Знайти суму арифметичної прогресії якщо. Арифметична та геометрична прогресії

Сума арифметичної прогресії.

Сума арифметичної прогресії – штука проста. І за змістом, і за формулою. Але завдання з цієї теми бувають усілякі. Від елементарних до цілком солідних.

Спочатку розберемося із змістом та формулою суми. А потім і вирішуємо. На своє задоволення.) Сенс суми простий, як мукання. Щоб знайти суму арифметичної прогресії, треба просто акуратно скласти всі її члени. Якщо цих членів мало, можна складати без будь-яких формул. Але якщо багато, або дуже багато... додавання напружує.) У цьому випадку рятує формула.

Формула суми виглядає просто:

Розберемося, що за літери входять у формулу. Це багато чого прояснить.

S n - Сума арифметичної прогресії. Результат додавання всіхчленів, з першогопо останній.Це важливо. Складаються саме Усечлени поспіль, без перепусток та перескоків. І, саме, починаючи з першого.У завданнях типу знайти суму третього і восьмого членів, або суму членів з п'ятого по двадцятий - пряме застосуванняформули розчарує.)

a 1 - першийчлен прогресії. Тут все зрозуміло, це просто першеЧисло ряду.

a n- Останнійчлен прогресії. Останнє числоряду. Не дуже звична назва, але, у застосуванні до суми, дуже годиться. Далі самі побачите.

n - Номер останнього члена. Важливо розуміти, що у формулі цей номер збігається з кількістю членів, що складаються.

Визначимося з поняттям останньогочлена a n. Питання на засипку: який член буде останнім,якщо дана нескінченнаарифметична прогресія?)

Для впевненої відповіді потрібно розуміти елементарний зміст арифметичної прогресії та... уважно читати завдання!)

У завданні на пошук суми арифметичної прогресії завжди фігурує (прямо чи опосередковано) останній член, яким слід обмежитися.Інакше кінцевої, конкретної суми просто не існує.Для вирішення не має значення, яка задана прогресія: кінцева, або нескінченна. Не має значення, як вона задана: поруч чисел, або формулою n-го члена.

Найголовніше - розуміти, що формула працює з першого члена прогресії до члена з номером n.Власне, повна назва формули виглядає так: сума n перших членів арифметичної прогресії.Кількість цих перших членів, тобто. n, Визначається виключно завданням. У завданні вся ця цінна інформація часто зашифровується, так ... Але нічого, в прикладах нижче ми ці секрети розкриваємо.)

Приклади завдань у сумі арифметичної прогресії.

Насамперед, корисна інформація:

Основна складність у завданнях на суму арифметичної прогресії полягає у правильному визначенні елементів формули.

Ці елементи укладачі завдань шифрують з безмежною фантазією.) Тут головне - не боятися. Розуміючи суть елементів, просто їх розшифрувати. Докладно розберемо кілька прикладів. Почнемо із завдання на основі реального ДІА.

1. Арифметична прогресія задана умовою: an = 2n-3,5. Знайдіть суму перших 10 її членів.

Гарне завдання. Легке.) Нам визначення суми за формулою чого треба знати? Перший член a 1, останній член a n, та номер останнього члена n.

Де взяти номер останнього члена n? Та там же, за умови! Там сказано: знайти суму перших 10 членів.Ну і з яким номером буде останній,десятий член?) Ви не повірите, його номер - десятий!) Отже, замість a nу формулу будемо підставляти a 10, а замість n- десятку. Повторюю, номер останнього члена збігається з кількістю членів.

Залишилось визначити a 1і a 10. Це легко вважається за формулою n-го члена, яка дана за умови завдання. Чи не знаєте, як це зробити? Завітайте до попереднього уроку, без цього - ніяк.

a 1= 2 · 1 - 3,5 = -1,5

a 10= 2 · 10 - 3,5 = 16,5

S n = S 10.

