAPрівнобедрені та рівні, що й потрібно було довести у пункті 2.

Площа бічної поверхні правильної піраміди дорівнює половині добутку периметра основи на апофему:

Для підтвердження виберемо правильну трикутну піраміду.

Дано: РАВС- правильна трикутна піраміда.

АВ = ВС = АС.

РВ- Висота.

Довести: . Див. Рис. 5.

Рис. 5

Доведення.

РАВС- правильна трикутна піраміда. Тобто АВ= АС = ВС. Нехай Про- центр трикутника АВСтоді РВ- Це висота піраміди. В основі піраміди лежить рівносторонній трикутник АВС. Зауважимо, що .

Трикутники РАВ, РВС, РСА- рівні рівнобедрені трикутники (за якістю). У трикутної пірамідитри бічні грані: РАВ, РВС, РСА. Значить площа бічної поверхні піраміди дорівнює:

S бік = 3S РАВ

Теорему доведено.

Радіус кола, вписаного в основу правильної чотирикутної піраміди, дорівнює 3 м, висота піраміди дорівнює 4 м. Знайдіть площу бічної поверхні піраміди.

Дано: правильна чотирикутна піраміда АВСD,

АВСD- Квадрат,

r= 3 м,

РВ- Висота піраміди,

РВ= 4 м-коду.

Знайти: S бік. Див. Рис. 6.

Рис. 6

Рішення.

По доведеній теоремі, .

Знайдемо спочатку бік основи АВ. Нам відомо, що радіус кола, вписаного в основу правильної чотирикутної піраміди, дорівнює 3 м.

Тоді м.

Знайдемо периметр квадрата АВСDзі стороною 6 м:

Розглянемо трикутник BCD. Нехай М- середина сторони DC. Так як Про- середина BD, то (М).

Трикутник DPC- рівнобедрений. М- середина DC. Тобто, РМ- медіана, а значить, і висота у трикутнику DPC. Тоді РМ- Апофема піраміди.

РВ- Висота піраміди. Тоді, пряма РВперпендикулярна площині АВС, а значить, і прямий ОМ, що лежить у ньому. Знайдемо апофему РМіз прямокутного трикутника РОМ.

Тепер можемо знайти бічну поверхнюпіраміди:

Відповідь: 60 м 2 .

Радіус кола, описаного біля основи правильної трикутної піраміди, дорівнює м. Площа бічної поверхні дорівнює 18 м 2 . Знайдіть довжину апофеми.

Дано: АВСP- правильна трикутна піраміди,

АВ = ВС = СА,

R= м,

S бік = 18 м 2 .

Знайти: . Див. Рис. 7.

Рис. 7

Рішення.

У правильному трикутнику АВСдано радіус описаного кола. Знайдемо бік АВцього трикутника за допомогою теореми синусів.

Знаючи бік правильного трикутника(М), знайдемо його периметр.

По теоремі про площу бічної поверхні правильної піраміди , де h а- Апофема піраміди. Тоді:

Відповідь: 4 м.

Отже, ми розглянули, що таке піраміда, що таке правильна піраміда, довели теорему про бічну поверхню правильної піраміди. На наступному уроці ми познайомимося з усіченою пірамідою.

Список літератури

  1. Геометрія. 10-11 клас: підручник для учнів загальноосвітніх установ (базовий та профільний рівні) / І. М. Смирнова, В. А. Смирнов. - 5-те вид., Випр. та дод. – К.: Мнемозіна, 2008. – 288 с.: іл.
  2. Геометрія. 10-11 клас: Підручник для загальноосвітніх навчальних закладів/ Шаригін І. Ф. – М.: Дрофа, 1999. – 208 с.: іл.
  3. Геометрія. 10 клас: Підручник для загальноосвітніх закладів з поглибленим та профільним вивченням математики /Е. В. Потоскуєв, Л. І. Звалич. - 6-те вид., стереотип. – М.: Дрофа, 008. – 233 с.: іл.
  1. Інтернет портал «Яклас» ()
  2. Інтернет портал «Фестиваль педагогічних ідей «Перше вересня» ()
  3. Інтернет портал «Slideshare.net» ()

Домашнє завдання

  1. Чи може правильний багатокутник бути основою неправильної піраміди?
  2. Доведіть, що ребра правильної піраміди, що не перетинаються, перпендикулярні.
  3. Знайдіть величину двогранного кута при стороні основи правильної чотирикутної піраміди, якщо апофема піраміди дорівнює стороні її основи.
  4. РАВС- правильна трикутна піраміда. Побудуйте лінійний кут двогранного кута на основі піраміди.

Гіпотеза:ми вважаємо, що досконалість форми піраміди зумовлена математичними законами, закладеними у її форму.

Ціль:вивчивши піраміду як геометричне тіло, дати пояснення досконалості її форми.

