Як вирішувати логарифми з різних підстав приклади. Логарифм - властивості, формули, графік

З розвитком суспільства, ускладнення виробництва розвивалася і математика. Рух від простого до складного. Від звичайного обліку шляхом складання і віднімання, за її багаторазовому повторенні, дійшли поняття множення і поділу. Скорочення операції, що багаторазово повторюється, множення стало поняттям зведення в ступінь. Перші таблиці залежності чисел від основи та числа зведення у ступінь були складені ще у VIII столітті індійським математиком Варасена. З них можна відраховувати час виникнення логарифмів.

Історичний нарис

Відродження Європи у XVI столітті стимулювало та розвиток механіки. Т потрібний великий обсяг обчислення, пов'язаних з множенням та розподілом багатозначних чисел. Стародавні таблиці надали велику послугу. Вони дозволяли замінювати складні операціїбільш прості – додавання і віднімання. Великим кроком уперед стала робота математика Міхаеля Штіфеля, опублікована в 1544, в якій він реалізував ідею багатьох математиків. Що дозволило використовувати таблиці не тільки для ступенів у вигляді простих чисел, але й довільних раціональних.

В 1614 шотландець Джон Непер, розвиваючи ці ідеї, вперше ввів новий термін"Логарифм числа". Були складені нові складні таблиці для розрахунку логарифмів синусів та косінусів, а також тангенсів. Це дуже скоротило працю астрономів.

Стали з'являтися нові таблиці, які успішно використовувалися вченими протягом трьох століть. Пройшло чимало часу, перш ніж нова операція в алгебрі набула свого закінченого вигляду. Було дано визначення логарифму, та його властивості були вивчені.

Лише у XX столітті з появою калькулятора та комп'ютера людство відмовилося від стародавніх таблиць, які успішно працювали протягом XIII століть.

Сьогодні ми називаємо логарифмом b на основі a число x, яке є ступенем числа а, щоб вийшло число b. Як формули це записується: x = log a(b).

Наприклад, log 3(9) дорівнюватиме 2. Це очевидно, якщо дотримуватися визначення. Якщо 3 звести до ступеня 2, то отримаємо 9.

Так, сформульоване визначення ставить лише одне обмеження, числа a та b повинні бути речовими.

Різновиди логарифмів

Класичне визначення називається речовий логарифм і є рішенням рівняння a x = b. Варіант a = 1 є прикордонним і не становить інтересу. Увага: 1 у будь-якому ступені дорівнює 1.

Речове значення логарифмувизначено тільки при підставі та аргументі більше 0, при цьому основа не повинна дорівнювати 1.

Особливе місце у галузі математикиграють логарифми, які будуть називатися залежно від величини їхньої основи:

Правила та обмеження

Основною властивістю логарифмів є правило: логарифм добутку дорівнює логарифмічній сумі. log abp = log a (b) + log a (p).

Як варіант цього твердження буде: log c(b/p) = log с(b) - log c(p), функція приватного дорівнює різниці функцій.

З попередніх двох правил легко видно, що: log a (b p) = p * log a (b).

Серед інших властивостей можна виділити:

Зауваження. Не треба робити поширену помилку – логарифм суми не дорівнює сумілогарифмів.

Багато століть операція пошуку логарифму була досить трудомістким завданням. Математики користувалися відомою формулою логарифмічної теорії розкладання на багаточлен:

ln (1 + x) = x — (x^2)/2 + (x^3)/3 — (x^4)/4 + … + ((-1)^(n + 1))*(( x^n)/n), де n - натуральне числобільше 1, що визначає точність обчислення.

Логарифми з іншими підставами обчислювалися, використовуючи теорему про перехід від однієї підстави до іншої та властивості логарифму твору.

Так як цей спосіб дуже трудомісткий і при вирішенні практичних завдань важкоздійсненним, то використовували заздалегідь складені таблиці логарифмів, що значно прискорювало всю роботу.

У деяких випадках використовували спеціально складені графіки логарифмів, що давало меншу точність, але прискорювало пошук потрібного значення. Крива функції y = log a (x), побудована за кількома точками, дозволяє за допомогою звичайної лінійки знаходити значення функції у будь-якій іншій точці. Інженери тривалий часдля цих цілей використовували так званий міліметровий папір.