Ми з'ясували значення всіх елементів формули суми арифметичної прогресії. Залишається підставити їх, та порахувати:

Ось і всі справи. Відповідь: 75.

Ще завдання з урахуванням ГИА. Трохи складніше:

2. Дана арифметична прогресія (a n), різниця якої дорівнює 3,7; a 1 = 2,3. Знайти суму перших 15 її членів.

Відразу пишемо формулу суми:

Ця формулка дозволяє нам знайти значення будь-якого члена за його номером. Шукаємо простою підстановкою:

a 15 = 2,3 + (15-1) · 3,7 = 54,1

Залишилося підставити всі елементи у формулу суми арифметичної прогресії та порахувати відповідь:

Відповідь: 423.

До речі, якщо у формулу суми замість a nпросто підставимо формулу n-го члена, отримаємо:

Наведемо подібні, отримаємо нову формулу суми членів арифметичної прогресії:

Як бачимо, тут не потрібно n-й член a n. У деяких завданнях ця формула чудово рятує, так... Можна цю формулу запам'ятати. А можна в потрібний момент просто вивести її, як тут. Адже формулу суми і формулу n-го члена треба пам'ятати.)

Тепер завдання у вигляді короткого шифрування):

3. Знайти суму всіх позитивних двоцифрових чисел, кратних трьох.

ВО як! Ні тобі першого члена, ні останнього, ні прогресії взагалі... Як жити?

Прийде думати головою і витягати з умови всі елементи суми арифметичної прогресії. Що таке двоцифрові числа - знаємо. З двох циферок складаються.) Яке двозначне число буде першим? 10, треба думати.) А останнєдвоцифрове число? 99, зрозуміло! За ним уже тризначні підуть...

Кратні трьом... Гм... Це такі числа, які діляться на три націло, ось! Десятка не ділиться на три, 11 не ділиться... 12... ділиться! Так, дещо вимальовується. Вже можна записати ряд за умовою завдання:

12, 15, 18, 21, ... 96, 99.

Чи буде цей ряд арифметичною прогресією? Звичайно! Кожен член відрізняється від попереднього на трійку. Якщо члену додати 2, чи 4, скажімо, результат, тобто. нове число, що вже не поділиться націло на 3. До купи можна відразу і різницю арифметичної прогресії визначити: d=3.Стане в нагоді!)

Отже, можна сміливо записати деякі параметри прогресії:

А який буде номер nостаннього члена? Той, хто думає, що 99 – фатально помиляється... Номери – вони завжди поспіль йдуть, а члени у нас – через трійку перескакують. Чи не збігаються вони.

Тут два шляхи вирішення. Один шлях – для надпрацьовитих. Можна розписати прогресію, весь ряд чисел, і порахувати пальчиком кількість членів. Другий шлях - для вдумливих. Потрібно згадати формулу n-го члена. Якщо формулу застосувати до нашого завдання, то отримаємо, що 99 - це тридцятий член прогресії. Тобто. n = 30.

Дивимося на формулу суми арифметичної прогресії:

Дивимося, і радіємо.) Ми витягли з умови завдання все необхідне розрахунку суми:

a 1= 12.

a 30= 99.

S n = S 30.

Залишається елементарна арифметика. Підставляємо числа у формулу та вважаємо:

Відповідь: 1665

Ще один тип популярних завдань:

4. Дана арифметична прогресія:

-21,5; -20; -18,5; -17; ...

Знайти суму членів із двадцятого по тридцять четвертий.

Дивимося на формулу суми і... засмучуємось.) Формула, нагадаю, вважає суму з першогочлена. А в завданні треба рахувати суму з двадцятого...Чи не спрацює формула.

Можна, звичайно, розписати всю прогресію до ряду, та поскладувати члени з 20 по 34. Але... якось тупо і довго виходить, правда?)