Завдання:

1. Дати математичне визначення піраміді.

2. Вивчити піраміду як геометричне тіло.

3. Зрозуміти, які математичні знання єгиптяни заклали у своїх пірамідах.

Приватні питання:

1. Що таке піраміда як геометричне тіло?

2. Як можна пояснити унікальність форми піраміди з математичної точки зору?

3. Чим пояснюються геометричні дива піраміди?

4. Чим пояснюється досконалість форми піраміди?

Визначення піраміди.

ПІРАМІДА (від грецьк. pyramis, рід. п. pyramidos) - багатогранник, основа якого багатокутник, інші грані - трикутники, мають загальну вершину (рисунок). За кількістю кутів основи розрізняють піраміди трикутні, чотирикутні і т.д.

ПІРАМІДА - монументальна споруда, що має геометричну форму піраміди (іноді також ступінчасту або баштоподібну). Пірамідами називають гігантські гробниці давньоєгипетських фараонів 3-2 тис. до н. е., і навіть давньоамериканські постаменти храмів (у Мексиці, Гватемалі, Гондурасі, Перу), пов'язані з космологічними культами.

Можливо, що грецьке слово “піраміда” походить від єгипетського виразу per-em-us, тобто від терміна, що означав висоту піраміди. Визначний російський єгиптолог У. Струве вважав, що грецьке “puram…j” походить від давньоєгипетського “p"-mr".

З історії. Вивчивши матеріал у підручнику "Геометрія" авторів Атанасяна. Бутузова та інших., ми довідалися, що: Багатогранник, складений з п - косинця А1А2А3 … Аn і п трикутників РА1А2, РА2А3, …, РАnА1 – називається пірамідою. Багатокутник А1А2А3 … Аn – основа піраміди, а трикутники РА1А2, РА2А3, …, РАnА1 – бічні грані піраміди, Р – вершина піраміди, відрізки РА1, РА2,…, РАn – бічні ребра.

Проте таке визначення піраміди не завжди існувало. Наприклад, давньогрецький математик, автор теоретичних трактатів з математики Евклід, що дійшли до нас, піраміду визначає як тілесну фігуру, обмежену площинами, які від однієї площини сходяться до однієї точки.

Але це визначення піддавалися критиці вже в давнину. Так Герон запропонував таке визначення піраміди: "Це фігура, обмежена трикутниками, що сходяться в одній точці і основою якої є багатокутник".

Наша група, порівнявши ці визначення, дійшла висновку, що в них немає чіткого формулювання поняття “основа”.

Ми дослідили ці визначення та знайшли визначення Адрієна Марі Лежандра, який у 1794 році у своїй праці “Елементи геометрії” піраміду визначає так: “Піраміда – тілесна фігура, утворена трикутниками, що сходяться в одній точці і закінчується на різних сторонах плоскої основи”.

Нам здається, що останнє визначення дає чітке уявлення про піраміду, тому що в ньому йде мовапро те, що основа – плоска. У підручнику 19 століття фігурувало ще одне визначення піраміди: "піраміда - тілесний кут, перетнутий площиною".

Піраміда як геометричне тіло.

Т. о. пірамідою називається багатогранник, одна з граней якого (основа) - багатокутник, інші грані (бічні) - трикутники, що мають одну загальну вершину (вершину піраміди).

Перпендикуляр, проведений з вершини піраміди до площини основи, називається заввишкиhпіраміди.

Крім довільної піраміди, існують правильна піраміда,в основі якої правильний багатокутник і усічена піраміда.

На малюнку – піраміда PABCD, ABCD – її основа, PO – висота.

Площею повної поверхні піраміди називається сума площ усіх її граней.

Sповн = Sбок + Sосн,де Sбік- Сума площ бічних граней.

Об'єм піраміди знаходиться за формулою:

V=1/3Sосн. h, де Sосн. - площа основи, h- Висота.

Оссю правильної піраміди називається пряма, що містить її висоту.
Апофема ST – висота бічної грані правильної піраміди.

Площа бічної грані правильної піраміди виражається так: Sбік. =1/2P h, де Р - периметр основи, h- Висота бічної грані (апофема правильної піраміди). Якщо піраміда перетнута площиною A'B'C'D', паралельною підставі, то:

1) бічні ребра та висота діляться цією площиною на пропорційні частини;

2) у перерізі виходить багатокутник A'B'C'D', подібний до основи;

https://pandia.ru/text/78/390/images/image017_1.png" width="287" height="151">

Підстави усіченої піраміди– подібні багатокутники ABCD та A`B`C`D`, бічні грані – трапеції.

Висотаусіченої піраміди – відстань між основами.