У XVII столітті з'явилися перші допоміжні аналогові обчислювальні умови, XIX віцінабули закінченого вигляду. Найбільш вдалий пристрій отримав назву логарифмічна лінійка. При всій простоті пристрою, її поява значно прискорило процес усіх інженерних розрахунків, і це важко переоцінити. Нині вже мало хто знайомий із цим пристроєм.

Поява калькуляторів та комп'ютерів зробила безглуздим використання будь-яких інших пристроїв.

Рівняння та нерівності

Для вирішення різних рівняньта нерівностей з використанням логарифмів застосовуються такі формули:

  • Перехід від однієї основи до іншої: log a(b) = log c(b) / log c(a);
  • Як наслідок попереднього варіанта: log a (b) = 1 / log b (a).

Для вирішення нерівностей корисно знати:

  • Значення логарифму буде позитивним тільки в тому випадку, коли основа та аргумент одночасно більша або менша за одиницю; якщо хоча б одна умова порушена, значення логарифму буде негативним.
  • Якщо функція логарифму застосовується до правої та лівої частини нерівності, і основа логарифму більше одиниці, то знак нерівності зберігається; інакше він змінюється.

Приклади завдань

Розглянемо кілька варіантів застосування логарифмів та їх властивості. Приклади з розв'язуванням рівнянь:

Розглянемо варіант розміщення логарифму у ступені:

  • Завдання 3. Обчислити 25 log 5 (3). Рішення: в умовах задачі запис аналогічний наступній (5^2)^log5(3) або 5^(2 * log 5(3)). Запишемо по-іншому: 5^log 5(3*2), або квадрат числа як аргумент функції можна записати як квадрат самої функції (5^log 5(3))^2. Використовуючи властивості логарифмів, цей вираз дорівнює 32. Відповідь: внаслідок обчислення отримуємо 9.

Практичне застосування

Будучи виключно математичним інструментом, здається далеким від реального життя, що логарифм несподівано придбав велике значеннядля опису об'єктів реального світу Важко знайти науку, де її не застосовують. Це повною мірою стосується не тільки природних, а й гуманітарних областей знань.

Логарифмічні залежності

Наведемо кілька прикладів числових залежностей:

Механіка та фізика

Історично механіка та фізика завжди розвивалися з використанням математичних методівдослідження та одночасно служили стимулом для розвитку математики, у тому числі логарифмів. Теорія більшості законів фізики написана мовою математики. Наведемо лише два приклади опису фізичних законів з використанням логарифму.

Вирішувати задачу розрахунку такої складної величинияк швидкість ракети можна, застосовуючи формулу Ціолковського, яка започаткувала теорію освоєння космосу:

V = I * ln (M1/M2), де

  • V – кінцева швидкість літального апарату.
  • I – питомий імпульс двигуна.
  • M 1 - Початкова маса ракети.
  • M2 – кінцева маса.

Інший важливий приклад- це використання у формулі іншого великого вченого Макса Планка, яка служить для оцінки рівноважного стану термодинаміки.

S = k * ln (Ω), де

  • S – термодинамічна властивість.
  • k - Постійна Больцмана.
  • Ω – статистична вага різних станів.

Хімія

Менш очевидним буде використання формул у хімії, що містять відношення логарифмів. Наведемо також лише два приклади:

  • Рівняння Нернста, умова окислювально-відновного потенціалу середовища щодо активності речовин та константи рівноваги.
  • Розрахунок таких констант, як показник автопролізу та кислотність розчину теж не обходяться без нашої функції.

Психологія та біологія

І вже зовсім незрозуміло, до чого тут психологія. Виявляється, сила відчуття добре описується цією функцією як зворотне відношення значення інтенсивності подразника до нижнього значення інтенсивності.

Після вищенаведених прикладів не дивує, що у біології широко використовується тема логарифмів. Для біологічних форм, відповідні логарифмічним спіралям, можна писати цілі томи.

Інші області

Здається, неможливе існування світу без зв'язку з цією функцією, і вона править усіма законами. Особливо коли закони природи пов'язані з геометричною прогресією. Варто звернутися до сайту МатПрофі, і таких прикладів знайдеться безліч у таких сферах діяльності:

Список може бути нескінченним. Освоївши основні закономірності цієї функції, можна поринути у світ нескінченної мудрості.

Сьогодні ми поговоримо про формулах логарифміві дамо показові приклади рішення.