Є елегантніше рішення. Розіб'ємо наш ряд на дві частини. Перша частина буде з першого члена до дев'ятнадцятого.Друга частина - з двадцятого до тридцять четвертого.Зрозуміло, що якщо ми порахуємо суму членів першої частини S 1-19, та складемо із сумою членів другої частини S 20-34, отримаємо суму прогресії з першого члена по тридцять четвертий S 1-34. Ось так:

S 1-19 + S 20-34 = S 1-34

Звідси видно, що знайти суму S 20-34можна простим відніманням

S 20-34 = S 1-34 - S 1-19

Обидві суми у правій частині вважаються з першогочлена, тобто. до них цілком застосовна стандартна формула суми. Приступаємо?

Витягуємо з умови завдання парметри прогресії:

d = 1,5.

a 1= -21,5.

Для розрахунку сум перших 19 та перших 34 членів нам потрібні будуть 19-й та 34-й члени. Вважаємо їх за формулою n-го члена, як у задачі 2:

a 19= -21,5 + (19-1) · 1,5 = 5,5

a 34= -21,5 + (34-1) · 1,5 = 28

Залишається нічого. Від суми 34 членів відібрати суму 19 членів:

S 20-34 = S 1-34 - S 1-19 = 110,5 - (-152) = 262,5

Відповідь: 262,5

Одне важливе зауваження! У вирішенні цього завдання є дуже корисна фішка. Замість прямого розрахунку того, що потрібно (S 20-34),ми порахували те, що, здавалося б, не потрібне - S 1-19 .А вже потім визначили і S 20-34, Відкинувши від повного результату непотрібне. Такий "фінт вухами" часто рятує в злих завданнях.)

У цьому уроці ми розглянули завдання, на вирішення яких достатньо розуміти сенс суми арифметичної прогресії. Ну і пару формул знати треба.)

Практична порада:

При вирішенні будь-якого завдання на суму арифметичної прогресії рекомендую відразу виписувати дві основні формули цієї теми.

Формулу n-го члена:

Ці формули одразу підкажуть, що потрібно шукати, у якому напрямку думати, щоб вирішити завдання. Допомагає.

А тепер – завдання для самостійного вирішення.

5. Знайти суму всіх двоцифрових чисел, які не діляться націло на три.

Круто?) Підказка прихована у зауваженні до завдання 4. Та й завдання 3 допоможе.

6. Арифметична прогресія задана умовою: a 1 = -5,5; an+1 = an+0,5. Знайдіть суму перших 24 її членів.

Незвично?) Це рекурентна формула. Про неї можна прочитати у попередньому уроці. Не ігноруйте посилання, такі завдання в ДПА часто зустрічаються.

7. Вася накопичив до Свята грошей. Цілих 4550 рублів! І вирішив подарувати найулюбленішій людині (собі) кілька днів щастя). Пожити гарно, ні в чому не відмовляючи. Витратити в перший день 500 рублів, а кожного наступного дня витрачати на 50 рублів більше, ніж у попередній! Поки не скінчиться запас грошей. Скільки днів щастя вийшло у Васі?

Складно?) Допоможе додаткова формула із завдання 2.

Відповіді (безладно): 7, 3240, 6.

Якщо Вам подобається цей сайт...

До речі, у мене є ще кілька цікавих сайтів для Вас.)

Можна потренуватися у вирішенні прикладів та дізнатися свій рівень. Тестування з миттєвою перевіркою. Вчимося – з інтересом!)

можна познайомитися з функціями та похідними.

Хтось до слова «прогресія» ставиться насторожено, як дуже складний термін з розділів вищої математики. А тим часом найпростіша арифметична прогресія – робота лічильника таксі (де вони ще залишилися). І зрозуміти суть (а математиці немає нічого важливіше, ніж «зрозуміти суть») арифметичної послідовності негаразд складно, розібравши кілька елементарних понять.

Математична числова послідовність

Числовою послідовністю прийнято називати якийсь ряд чисел, кожне з яких має власний номер.