Об'єм зрізаноїпіраміди знаходиться за формулою:

V=1/3 h(S + https://pandia.ru/text/78/390/images/image019_2.png" Площа бічної поверхні правильної зрізаної піраміди виражається так: Sбок. = ½(P+P') h, де P і P'- периметри основ, h- висота бічної грані (апофема правильної усіченої бенкетами

Перетин піраміди.

Перерізи піраміди площинами, що проходять через її вершину, є трикутниками.

Перетин, що проходить через два несусідні бічні ребра піраміди, називається діагональним перетином.

Якщо перетин проходить через точку на бічному ребрі і бік основи, його слідом на площину основи піраміди буде ця сторона.

Перетин, що проходить через точку, що лежить на межі піраміди, і заданий слід перерізу на площину основи, то побудування треба проводити так:

· Знаходять точку перетину площини даної грані та сліду перерізу піраміди та позначають її;

· будують пряму проходить через задану точку та отриману точку перетину;

· Повторюють ці дії і для наступних граней.

що відповідає відношенню катетів прямокутного трикутника 4:3. Таке відношення катетів відповідає добре відомому прямокутному трикутнику зі сторонами 3:4:5, який називають "досконалим", "священним" чи "єгипетським" трикутником. За свідченням істориків, "єгипетському" трикутнику надавали магічного сенсу. Плутарх писав, що єгиптяни порівнювали природу Всесвіту зі "священним" трикутником; вони символічно уподібнювали вертикальний катет чоловікові, основу - дружині, а гіпотенузу - тому, що народжується від обох.

Для трикутника 3:4:5 справедлива рівність: 32 + 42 = 52, яка виражає теорему Піфагора. Чи не цю теорему хотіли увічнити єгипетські жерці, зводячи піраміду на основі трикутника 3:4:5? Важко знайти вдалий приклад для ілюстрації теореми Піфагора, яка була відома єгиптянам задовго до її відкриття Піфагором.

Таким чином, геніальні творці єгипетських пірамідпрагнули вразити далеких нащадків глибиною своїх знань, і вони досягли цього, обравши як "головну геометричну ідею" для піраміди Хеопса - "золотої" прямокутний трикутника для піраміди Хефрена - "священний" або "єгипетський" трикутник.

Дуже часто у своїх дослідженнях вчені використовують властивості пірамід із пропорціями Золотого перетину.

В математичному енциклопедичному словникудається наступне визначення Золотого перерізу – це гармонійний поділ, поділ у крайньому та середньому відношенні – поділ відрізка АВ на дві частини таким чином, що більша його частина АС є середнім пропорційним між усім відрізком АВ та меншою його частиною СВ.

Алгебраїчне знаходження Золотого перерізу відрізка АВ = азводиться до розв'язання рівняння а: х = х: (а – х), звідки х приблизно 0,62а. Відношення х можна виразити дробами 2/3, 3/5, 5/8, 8/13, 13/21 ... = 0,618, де 2, 3, 5, 8, 13, 21 - числа Фібоначчі.

Геометрична побудова Золотого перерізу відрізка АВ здійснюється так: у точці відновлюється перпендикуляр до АВ, на ньому відкладають відрізок ВЕ = 1/2 АВ, з'єднують А і Е, відкладають ДЕ = ВЕ і, нарешті, АС = АТ, тоді виконується рівність АВ: СВ = 2:3.

Золотий перетинчасто застосовується у витворах мистецтва, архітектури, зустрічається у природі. Яскравими прикладамиє скульптура Аполлона Бельведерського, Парфенон. При будівництві Парфенона використовувалося відношення висоти будівлі до його довжини, і це відношення дорівнює 0,618. Навколишні предмети також дають приклади Золотого перерізу, наприклад, палітурки багатьох книг мають відношення ширини і довжини близьке до 0,618. Розглядаючи розташування листя на загальному стеблі рослин, можна помітити, що між кожними двома парами листя третя розташована у місці Золотого перерізу (слайди). Кожен із нас "носить" Золотий перетин із собою "в руках" - це відношення фаланг пальців.

Завдяки знахідці кількох математичних папірусів, єгиптологи дізналися дещо про давньоєгипетські системи обчислення та заходів. Завдання, що містилися в них, вирішувалися переписувачами. Одним із найвідоміших є «Ріндський математичний папірус». Вивчаючи ці завдання, єгиптологи довідалися, як древні єгиптяни справлялися з різними кількостями, що виникали при обчисленні заходів ваги, довжини та обсягу, у яких найчастіше використовувалися дроби, і навіть як вони справлялися з кутами.

Стародавні єгиптяни використовували спосіб обчислення кутів на основі відношення висоти до основи прямокутного трикутника. Вони виражали будь-який кут мовою градієнта. Градієнт схилу виражався ставленням цілого числа, яке називалося «секед». У книзі «Математика за часів фараонів» Річард Піллінс пояснює: «Секед правильної піраміди – це нахил будь-якої з чотирьох трикутних граней до площини основи, що вимірюється енним числом горизонтальних одиниць на одну вертикальну одиницю підйому. Таким чином, ця одиниця виміру еквівалентна нашому сучасному котангенсу кута нахилу. Отже, єгипетське слово «секед» споріднене з нашим сучасному слову"градієнт"».