Самі собою мають на увазі шаблони рішення відповідно до основних властивостей логарифмів. Перш за все застосовувати формули логарифмів для вирішення нагадаємо для вас, спочатку всі властивості:

Тепер на основі цих формул (властивостей), покажемо приклади вирішення логарифмів.

Приклади розв'язання логарифмів виходячи з формул.

Логарифмпозитивного числа b на підставі a (позначається log a b) - це показник ступеня, в який треба звести a щоб отримати b, при цьому b > 0, a > 0, а 1.

Відповідно до визначення log a b = x, що рівносильно a x = b, тому log a a x = x.

Логарифми, Приклади:

log 28 = 3, т.к. 2 3 = 8

log 7 49 = 2, т.к. 7 2 = 49

log 5 1/5 = -1, т.к. 5 -1 = 1/5

Десятковий логарифм- це звичайний логарифм, на основі якого знаходиться 10. Позначається як lg.

log 10100 = 2, т.к. 10 2 = 100

Натуральний логарифм- також звичайний логарифм логарифм, але з підставою е (е = 2,71828... - ірраціональне число). Позначається як ln.

Формули або властивості логарифмів бажано запам'ятати, тому що вони знадобляться нам надалі при вирішенні логарифмів, логарифмічних рівняньта нерівностей. Давайте ще раз відпрацюємо кожну формулу на прикладах.

  • Основне логарифмічне тотожність
    a log a b = b

    8 2log 8 3 = (8 2log 8 3) 2 = 3 2 = 9

  • Логарифм твору дорівнює сумі логарифмів.
    log a (bc) = log a b + log a c

    log 3 8,1 + log 3 10 = log 3 (8,1 * 10) = log 3 81 = 4

  • Логарифм приватного дорівнює різниці логарифмів
    log a (b/c) = log a b - log a c

    9 log 5 50 / 9 log 5 2 = 9 log 5 50 - log 5 2 = 9 log 5 25 = 9 2 = 81

  • Властивості ступеня логарифмованого числа та основи логарифму

    Показник ступеня логарифмованого числа log a b m = mlog a b

    Показник ступеня основи логарифму log a n b =1/n*log a b

    log a n b m = m/n*log a b,

    якщо m = n, отримаємо log a n b n = log a b

    log 4 9 = log 2 2 3 2 = log 2 3

  • Перехід до нової основи
    log a b = log c b/log c a,

    якщо c = b, отримаємо log b b = 1

    тоді log a b = 1/log b a

    log 0,8 3*log 3 1,25 = log 0,8 3*log 0,8 1,25/log 0,8 3 = log 0,8 1,25 = log 4/5 5/4 = -1

Як бачите, формули логарифмів не такі складні, як здаються. Тепер розглянувши приклади розв'язання логарифмів, ми можемо переходити до логарифмічних рівнянь. Приклади розв'язання логарифмічних рівнянь ми докладніше розглянемо у статті: " ". НЕ пропустіть!

Якщо у вас залишилися питання щодо вирішення, пишіть їх у коментарях до статті.

Замітка: вирішили здобути освіту іншого класу навчання за кордоном як варіант розвитку подій.

Наведено основні властивості натурального логарифму, графік, область визначення, безліч значень, основні формули, похідна, інтеграл, розкладання в статечний ряд та представлення функції ln x за допомогою комплексних чисел.

Визначення

Натуральний логарифм- це функція y = ln x, зворотна до експоненти , x = e y , що є логарифмом на основі числа е : ln x = log e x.

Натуральний логарифм широко використовується в математиці, оскільки його похідна має найпростіший вид: (ln x)′ = 1/ x.

Виходячи з визначення, основою натурального логарифму є число е:
е ≅ 2,718281828459045...;
.

Графік функції y = ln x.

Графік натурального логарифму (функції y = ln x) Виходить з графіка експоненти дзеркальним відображеннямщодо прямої y = x.

Натуральний логарифм визначено при позитивних значенняхзмінної x. Він монотонно зростає у своїй області визначення.

При x → 0 межею натурального логарифму є мінус нескінченність (-∞).

При x → + ∞ межею натурального логарифму є плюс нескінченність ( + ∞ ). При великих логарифм зростає досить повільно. Будь-яка статечна функція x a з позитивним показником ступеня a росте швидше за логарифм.

Властивості натурального логарифму

Область визначення, безліч значень, екстремуми, зростання, спадання

Натуральний логарифм є монотонно зростаючою функцією, тому екстремумів немає. Основні властивості натурального логарифму представлені у таблиці.