а 1 - перший член послідовності;

а 2 - другий член послідовності;

а 7 – сьомий член послідовності;

а n - n-ний член послідовності;

Проте чи будь-який довільний набір цифр і чисел цікавить нас. Нашу увагу зосередимо на числової послідовності, у якій значення n-ного члена пов'язане з його порядковим номером залежністю, яку можна чітко сформулювати математично. Іншими словами: чисельне значення n-ного номера є функцією від n.

a - значення члена числової послідовності;

n – його порядковий номер;

f(n) - функція, де порядковий номер числової послідовності n є аргументом.

Визначення

Арифметичною прогресією прийнято називати числову послідовність, у якій кожен наступний член більше (менше) попереднього одне й те число. Формула n-ного члена арифметичної послідовності виглядає так:

a n – значення поточного члена арифметичної прогресії;

a n+1 - формула наступного числа;

d - різниця (певне число).

Неважко визначити, якщо різниця позитивна (d>0), кожен наступний член аналізованого ряду буде більше попереднього і така арифметична прогресія буде зростаючою.

На поданому нижче графіку неважко простежити, чому числова послідовністьотримала назву «зростаюча».

У випадках, коли різниця негативна (d<0), каждый последующий член по понятным причинам будет меньше предыдущего, график прогрессии станет «уходить» вниз, арифметическая прогрессия, соответственно, будет именоваться убывающей.

Значення заданого члена

Іноді буває необхідно визначити значення будь-якого довільного члена an арифметичної прогресії. Можна це шляхом розрахунку послідовно значень всіх членів арифметичної прогресії, починаючи з першого до шуканого. Однак такий шлях не завжди прийнятний, якщо, наприклад, необхідно знайти значення п'ятитисячного чи восьмимільйонного члена. Традиційний розрахунок сильно затягнеться за часом. Однак конкретна арифметична прогресія може бути вивчена за допомогою певних формул. Існує і формула n-ного члена: значення будь-якого члена арифметичної прогресії можна визначити як сума першого члена прогресії з різницею прогресії, помноженої на номер шуканого члена, зменшений на одиницю.

Формула універсальна для зростаючої та спадної прогресії.

Приклад розрахунку значення заданого члена

Розв'яжемо наступне завдання на знаходження значення n-ного члена арифметичної прогресії.

Умова: є арифметична прогресія з параметрами:

Перший член послідовності дорівнює 3;

Різниця числового ряду дорівнює 1,2.

Завдання: потрібно знайти значення 214 члена

Рішення: для визначення значення заданого члена скористаємося формулою:

а(n) = а1 + d(n-1)

Підставивши у вираз дані з умови завдання маємо:

а(214) = а1 + d(n-1)

а(214) = 3 + 1,2 (214-1) = 258,6

Відповідь: 214 член послідовності рівні 258,6.

Переваги такого способу розрахунку очевидні - все рішення займає трохи більше 2 рядків.

Сума заданої кількості членів

Дуже часто в заданому арифметичному ряду потрібно визначити суму значень його відрізка. Для цього також не потрібно обчислювати значення кожного члена і потім підсумовувати. Такий спосіб застосовується, якщо кількість членів, суму яких необхідно знайти, невелика. В інших випадках зручніше скористатися такою формулою.

Сума членів арифметичної прогресії від 1 до n дорівнює сумі першого та n-ного членів, помноженої на номер члена n та діленої надвоє. Якщо у формулі значення n-ного члена замінити на вираз із попереднього пункту статті, отримаємо:

Приклад розрахунку

Наприклад вирішимо задачу з наступними умовами:

Перший член послідовності дорівнює нулю;

Різниця дорівнює 0,5.

У завданні потрібно визначити суму членів ряду з 56 по 101.