Числовий ключ до пірамід укладено щодо їх висоти до основи. У практичному плані - це найлегший спосіб виготовлення шаблонів, необхідних постійної перевірки правильності кута нахилу протягом усього будівництва піраміди.

Єгиптологи були б раді переконати нас у тому, що кожен фараон жадав висловити свою індивідуальність, тому й відмінності кутів нахилу кожної піраміди. Але могла бути інша причина. Можливо, всі вони хотіли втілити різні символічні асоціації, приховані у різних пропорціях. Однак кут піраміди Хафри (заснований на трикутнику (3: 4: 5) проявляється у трьох проблемах, представлених пірамідами в «Ріндському математичному папірусі»). Так що це ставлення було добре відоме давнім єгиптянам.

Щоб бути справедливими до єгиптологів, які стверджують, що стародавнім єгиптянам не був відомий трикутник 3:4:5, скажімо, що довжина гіпотенузи 5 ніколи не згадувалася. Але математичні задачіЩо стосується пірамід, завжди вирішуються на основі секеда кута - відношення висоти до основи. Оскільки довжина гіпотенузи ніколи не згадувалася, було зроблено висновок, що єгиптяни так ніколи і не вирахували довжину третьої сторони.

Відносини висоти до основи, використані в пірамідах Гізи, безсумнівно, були відомі давнім єгиптянам. Можливо, що ці відносини кожної піраміди були обрані довільно. Однак це суперечить тому значенню, яке надавалося числовому символізму у всіх видах єгипетського образотворчого мистецтва. Цілком ймовірно, що такі відносини мали суттєве значення, оскільки висловлювали конкретні релігійні ідеї. Іншими словами, весь комплекс Гізи підпорядковувався зв'язковому задуму, покликаному відобразити божественну тему. Це б пояснило, чому проектувальники обрали різні кути нахилу трьох пірамід.

У «Таємниці Оріона» Бьювел і Джілберт представили переконливі докази зв'язку пірамід Гізи із сузір'ям Оріона, зокрема із зірками Пояса Оріона. Осіріса, Ісіди та Гора.

ЧУДОВИ "ГЕОМЕТРИЧНІ".

Серед грандіозних пірамід Єгипту особливе місце посідає Велика Піраміда фараона Хеопса (Хуфу). Перш ніж приступити до аналізу форми та розмірів піраміди Хеопса, слід згадати, якою системою заходів користувалися єгиптяни. У єгиптян було три одиниці довжини: "лікоть" (466 мм), що дорівнював семи "долоням" (66,5 мм), яка, у свою чергу, дорівнювала чотирьом "пальцям" (16,6 мм).

Проведемо аналіз розмірів піраміди Хеопса (Рис.2), дотримуючись міркувань, наведених у чудовій книзі українського вченого Миколи Васютинського” Золота пропорція(1990 р.).

Більшість дослідників сходяться в тому, що довжина сторони основи піраміди, наприклад, GFдорівнює L= 233,16 м. Ця величина відповідає майже точно 500 "ліктям". Повна відповідність 500 "ліктям" буде, якщо довжину "ліктя" вважати рівною 0,4663 м.

Висота піраміди ( H) оцінюється дослідниками по-різному від 146,6 до 148,2 м. І в залежності від прийнятої висоти піраміди змінюються всі відносини її геометричних елементів. У чому причина відмінностей щодо оцінки висоти піраміди? Справа в тому, що, строго кажучи, піраміда Хеопса є усіченою. Її верхній майданчик у наші дні має розмір приблизно 10 ´ 10 м, а століття тому він дорівнював 6 ´ 6 м. Очевидно, що вершину піраміди розібрали, і вона не відповідає початковій.

Оцінюючи висоту піраміди, необхідно враховувати такий фізичний фактор, як "осаду" конструкції. За тривалий часпід впливом колосального тиску (що досягає 500 тонн на 1 м2 нижньої поверхні) висота піраміди зменшилася порівняно з первісною висотою.

Якою була початкова висота піраміди? Цю висоту можна відтворити, якщо знайти основну "геометричну ідею" піраміди.


Малюнок 2.

У 1837 р. англійський полковник Г. Вайз виміряв кут нахилу граней піраміди: він виявився рівним a= 51°51". Ця величина і сьогодні визнається більшістю дослідників. Вказаному значенню кута відповідає тангенс (tg a), рівний 1,27306. Ця величина відповідає відношенню висоти піраміди АСдо половини її заснування CB(Рис.2), тобто AC / CB = H / (L / 2) = 2H / L.