Значення ln x

ln 1 = 0

Основні формули натуральних логарифмів

Формули, що випливають із визначення зворотної функції:

Основна властивість логарифмів та його наслідки

Формула заміни основи

Будь-який логарифм можна виразити через натуральні логарифми за допомогою формули заміни основи:

Докази цих формул представлені у розділі "Логарифм".

Зворотня функція

Зворотною для натурального логарифму є експонента.

Якщо то

Якщо то .

Похідна ln x

Похідна натурального логарифму:
.
Похідна натурального логарифму від модуля x:
.
Похідна n-го порядку:
.
Висновок формул > > >

Інтеграл

Інтеграл обчислюється інтегруванням частинами:
.
Отже,

Вирази через комплексні числа

Розглянемо функцію комплексної змінної z:
.
Виразимо комплексну змінну zчерез модуль rта аргумент φ :
.
Використовуючи властивості логарифму, маємо:
.
Або
.
Аргумент φ визначено неоднозначно. Якщо покласти
де n - ціле,
то буде тим самим числом при різних n .

Тому натуральний логарифм як функція від комплексного змінного є неоднозначною функцією.

Розкладання в статечний ряд

При має місце розкладання:

Використана література:
І.М. Бронштейн, К.А. Семендяєв, Довідник з математики для інженерів та учнів втузів, «Лань», 2009.

Як відомо, при перемноженні виразів зі ступенями їх показники завжди складаються (a b * a c = a b + c). Цей математичний законбув виведений Архімедом, а згодом, у VIII столітті, математик Вірасен створив таблицю цілих показників. Саме вони стали для подальшого відкриття логарифмів. Приклади використання цієї функції можна зустріти скрізь, де потрібно спростити громіздке множення на просте додавання. Якщо ви витратите 10 хвилин на прочитання цієї статті, ми вам пояснимо, що таке логарифми і як з ними працювати. Простою та доступною мовою.

Визначення у математиці

Логарифмом називається вираз наступного виду: log a b=c, тобто логарифмом будь-якого невід'ємного числа (тобто будь-якого позитивного) "b" за його основою "a" вважається ступінь "c", в яку необхідно звести основу "a", щоб у результаті отримати значення "b". Розберемо логарифм на прикладах, скажімо, є вираз log 2 8. Як знайти відповідь? Дуже просто, потрібно знайти такий ступінь, щоб з 2 до ступеня отримати 8. Зробивши в умі деякі розрахунки, отримуємо число 3! І вірно, адже 2 у ступені 3 відповідає у відповідь число 8.

Різновиди логарифмів

Для багатьох учнів і студентів ця тема здається складною і незрозумілою, проте насправді логарифми не такі страшні, головне - зрозуміти загальний їхній зміст і запам'ятати їхня власність і деякі правила. Існує три окремі види логарифмічних виразів:

  1. Натуральний логарифм ln a де основою є число Ейлера (e = 2,7).
  2. Десятковий a де підставою служить число 10.
  3. Логарифм будь-якого числа b на підставі a>1.

Кожен з них вирішується стандартним способом, що включає спрощення, скорочення і подальше приведення до одного логарифму за допомогою логарифмічних теорем. Для отримання вірних значень логарифмів слід запам'ятати їх властивості та черговість дій за їх рішення.

Правила та деякі обмеження

У математиці існує кілька правил-обмежень, які приймаються як аксіома, тобто не підлягають обговоренню та є істиною. Наприклад, не можна числа ділити на нуль, а ще неможливо отримати корінь парного ступеня з негативних чисел. Логарифми також мають свої правила, дотримуючись яких можна легко навчитися працювати навіть з довгими і ємними логарифмічними виразами:

  • основа "a" завжди має бути більше нуля, і при цьому не дорівнювати 1, інакше вираз втратить свій зміст, адже "1" і "0" у будь-якій мірі завжди рівні своїм значенням;
  • якщо а > 0, то і а b > 0, виходить, що і "з" має бути більшим за нуль.

Як вирішувати логарифми?

Наприклад, дано завдання знайти відповідь рівняння 10 х = 100. Це дуже легко, потрібно підібрати такий ступінь, звівши до якого число десять ми отримаємо 100. Це, звичайно ж, 10 2 =100.