Рішення. Скористаємося формулою визначення суми прогресії:

s(n) = (2∙a1 + d∙(n-1))∙n/2

Спочатку визначимо суму значень 101 члена прогресії, підставивши у формулу дані їх умови нашого завдання:

s 101 = (2∙0 + 0,5∙(101-1))∙101/2 = 2525

Очевидно, для того, щоб дізнатися суму членів прогресії з 56-го по 101-й, необхідно від S 101 відібрати S 55 .

s 55 = (2∙0 + 0,5∙(55-1))∙55/2 = 742,5

Таким чином, сума арифметичної прогресії для даного прикладу:

s 101 - s 55 = 2525 - 742,5 = 1 782,5

Приклад практичного застосування арифметичної прогресії

Наприкінці статті повернемося наприклад арифметичної послідовності, наведеному у першому абзаці - таксометр (лічильник автомобіля таксі). Розглянемо такий приклад.

Посадка в таксі (до якої входить 3 км пробігу) коштує 50 рублів. Кожен наступний кілометр оплачується із розрахунку 22 руб./км. Відстань подорожі 30 км. Розрахувати вартість подорожі.

1. Відкинемо перші 3 км, ціна яких включена у вартість посадки.

30 – 3 = 27 км.

2. Подальший розрахунок - не що інше як аналіз арифметичного числового ряду.

Номер члена – число км пробігу (мінус перші три).

Значення члена – сума.

Перший член у цій задачі дорівнюватиме a 1 = 50 р.

Різниця прогресії d = 22 р.

цікавить нас число - значення (27 +1)-ого ​​члена арифметичної прогресії - показання лічильника наприкінці 27-го кілометра - 27,999 ... = 28 км.

a 28 = 50 + 22 ∙ (28 - 1) = 644

На формулах, що описують ті чи інші числові послідовності, побудовані розрахунки календарних даних на скільки завгодно тривалий період. В астрономії у геометричній залежності від відстані небесного тіла до світила знаходиться довжина орбіти. Крім того, різні числові ряди з успіхом застосовуються у статистиці та інших прикладних розділах математики.

Інший вид числової послідовності – геометрична

Геометрична прогресія характеризується більшими, порівняно з арифметичною, темпами зміни. Не випадково в політиці, соціології, медицині найчастіше, щоб показати велику швидкість поширення того чи іншого явища, наприклад захворювання при епідемії, кажуть, що процес розвивається у геометричній прогресії.

N-ний член геометричного числового ряду відрізняється від попереднього тим, що він множиться на якесь постійне число - знаменник, наприклад перший член дорівнює 1, знаменник відповідно дорівнює 2, тоді:

n=1: 1 ∙ 2 = 2

n=2: 2 ∙ 2 = 4

n=3: 4 ∙ 2 = 8

n=4: 8 ∙ 2 = 16

n=5: 16 ∙ 2 = 32,

b n – значення поточного члена геометричної прогресії;

b n+1 - формула наступного члена геометричної прогресії;

q – знаменник геометричної прогресії (постійне число).

Якщо графік арифметичної прогресії є прямою, то геометрична малює дещо іншу картину:

Як і у випадку арифметичної, геометрична прогресія має формулу значення довільного члена. Якийсь n-ний член геометричної прогресії дорівнює добутку першого члена на знаменник прогресії в ступені n зменшеного на одиницю:

приклад. Маємо геометричну прогресію з першим членом рівним 3 і знаменником прогресії, рівним 1,5. Знайдемо 5-й член прогресії

b 5 = b 1 ∙ q (5-1) = 3 ∙ 1,5 4 = 15,1875

Сума заданого числа членів розраховується за допомогою спеціальної формули. Сума n перших членів геометричної прогресії дорівнює різниці добутку n-ного члена прогресії на його знаменник і першого члена прогресії, поділеної на зменшений на одиницю знаменник:

Якщо b n замінити користуючись розглянутою вище формулою, значення суми n перших членів розглянутого числового ряду набуде вигляду:

приклад. Геометрична прогресія починається з першого члена, що дорівнює 1. Знаменник заданий рівним 3. Знайдемо суму перших восьми членів.

s8 = 1 ∙ (3 8 -1) / (3-1) = 3 280


Так, так: арифметична прогресія – це вам не іграшки:)

Що ж, друзі, якщо ви читаєте цей текст, то внутрішній кеп-очевидність підказує мені, що ви поки що не знаєте, що таке арифметична прогресія, але дуже (ні, ось так: ТОВООЧЕНЬ!) хочете дізнатися. Тому не мучитиму вас довгими вступами і відразу перейду до справи.