І ось тут дослідників чекав великий сюрприз!.png" width="25" height="24">= 1,272. a= 1,27306, бачимо, що це величини дуже близькі між собою. Якщо ж прийняти кут a= 51°50", тобто зменшити його всього на одну кутову хвилину, то величина aстане рівною 1,272, тобто збігається з величиною . Слід зазначити, що у 1840 р. Р. Вайз повторив свої виміри та уточнив, що значення кута a= 51 ° 50 ".

Ці виміри привели дослідників до наступного цікавою гіпотезою: в основу трикутника АСВ піраміди Хеопса було закладено відношення AC / CB = = 1,272!

Розглянемо тепер прямокутний трикутник ABC, в якому ставлення катетів AC / CB= (Рис.2). Якщо тепер довжини сторін прямокутника ABCпозначити через x, y, z, а також врахувати, що ставлення y/x= , то відповідно до теореми Піфагора, довжина zможе бути обчислена за формулою:

Якщо прийняти x = 1, y= https://pandia.ru/text/78/390/images/image027_1.png" width="143" height="27">


Малюнок 3."Золотий" прямокутний трикутник.

Прямокутний трикутник, в якому сторони відносяться як t:золотим прямокутним трикутником.

Тоді, якщо прийняти за основу гіпотезу про те, що основною "геометричною ідеєю" піраміди Хеопса є "золотий" прямокутний трикутник, то легко можна обчислити "проектну" висоту піраміди Хеопса. Вона дорівнює:

H = (L/2) = 148,28 м.

Виведемо тепер деякі інші відносини для піраміди Хеопса, які з " золотої " гіпотези. Зокрема, знайдемо відношення зовнішньої площі піраміди до площі її основи. Для цього приймемо довжину катета CBза одиницю, тобто: CB= 1. Але тоді довжина сторони основи піраміди GF= 2, а площа основи EFGHбуде рівна SEFGH = 4.

Обчислимо тепер площу бічної грані піраміди Хеопса SD. Оскільки висота ABтрикутника AEFдорівнює t, то площа бічної грані дорівнюватиме SD = t. Тоді сумарна площа всіх чотирьох бічних граней піраміди дорівнюватиме 4 t, А відношення сумарної зовнішньої площі піраміди до площі основи буде дорівнює золотій пропорції! Це і є - головна геометрична таємниця піраміди Хеопса!

До групи "геометричних чудес" піраміди Хеопса можна віднести реальні та надумані властивості відносин між різними вимірами у піраміді.

Як правило, вони отримані в пошуках деяких "постійних", зокрема числа "пі" (лудольфове число), рівного 3,14159 ...; підстави натуральних логарифмів"е" (Неперове число), що дорівнює 2,71828 ...; числа "Ф", числа "золотого перерізу", що дорівнює, наприклад, 0,618 ... і т. д.

Можна назвати, наприклад: 1) Властивість Геродота: (Висота)2 = 0,5 ст. осн. х Апофема; 2) Властивість В. Прайсу: Висота: 0.5 ст. осн = Корінь квадратний із "Ф"; 3) Властивість М. Ейста: Периметр основи: 2 Висота = "Пі"; в іншій інтерпретації – 2 ст. осн. : Висота = "Пі"; 4) Властивість Г. Ребера: Радіус вписаного кола: 0,5 ст. осн. = "Ф"; 5) Властивість К. Клеппіша: (Ст. осн.) 2: 2 (ст. осн. х Апофема) = (ст. осн. У. Апофема) = 2 (ст. осн. х Апофема): ((2 ст. осн.X Апофема) + (ст. осн.)2). І тому подібне. Таких властивостей можна придумати безліч, особливо якщо підключити сусідні дві піраміди. Наприклад, як "Властивості А. Ареф'єва" можна згадати, що різниця обсягів піраміди Хеопса і піраміди Хефрена дорівнює подвоєному обсягу піраміди Мікеріна.

Багато цікавих положень, зокрема, про побудову пірамід по "золотому перерізу" викладено у книгах Д. Хембідж "Динамічна симетрія в архітектурі" та М. Гіка "Естетика пропорції в природі та мистецтві". Нагадаємо, що "золотим перетином" називається розподіл відрізка в такому відношенні, коли частина А в стільки разів більша частини В, у скільки разів А менше всього відрізка А + В. Відношення А/В при цьому дорівнює числу "Ф"==1,618. .. Вказується на використання "золотого перерізу" не тільки в окремих пірамідах, а й у всьому комплексі пірамід у Гізі.