А тепер давайте уявимо цей вираз у вигляді логарифмічного. Отримаємо log 10 100 = 2. При вирішенні логарифмів всі дії практично сходяться до того, щоб знайти той ступінь, в який необхідно ввести основу логарифму, щоб отримати задане число.

Для безпомилкового визначення значення невідомого ступеня необхідно навчитися працювати з таблицею ступенів. Виглядає вона так:

Як бачите, деякі показники ступеня можна вгадати інтуїтивно, якщо є технічний склад розуму та знання таблиці множення. Однак для великих значень знадобиться таблиця ступенів. Нею можуть користуватися навіть ті, хто зовсім нічого не тямить у складних математичних темах. У лівому стовпці вказані числа (основа a), верхній ряд чисел - це значення ступеня c, у якому зводиться число a. На перетині в осередках визначено значення чисел, що є відповіддю (a c = b). Візьмемо, наприклад, саму першу комірку з числом 10 і зведемо її в квадрат, отримаємо значення 100, яке вказано на перетині двох наших осередків. Все так просто і легко, що зрозуміє навіть справжнісінький гуманітарій!

Рівняння та нерівності

Виходить, що за певних умов показник ступеня – це і є логарифм. Отже, будь-які математичні чисельні вирази можна записати як логарифмічного рівності. Наприклад, 3 4 =81 можна записати у вигляді логарифму числа 81 на підставі 3, що дорівнює чотирьом (log 3 81 = 4). Для негативних ступенів правила такі самі: 2 -5 = 1/32 запишемо як логарифма, отримаємо log 2 (1/32) = -5. Однією з найцікавіших розділів математики є тема "логарифми". Приклади та розв'язання рівнянь ми розглянемо трохи нижче, відразу після вивчення їх властивостей. А зараз давайте розберемо, як виглядають нерівності та як їх відрізнити від рівнянь.

Дано вираз такого вигляду: log 2 (x-1) > 3 - воно є логарифмічною нерівністютому що невідоме значення "х" знаходиться під знаком логарифму. А також у виразі порівнюються дві величини: логарифм шуканого числа на підставі два більше, ніж число три.

Найголовніша відмінність між логарифмічними рівняннями і нерівностями полягає в тому, що рівняння з логарифмами (приклад - логарифм 2 x = √9) мають на увазі у відповіді одне або кілька певних числових значень, тоді як при розв'язанні нерівності визначаються як область допустимих значень розрив цієї функції. Як наслідок, у відповіді виходить не проста кількість окремих чисел як у відповіді рівняння, а безперервний рядчи набір чисел.

Основні теореми про логарифми

При вирішенні примітивних завдань знаходження значень логарифму, його властивості можна і не знати. Однак коли мова заходить про логарифмічні рівняння або нерівності, в першу чергу необхідно чітко розуміти і застосовувати на практиці всі основні властивості логарифмів. З прикладами рівнянь ми познайомимося пізніше, давайте спочатку розберемо кожну властивість докладніше.

  1. Основне тотожність має такий вигляд: а logaB =B. Воно застосовується лише за умови, коли а більше 0, не дорівнює одиниці і B більше за нуль.
  2. Логарифм твору можна представити у такій формулі: log d (s 1 * s 2) = log d s 1 + log d s 2. При цьому обов'язковою умовоює: d, s 1 та s 2 > 0; а≠1. Можна навести доказ цієї формули логарифмів, з прикладами і рішенням. Нехай log a s 1 = f 1 і log a s 2 = f 2 тоді а f1 = s 1 , a f2 = s 2. Отримуємо, що s 1 * s 2 = a f1 * a f2 = a f1 + f2 (властивості ступенів ), а далі за визначенням: log a (s 1 * s 2) = f 1 + f 2 = log a s1 + log a s 2, що і потрібно довести.
  3. Логарифм приватного має такий вигляд: log a (s 1/ s 2) = log a s 1 - log a s 2.
  4. Теорема у вигляді формули набуває наступного вигляду: log a q b n = n/q log a b.

Називається ця формула "властивістю ступеня логарифму". Вона нагадує властивості звичайних ступенів, і не дивно, адже вся математика тримається на закономірних постулатах. Погляньмо на доказ.

Нехай log a b = t, виходить a t = b. Якщо звести обидві частини до ступеня m: a tn = b n ;

але оскільки a tn = (a q) nt / q = b n, отже log a q b n = (n * t) / t, тоді log a q b n = n / q log a b. Теорему доведено.