Для початку кілька прикладів. Розглянемо кілька наборів чисел:

  • 1; 2; 3; 4; ...
  • 15; 20; 25; 30; ...
  • $\sqrt(2);\ 2\sqrt(2);\ 3\sqrt(2);...$

Що спільного в усіх цих наборів? На перший погляд – нічого. Але насправді дещо є. А саме: кожен наступний елемент відрізняється від попереднього на те саме число.

Судіть самі. Перший набір — це числа, що просто йдуть поспіль, кожне наступне на одиницю більше попереднього. У другому випадку різниця між рядом стоять числа вже дорівнює п'яти, але ця різниця все одно постійна. У третьому випадку взагалі коріння. Проте $2sqrt(2)=sqrt(2)+sqrt(2)$, а $3sqrt(2)=2sqrt(2)+sqrt(2)$, тобто. і в цьому випадку кожен наступний елемент просто зростає на $ sqrt (2) $ (і нехай вас не лякає, що це число - ірраціональне).

Так от: усі такі послідовності якраз і називаються арифметичними прогресіями. Дамо суворе визначення:

Визначення. Послідовність чисел, в якій кожне наступне відрізняється від попереднього рівно на одну й ту саму величину, називається арифметичною прогресією. Сама величина, яку відрізняються числа, називається різницею прогресії і найчастіше позначається буквою $d$.

Позначення: $\left(((a)_(n)) \right)$ - сама прогресія, $ d$ - її різницю.

І одразу парочка важливих зауважень. По-перше, прогресією вважається лише упорядкованапослідовність чисел: їх можна читати строго в тому порядку, в якому вони записані — і ніяк інакше. Переставляти та міняти місцями числа не можна.

По-друге, сама послідовність може бути як кінцевою, і нескінченної. Наприклад, набір (1; 2; 3) - це, очевидно, кінцева арифметична прогресія. Але якщо записати щось на кшталт (1; 2; 3; 4; ...) — це вже нескінченна прогресія. Три крапки після четвірки ніби натякає, що далі йде ще досить багато чисел. Безкінечно багато, наприклад.:)

Ще хотів би відзначити, що прогресії бувають зростаючими та спадаючими. Зростаючі ми вже бачили той самий набір (1; 2; 3; 4; ...). А ось приклади спадних прогресій:

  • 49; 41; 33; 25; 17; ...
  • 17,5; 12; 6,5; 1; −4,5; −10; ...
  • $\sqrt(5);\ \sqrt(5)-1;\ \sqrt(5)-2;\ \sqrt(5)-3;...$

Гаразд, гаразд: останній приклад може здатися надто складним. Але решта, думаю, вам зрозуміла. Тому введемо нові визначення:

Визначення. Арифметична прогресія називається:

  1. зростаючою, якщо кожен наступний елемент більший за попередній;
  2. спадної, якщо, навпаки, кожен наступний елемент менший за попередній.

Крім того, існують так звані «стаціонарні» послідовності — вони складаються з одного і того ж числа, що повторюється. Наприклад, (3; 3; 3; ...).

Залишається лише одне питання: як відрізнити зростаючу прогресію від спадної? На щастя, тут все залежить лише від того, яким є знак числа $d$, тобто. різниці прогресії:

  1. Якщо $d \gt 0$, то прогресія зростає;
  2. Якщо $d \lt 0$, то прогресія, очевидно, зменшується;
  3. Нарешті, є випадок $d=0$ — у разі вся прогресія зводиться до стаціонарної послідовності однакових чисел: (1; 1; 1; 1; ...) тощо.