Найцікавіше, однак, те, що та сама піраміда Хеопса просто "не може" вмістити в себе стільки чудових властивостей. Взявши якесь властивість поодинці, його можна "підігнати", але всі разом вони не підходять - не збігаються, суперечать один одному. Тому, якщо, наприклад, при перевірці всіх властивостей, брати вихідно ту саму сторону основи піраміди (233 м), то висоти пірамід з різними властивостями також будуть різними. Іншими словами, існує якась "родина" пірамід, зовні подібних до Хеопсової, але відповідальних різним властивостям. Зауважимо, що в "геометричних" властивостях нічого особливо чудового немає - багато виникає суто автоматично, з властивостей самої фігури. "Чудом" слід вважати лише щось явно неможливе для древніх єгиптян. Сюди, зокрема, відносять "космічні" дива, в яких виміри піраміди Хеопса або комплексу пірамід у Гізі зіставляються з деякими астрономічними вимірами і вказуються "рівні" числа: у мільйон разів, у мільярд разів менше, тощо. Розглянемо деякі "космічні" співвідношення.

Одне із тверджень таке: "якщо розділити бік заснування піраміди на точну довжину року, то отримаємо точно 10-мільйонну частку земної осі". Обчисли: розділимо 233 на 365, отримаємо 0,638. Радіус Землі 6378 км.

Інше твердження фактично обернено попередньому. Ф. Ноетлінг вказував, що й скористатися придуманим ним самим " єгипетським ліктем " , сторона піраміди буде відповідати " найточнішої тривалості сонячного року, вираженої з точністю до однієї мільярдної дня " - 365.540.903.777.

Твердження П. Сміта: "Висота піраміди становить рівно одну мільярдну частку відстані від Землі до Сонця". Хоча зазвичай береться висота 146,6 м, Сміт брав її 148,2 м. За сучасними радіолокаційними вимірюваннями велика піввісь земної орбіти становить 149,597.870 + 1,6 км. Такою є середня відстань від Землі до Сонця, але в перигелії вона на 5.000.000 кілометрів менша, ніж в афелії.

Останнє цікаве твердження:

"Чим пояснити, що маси пірамід Хеопса, Хефрена і Мікеріна ставляться одна до одної, як маси планет Земля, Венера, Марс?" Обчислимо. Маси трьох пірамід відносяться як: Хефрена – 0,835; Хеопса – 1,000; Мікеріна – 0,0915. Відносини мас трьох планет: Венера – 0,815; Земля – 1,000; Марс – 0,108.

Отже, незважаючи на скепсис, відзначимо відому стрункість побудови тверджень: 1) висота піраміди, як лінія, "що йде в простір" - відповідає відстані від Землі до Сонця; 2) сторона заснування піраміди, найближча "до субстрату", тобто до Землі, відповідає за земний радіус та земне звернення; 3) обсяги піраміди (читай – маси) відповідають відношенню мас найближчих до Землі планет. Схожий "шифр" простежується, наприклад, у бджолиній мові, проаналізованій Карлом фон Фрішем. Втім, поки що утримаємося від коментарів з цього приводу.

ФОРМА ПІРАМІД

Знаменита чотиригранна форма пірамід виникла не відразу. Скіфи робили поховання у вигляді земляних пагорбів – курганів. Єгиптяни ставили "пагорби" з каменю – піраміди. Вперше це сталося після об'єднання Верхнього та Нижнього Єгипту, у XXVIII столітті до нашої ери, коли перед засновником ІІІ династії фараоном Джосером (Зосером) стояло завдання зміцнення єдності країни.

І тут, на думку істориків, важливу роль у зміцненні центральної влади відіграла "нова концепція обожнювання" царя. Хоча царські поховання і відрізнялися більшою пишністю, вони в принципі не відрізнялися від гробниць придворних вельмож, являли собою одні й самі споруди - мастаби. Над камерою з саркофагом, що містить мумію, насипався прямокутний пагорб із дрібного каміння, де ставилася потім невелика будівля з великих кам'яних блоків - "мастаба" (арабською - "лава"). На місці мастабу свого попередника, Санахта, фараон Джосер і поставив першу піраміду. Була вона ступінчастою та була зримим перехідним етапом від однієї архітектурної форми до іншої, від мастаби – до піраміди.

У такий спосіб "підняв" фараона мудрець і архітектор Імхотеп, який згодом вважався чарівником і ототожнюваний греками з богом Асклепієм. Було споруджено як би шість мастаб поспіль. Причому перша піраміда займала площу 1125 х 115 метрів, з імовірною висотою 66 метрів (за єгипетськими заходами - 1000 "долонів"). Спочатку архітектор задумував побудувати мастабу, але не довгасту, а квадратну в плані. Пізніше її розширили, але оскільки прибудову зробили нижче, утворилося як би два щаблі.

Така ситуація не задовольнила архітектора, і на верхньому майданчику величезної плоскої мастаби Імхотеп поставив ще три, що поступово зменшуються до верху. Усипальниця була під пірамідою.