Приклади завдань та нерівностей

Найпоширеніші типи завдань на тему логарифмів – приклади рівнянь та нерівностей. Вони зустрічаються практично у всіх задачниках, а також входять до обов'язкової частини іспитів з математики. Для вступу до університету чи складання вступних випробувань з математики необхідно знати, як правильно вирішувати подібні завдання.

На жаль, єдиного плану чи схеми щодо вирішення та визначення невідомого значення логарифму не існує, проте до кожної математичної нерівності чи логарифмічного рівняння можна застосувати певні правила. Насамперед слід з'ясувати, чи можна спростити вираз чи призвести до загального вигляду. Спрощувати довгі логарифмічні виразиможна, якщо правильно використати їх властивості. Давайте скоріше з ними познайомимося.

При вирішенні ж логарифмічних рівнянь слід визначити, який перед нами вид логарифму: приклад виразу може містити натуральний логарифм або десятковий.

Ось приклади ln100, ln1026. Їх рішення зводиться до того, що потрібно визначити той ступінь, в якому основа 10 дорівнюватиме 100 і 1026 відповідно. Для рішень натуральних логарифмів потрібно застосувати логарифмічні тотожності або їх властивості. Давайте на прикладах розглянемо розв'язання логарифмічних завдань різного типу.

Як використовувати формули логарифмів: з прикладами та рішеннями

Отже, розглянемо приклади використання основних теорем про логарифми.

  1. Властивість логарифму твору можна застосовувати в завданнях, де необхідно розкласти велике значення числа b більш прості співмножники. Наприклад, log 2 4 + log 2 128 = log 2 (4 * 128) = log 2 512. Відповідь дорівнює 9.
  2. log 4 8 = log 2 2 2 3 = 3/2 log 2 2 = 1,5 - як бачите, застосовуючи четверту властивість ступеня логарифму, вдалося вирішити на перший погляд складне і нерозв'язне вираз. Необхідно лише розкласти основу на множники і потім винести значення ступеня зі знака логарифму.

Завдання з ЄДІ

Логарифми часто зустрічаються на вступних іспитах, особливо багато логарифмічних завдань у ЄДІ ( державний іспитвсім випускників шкіл). Зазвичай ці завдання присутні у частині А (найлегша тестова частина іспиту), а й у частини З (найскладніші і об'ємні завдання). Іспит передбачає точне та ідеальне знання теми "Натуральні логарифми".

Приклади та розв'язання завдань взяті з офіційних варіантів ЄДІ. Давайте подивимося, як вирішуються такі завдання.

Дано log 2 (2x-1) = 4. Рішення:
перепишемо вираз, трохи спростивши його log 2 (2x-1) = 2 2 , за визначенням логарифму отримаємо, що 2x-1 = 2 4 , отже 2x = 17; x = 8,5.

  • Всі логарифми найкраще приводити до однієї підстави, щоб рішення не було громіздким та заплутаним.
  • Всі вирази, що стоять під знаком логарифму, вказуються як позитивні, тому при винесенні множником показника ступеня виразу, який стоїть під знаком логарифму і як його підстава, вираз, що залишається під логарифмом, має бути позитивним.

\(a^(b)=c\) \(\Leftrightarrow\) \(\log_(a)(c)=b\)

Пояснимо простіше. Наприклад, \(\log_(2)(8)\) дорівнює ступеня, в яку треба звести \(2\), щоб отримати \(8\). Звідси відомо, що (log_(2)(8)=3).

Приклади:

\(\log_(5)(25)=2\)

т.к. \(5^(2)=25\)

\(\log_(3)(81)=4\)

т.к. \ (3 ^ (4) = 81 \)

\(\log_(2)\)\(\frac(1)(32)\) \(=-5\)

т.к. \(2^(-5)=\)\(\frac(1)(32)\)

Аргумент та основа логарифму

Будь-який логарифм має таку «анатомію»:

Аргумент логарифму зазвичай пишеться з його рівні, а основа - підрядковим шрифтом ближче до знаку логарифму. А читається цей запис так: «логарифм двадцяти п'яти на підставі п'ять».

Як визначити логарифм?

Щоб обчислити логарифм – потрібно відповісти на запитання: в який ступінь слід звести основу, щоб отримати аргумент?