Спробуємо розрахувати різницю $d$ для трьох спадних прогресій, наведених вище. Для цього достатньо взяти будь-які два сусідні елементи (наприклад, перший і другий) і відняти з числа, що стоїть праворуч, число, що стоїть зліва. Виглядати це буде ось так:

  • 41−49=−8;
  • 12−17,5=−5,5;
  • $\sqrt(5)-1-\sqrt(5)=-1$.

Як бачимо, у всіх трьох випадках різниця справді вийшла негативною. І тепер, коли ми більш-менш розібралися з визначеннями, настав час розібратися з тим, як описуються прогресії і які у них властивості.

Члени прогресії та рекурентна формула

Оскільки елементи наших послідовностей не можна міняти місцями, їх можна пронумерувати:

\[\left(((a)_(n)) \right)=\left\( ((a)_(1)),\ ((a)_(2)),((a)_(3 )),... \right\)\]

Окремі елементи цього набору називають членами прогресії. Там так і вказують за допомогою номера: перший член, другий член і т.д.

Крім того, як ми вже знаємо, сусідні члени прогресії пов'язані формулою:

\[((a)_(n))-((a)_(n-1))=d\Rightarrow ((a)_(n))=((a)_(n-1))+d \]

Коротше кажучи, щоб знайти $n$-й член прогресії, потрібно знати $n-1$-й член і різницю $d$. Така формула називається рекурентною, оскільки з її допомогою можна знайти будь-яке число, лише знаючи попереднє (а за фактом – усі попередні). Це дуже незручно, тому існує хитріша формула, яка зводить будь-які обчислення до першого члена та різниці:

\[((a)_(n))=((a)_(1))+\left(n-1 \right)d\]

Напевно, ви вже зустрічалися з цією формулою. Її люблять давати у всяких довідниках та решібниках. Та й у будь-якому тлумачному підручнику з математики вона йде однією з перших.

Проте пропоную трохи потренуватись.

Завдання №1. Випишіть перші три члени арифметичної прогресії $\left(((a)_(n)) \right)$, якщо $((a)_(1))=8,d=-5$.

Рішення. Отже, нам відомий перший член $((a)_(1))=8$ і різницю прогресії $d=-5$. Скористаємося щойно наведеною формулою і підставимо $n=1$, $n=2$ і $n=3$:

\[\begin(align) & ((a)_(n))=((a)_(1))+\left(n-1 \right)d; \& ((a)_(1))=((a)_(1))+\left(1-1 \right)d=((a)_(1))=8; \\ ((a)_(2))=((a)_(1))+\left(2-1 \right)d=((a)_(1))+d=8-5= 3; \\ & ((a)_(3))=((a)_(1))+\left(3-1 \right)d=((a)_(1))+2d=8-10= -2. \\ \end(align)\]

Відповідь: (8; 3; −2)

От і все! Зверніть увагу: наша прогресія – спадна.

Звичайно, $ n = 1 $ можна було і не підставляти перший член нам і так відомий. Проте, підставивши одиницю, ми переконалися, що навіть для першого члена наша формула працює. У решті випадків все звелося до банальної арифметики.

Завдання №2. Випишіть перші три члени арифметичної прогресії, якщо її сьомий член дорівнює –40, а сімнадцятий член дорівнює –50.