Відомо ще кілька ступінчастих пірамід, але надалі будівельники перейшли до будівництва більш звичних для нас чотиригранних пірамід. Чому ж, однак, не тригранні чи, скажімо, восьмигранні? Непряма відповідь дає той факт, що практично всі піраміди чудово зорієнтовані по чотирьох сторонах світла, тому мають чотири сторони. До того ж піраміда була "будинком", оболонкою чотирикутного похоронного приміщення.

Але чим було зумовлено кут нахилу граней? У книзі "Принцип пропорцій" цьому присвячено цілу главу: "Що могло зумовити кути нахилів пірамід". Зокрема, вказується, що "образ, якого тяжіють великі піраміди Стародавнього царства - трикутник з прямим кутом у вершині.

У просторі це напівоктаедр: піраміда, в якій ребра та сторони основи рівні, грані - рівносторонні трикутникиПевні розгляди дано з цього приводу у книгах Хембіджу, Гіка та інших.

Чим вигідний кут напівоктаедра? Згідно з описами археологів та істориків, деякі піраміди обвалилися під власним тягарем. Потрібен був "кут довговічності", кут, найбільш енергетично надійний. Чисто емпірично цей кут можна взяти з вершинного кута в купі сухого піску, що обсипається. Але, щоб отримати точні дані, потрібно скористатися моделлю. Взявши чотири міцно закріплені кулі, потрібно покласти на них п'яту і виміряти кути нахилу. Втім, і тут можна помилитися, тому рятує теоретичний розрахунок: слід з'єднати лініями центри куль (подумки). В основі вийде квадрат зі стороною, що дорівнює подвоєному радіусу. Квадрат буде якраз підставою піраміди, довжина ребер якої також дорівнюватиме подвоєному радіусу.

Таким чином щільна упаковка куль за типом 1: 4 дасть нам правильний напівоктаедр.

Однак, чому ж багато пірамід, тяжіючи до подібної форми, проте не зберігають її? Мабуть, піраміди старіють. Всупереч знаменитій приказці:

"Все у світі бояться часу, а час бояться пірамід", будівлі пірамід повинні старіти, в них можуть і повинні відбуватися не тільки процеси зовнішнього вивітрювання, а й процеси внутрішньої "усадки", від чого піраміди, можливо, стають нижчими. Усадка можлива і тому, що, як з'ясовано роботами Д. Давидовиця, стародавні єгиптяни застосовували технологію виготовлення блоків з вапняної крихти, простіше кажучи, з бетону. Саме подібні процеси могли б пояснити причину руйнування Медумської піраміди, розташованої за 50 км на південь від Каїра. Їй 4600 років, розміри основи 146 х 146 м, висота – 118м. "Чому вона так понівечена? - Запитує В. Замаровський. - Звичайні посилання на згубний вплив часу і "використання каменю для інших будівель" тут не підходять.

Адже більшість її блоків і облицювальних плит і досі залишилася на місці, в руїнах біля її підніжжя". Як побачимо, ряд положень змушує замислитися навіть над тим, що і знаменита піраміда Хеопса теж "усохла". ...

Форму пірамід могло породити і наслідування: деяким природним зразкам, "нерукотворної досконалості", скажімо, деяких кристалів у вигляді октаедра.

Подібними кристалами могли виявитися кристали алмазу та золота. Характерна велика кількість ознак, що "перетинаються", для таких понять, як Фараон, Сонце, Золото, Алмаз. Скрізь - благородний, блискучий (блискучий), великий, бездоганний і таке інше. Подібності не випадкові.

Сонячний культ, як відомо, становив важливу частину релігії Стародавнього Єгипту. "Хоч би ми перекладали назву найбільшої з пірамід, - зазначається в одному з сучасних посібників- "Небосхил Хуфу" або "Небосхильний Хуфу", воно означало, що цар є сонцем". Якщо Хуфу у блиску своєї могутності уявив себе другим сонцем, то його син Джедеф-Ра став першим з єгипетських царів, хто став називати себе "сином Ра ", тобто сином Сонця. Сонце ж практично у всіх народів символізувалося "сонячним металом", золотом. "Великий диск яскравого золота" - так єгиптяни називали наше денне світило. Золото єгиптяни знали чудово, знали його самородні форми, де кристали золота можуть бути у вигляді октаедрів.

Як "зразок форм" цікавий тут і "сонячний камінь" – алмаз. Назва алмазу прийшла саме з арабського світу, "алмас" - найтвердіший, найтвердіший, незламний. Стародавні єгиптяни знали алмаз та його властивості дуже непогано. Згідно з деякими авторами, вони навіть використовували для буріння бронзові трубки з алмазними різцями.