Наприклад, обчисліть логарифм: а) \(\log_(4)(16)\) б) \(\log_(3)\)\(\frac(1)(3)\) в) \(\log_(\sqrt (5))(1)\) г) \(\log_(\sqrt(7))(\sqrt(7))\) д) \(\log_(3)(\sqrt(3))\)

а) В який ступінь треба звести (4), щоб отримати (16)? Вочевидь у другу. Тому:

\(\log_(4)(16)=2\)

\(\log_(3)\)\(\frac(1)(3)\) \(=-1\)

в) В який ступінь треба звести (sqrt(5)), щоб отримати (1)? А який рівень робить будь-яке число одиницею? Нуль, звичайно!

\(\log_(\sqrt(5))(1)=0\)

г) В який ступінь треба звести \(\sqrt(7)\), щоб отримати \(\sqrt(7)\)? У першу - будь-яке число в першому ступені дорівнює самому собі.

\(\log_(\sqrt(7))(\sqrt(7))=1\)

д) В який ступінь треба звести (3), щоб отримати (sqrt (3))? З ми знаємо, що - це дробовий ступінь, і значить квадратний корінь - це ступінь \(\frac(1)(2)\).

\(\log_(3)(\sqrt(3))=\)\(\frac(1)(2)\)

приклад : Обчислити логарифм \(\log_(4\sqrt(2))(8)\)

Рішення :

\(\log_(4\sqrt(2))(8)=x\)

Нам треба знайти значення логарифму, позначимо його за ікс. Тепер скористаємося визначенням логарифму:
\(\log_(a)(c)=b\) \(\Leftrightarrow\) \(a^(b)=c\)

\((4\sqrt(2))^(x)=8\)

Що пов'язує \(4\sqrt(2)\) і \(8\)? Двійка, тому що і те, і інше число можна уявити двійки:
\(4=2^(2)\) \(\sqrt(2)=2^(\frac(1)(2))\) \(8=2^(3)\)

\(((2^(2)\cdot2^(\frac(1)(2))))^(x)=2^(3)\)

Зліва скористаємось властивостями ступеня: \(a^(m)\cdot a^(n)=a^(m+n)\) та \((a^(m))^(n)=a^(m\cdot n)\)

\(2^(\frac(5)(2)x)=2^(3)\)

Підстави рівні, переходимо до рівності показників

\(\frac(5x)(2)\) \(=3\)


Помножимо обидві частини рівняння на \(\frac(2)(5)\)


Корінь, що вийшов, і є значення логарифму

Відповідь : \(\log_(4\sqrt(2))(8)=1,2\)

Навіщо вигадали логарифм?

Щоб це зрозуміти, розв'яжемо рівняння: \(3^(x)=9\). Просто підберіть \(x\), щоб рівність спрацювала. Звісно, ​​(x=2).

А тепер розв'яжіть рівняння: \(3^(x)=8\).Чому дорівнює ікс? Ось у тому й справа.

Найдогадливіші скажуть: «ікс трохи менше двох». А як точно записати це число? Для відповіді це питання і придумали логарифм. Завдяки йому відповідь тут можна записати як \(x=\log_(3)(8)\).

Хочу наголосити, що \(\log_(3)(8)\), як і будь-який логарифм - це просто число. Так, виглядає незвично, зате коротко. Тому що, якби ми захотіли записати його у вигляді десяткового дробу, то воно виглядало б ось так: \(1,892789260714.....\)

приклад : Розв'яжіть рівняння \(4^(5x-4)=10\)

Рішення :

\(4^(5x-4)=10\)

\(4^(5x-4)\) і \(10\) жодної підстави не привести. Значить, тут не обійтися без логарифму.

Скористаємося визначенням логарифму:
\(a^(b)=c\) \(\Leftrightarrow\) \(\log_(a)(c)=b\)

\(\log_(4)(10)=5x-4\)

Дзеркально перевернемо рівняння, щоб ікс був ліворуч

\(5x-4=\log_(4)(10)\)

Перед нами . Перенесемо (4) праворуч.

І не лякайтеся логарифму, ставтеся до нього як до звичайного числа.

\(5x=\log_(4)(10)+4\)

Поділимо рівняння на 5

\(x=\)\(\frac(\log_(4)(10)+4)(5)\)


Ось наш корінь. Так, виглядає незвично, але відповіді не обирають.