Нині основним постачальником алмазів є Південна Африка, але на алмази багата і Африка Західна. Територію Республіки Малі там називають навіть "Діамантовим краєм". Тим часом саме на території Малі проживають наздоганяння, з якими прихильники гіпотези палеовізіту пов'язують чимало надій (див. далі). Алмази не могли спричинити контакти стародавніх єгиптян з цим краєм. Однак, так чи інакше, але, можливо, що саме копіюючи октаедри кристалів алмазу і золота, древні єгиптяни обожнювали тим самим "незламних" як алмаз і "блискучих" як золото фараонів, синів Сонця, порівнянних лише з чудовими творами природи.

Висновок:

Вивчивши піраміду як геометричне тіло, познайомившись з її елементами та властивостями, ми переконалися у справедливості думки про красу форми піраміди.

В результаті наших досліджень ми дійшли висновку, що єгиптяни, зібравши найцінніші математичні знання, втілили їх у піраміді. Тому піраміда воістину – найдосконаліший витвір природи та людини.

СПИСОК ВИКОРИСТАНОЇ ЛІТЕРАТУРИ

«Геометрія: Навч. для 7 - 9 кл. загальноосвіт. установ \, та ін - 9-е вид. - М.: Просвітництво, 1999

Історія математики у шкільництві, М: «Просвіта», 1982 р.

Геометрія 10-11 клас, М: «Освіта», 2000

Пітер Томпкінс "Таємниці великої піраміди Хеопса", М: "Центрополіграф", 2005 р.

Інтернет ресурси

http://veka-i-mig. *****/

http://tambov. *****/vjpusk/vjp025/rabot/33/index2.htm

http://www. *****/enc/54373.html

Тут зібрані основні відомості про піраміди і пов'язані з нею формули та поняття. Усі вони вивчаються з репетитором з математики під час підготовки до ЄДІ.

Розглянемо площину, багатокутник , що лежить у ній і точку S, що не лежить у ній. З'єднаємо S з усіма вершинами багатокутника. Отриманий багатогранник називається пірамідою. Відрізки називаються бічними ребрами. Багатокутник називається основою, а точка S вершиною піраміди. Залежно від числа n піраміда називається трикутною (n=3), чотирикутною (n=4), п'ятикутною (n=5) тощо. Альтернативна назва трикутної піраміди – тетраедр. Висотою піраміди називається перпендикуляр, опущений із її вершини до площини основи.

Піраміда називається правильною, якщо правильний багатокутник, а основа висоти піраміди (основа перпендикуляра) є його центром.

Коментар репетитора:
Не плутайте поняття «правильна піраміда» та «правильний тетраедр». У правильної піраміди бічні ребра не обов'язково рівні ребрам основи, а правильному тетраедрі все 6 ребер ребра рівні. Це його визначення. Легко довести, що з рівності слід збіг центру багатокутника P з основою висоти, тому правильний тетраедр є правильною пірамідою.

Що таке апофема?
Апофема піраміди називається висота її бічної грані. Якщо піраміда правильна, всі її апофеми рівні. Назад неправильно.

Репетитор з математики про свою термінологію: робота з пірамідами на 80% будується через два види трикутників:
1) Що містить апофему SK і висоту SP
2) Містить бічне ребро SA та його проекцію PA

Щоб спростити посилання на ці трикутники, репетитору з математики зручніше називати перший з них. апофемним, а другий реберним. На жаль, цієї термінології ви не зустрінете в жодному з підручників, і викладачеві доводиться вводити її в односторонньому порядку.

Формула об'єму піраміди:
1) , де - площа основи піраміди, а -висота піраміди
2) , де – радіус вписаної кулі, а – площа повної поверхні піраміди.
3) , де MN - відстань будь-якими двома схрещуються ребрами, а - площа паралелограма, утвореного серединами чотирьох ребер, що залишилися.

Властивість основи висоти піраміди:

Точка P (дивися малюнок) збігається з центром вписаного кола в основу піраміди, якщо виконується одна з наступних умов:
1) Усі апофеми рівні
2) Усі бічні грані однаково нахилені до основи
3) Усі апофеми однаково нахилені до висоти піраміди
4) Висота піраміди однаково нахилена до всіх бокових граней

Коментар репетитора з математики: зверніть увагу, що всі пункти поєднує одне загальна властивість: так чи інакше скрізь беруть участь бічні грані (апофеми - це їх елементи). Тому репетитор може запропонувати менш точну, але зручнішу для заучування формулювання: точка P збігається з центром вписаного кола основу піраміди, якщо є будь-яка рівна інформація про її бічні грані. Для доказу досить показати, що це апофемні трикутники рівні.

Точка P збігається з центром описаної біля основи піраміди колом, якщо правильна одна з трьох умов:
1) Усі бічні ребра рівні
2) Усі бічні ребра однаково нахилені до основи
3) Усі бічні ребра однаково нахилені до висоти

Поділіться з друзями або збережіть для себе:

Завантаження...