Відповідь : \(\frac(\log_(4)(10)+4)(5)\)

Десятковий та натуральний логарифми

Як зазначено у визначенні логарифму, його основою може бути будь-яке позитивне число, крім одиниці ((a>0, a\neq1)). І серед усіх можливих підстав є два такі часто, що для логарифмів з ними придумали особливий короткий запис:

Натуральний логарифм: логарифм, у якого основа - число Ейлера (e) (рівне приблизно (2,7182818 ...)), і записується такий логарифм як (ln (a)).

Тобто, \(\ln(a)\) це те саме, що і \(\log_(e)(a)\)

Десятковий логарифм: логарифм, у якого основа дорівнює 10, записується \(\lg(a)\).

Тобто, \(\lg(a)\) це те саме, що і \(\log_(10)(a)\), де (a) - деяке число.

Основне логарифмічне тотожність

У логарифмів є багато властивостей. Одне з них носить назву «Основна логарифмічна тотожність» і виглядає так:

\(a^(\log_(a)(c))=c\)

Ця властивість випливає безпосередньо з визначення. Подивимося, як саме ця формула з'явилася.

Згадаймо короткий запис визначення логарифму:

якщо \(a^(b)=c\), то \(\log_(a)(c)=b\)

Тобто, \(b\) - це те саме, що \(\log_(a)(c)\). Тоді ми можемо у формулі \(a^(b)=c\) написати \(\log_(a)(c)\) замість \(b\). Вийшло \(a^(\log_(a)(c))=c\) – основна логарифмічна тотожність.

Інші властивості логарифмів ви можете знайти. З їх допомогою можна спрощувати та обчислювати значення виразів з логарифмами, які «в лоб» порахувати складно.

приклад : Знайдіть значення виразу \(36^(\log_(6)(5))\)

Рішення :

Відповідь : \(25\)

Як записати число у вигляді логарифму?

Як було сказано вище – будь-який логарифм це число. Вірно і зворотне: будь-яке число може бути записане як логарифм. Наприклад, ми знаємо, що \(\log_(2)(4)\) дорівнює двом. Тоді можна замість двійки писати \(\log_(2)(4)\).

Але \(\log_(3)(9)\) теж дорівнює \(2\), значить, також можна записати \(2=\log_(3)(9)\). Аналогічно і з (log_(5)(25)\), і з (log_(9)(81)\), і т.д. Тобто виходить

\(2=\log_(2)(4)=\log_(3)(9)=\log_(4)(16)=\log_(5)(25)=\log_(6)(36)=\ log_(7)(49)...\)

Таким чином, якщо нам потрібно, ми можемо будь-де (хоч у рівнянні, хоч у виразі, хоч у нерівності) записувати двійку як логарифм з будь-якою основою – просто як аргумент пишемо основу в квадраті.

Так само і з трійкою – її можна записати як \(\log_(2)(8)\), або як \(\log_(3)(27)\), або як \(\log_(4)(64) \) ... Тут ми як аргумент пишемо основу в кубі:

\(3=\log_(2)(8)=\log_(3)(27)=\log_(4)(64)=\log_(5)(125)=\log_(6)(216)=\ log_(7)(343)...\)

І з четвіркою:

\(4=\log_(2)(16)=\log_(3)(81)=\log_(4)(256)=\log_(5)(625)=\log_(6)(1296)=\ log_(7)(2401)...\)

І з мінус одиницею:

\(-1=\) \(\log_(2)\)\(\frac(1)(2)\) \(=\) \(\log_(3)\)\(\frac(1)( 3)\) \(=\) \(\log_(4)\)\(\frac(1)(4)\) \(=\) \(\log_(5)\)\(\frac(1) )(5)\) \(=\) \(\log_(6)\)\(\frac(1)(6)\) \(=\) \(\log_(7)\)\(\frac (1)(7)\) \(...\)

І з однієї третьої:

\(\frac(1)(3)\) \(=\log_(2)(\sqrt(2))=\log_(3)(\sqrt(3))=\log_(4)(\sqrt( 4))=\log_(5)(\sqrt(5))=\log_(6)(\sqrt(6))=\log_(7)(\sqrt(7))...\)

Будь-яке число \(a\) може бути представлене як логарифм з основою \(b\): \(a=\log_(b)(b^(a))\)

приклад : Знайдіть значення виразу \(\frac(\log_(2)(14))(1+\log_(2)(7))\)

Рішення :

Відповідь : \(1\)

Поділіться з друзями або збережіть для себе:

Завантаження...