Рішення. Запишемо умову завдання у звичних термінах:

\[((a)_(7))=-40;\quad ((a)_(17))=-50.\]

\[\left\( \begin(align) & ((a)_(7))=((a)_(1))+6d \\ ((a)_(17))=((a) _(1))+16d \\\end(align) \right.\]

\[\left\( \begin(align) & ((a)_(1))+6d=-40 \\ & ((a)_(1))+16d=-50 \\\end(align) \right.\]

Знак системи я поставив тому, що ці вимоги мають виконуватися одночасно. А тепер зауважимо, якщо відняти з другого рівняння перше (ми маємо право це зробити, тому що у нас система), то отримаємо ось що:

\[\begin(align) & ((a)_(1))+16d-\left(((a)_(1))+6d \right)=-50-\left(-40 \right); \& ((a)_(1))+16d-((a)_(1))-6d=-50+40; \ & 10d=-10; \&d=-1. \\ \end(align)\]

Ось так просто ми знайшли різницю прогресії! Залишилося підставити знайдене число у будь-яке з рівнянь системи. Наприклад, у перше:

\[\begin(matrix) ((a)_(1))+6d=-40;\quad d=-1 \\ \Downarrow \\ ((a)_(1))-6=-40; \((a)_(1))=-40+6=-34. \\ \end(matrix)\]

Тепер, знаючи перший член і різницю, залишилося знайти другий і третій член:

\[\begin(align) & ((a)_(2))=((a)_(1))+d=-34-1=-35; \&((a)_(3))=((a)_(1))+2d=-34-2=-36. \\ \end(align)\]

Готово! Завдання вирішено.

Відповідь: (−34; −35; −36)

Зверніть увагу на цікаву властивість прогресії, яку ми виявили: якщо взяти $n$-й і $m$-й члени і відняти їх один від одного, то ми отримаємо різницю прогресії, помножену на число $n-m$:

\[((a)_(n))-((a)_(m))=d\cdot \left(n-m \right)\]

Проста, але дуже корисна властивість, яку обов'язково треба знати — з її допомогою можна значно прискорити вирішення багатьох завдань щодо прогресу. Ось яскравий тому приклад:

Завдання №3. П'ятий член арифметичної прогресії дорівнює 8,4, та її десятий член дорівнює 14,4. Знайдіть п'ятнадцятий член цієї прогресії.

Рішення. Оскільки $((a)_(5))=8,4$, $((a)_(10))=14,4$, а потрібно знайти $((a)_(15))$, то зауважимо наступне:

\[\begin(align) & ((a)_(15))-((a)_(10))=5d; \\ ((a)_(10))-((a)_(5))=5d. \\ \end(align)\]

Але за умовою $((a)_(10))-((a)_(5))=14,4-8,4=6$, тому $5d=6$, звідки маємо:

\[\begin(align) & ((a)_(15))-14,4 = 6; \ & ((a)_(15)) = 6 +14,4 = 20,4. \\ \end(align)\]

Відповідь: 20,4

От і все! Нам не потрібно складати якісь системи рівнянь і вважати перший член і різницю - все зважилося буквально в пару рядків.

Тепер розглянемо інший вид завдань — пошук негативних і позитивних членів прогресії. Не секрет, що й прогресія зростає, у своїй перший член у неї негативний, то рано чи пізно у ній з'являться позитивні члени. І навпаки: члени спадної прогресії рано чи пізно стануть негативними.

При цьому далеко не завжди можна намацати цей момент "в лоб", послідовно перебираючи елементи. Найчастіше завдання складено так, що без знання формул обчислення зайняли б кілька аркушів — ми б просто заснули, поки знайшли відповідь. Тому спробуємо вирішити ці завдання швидшим способом.

Завдання №4. Скільки негативних членів в арифметичній прогресії -38,5; −35,8; …?

Рішення. Отже, $((a)_(1))=-38,5$, $((a)_(2))=-35,8$, звідки відразу знаходимо різницю:

Зауважимо, що різницю позитивна, тому прогресія зростає. Перший член негативний, тому дійсно в якийсь момент ми натрапимо на позитивні числа. Питання лише у тому, коли це станеться.

Спробуємо з'ясувати: доки (тобто до якого натурального числа $n$) зберігається негативність членів:

\[\begin(align) & ((a)_(n)) \lt 0\Rightarrow ((a)_(1))+\left(n-1 \right)d \lt 0; \\ & -38,5+\left(n-1 \right)\cdot 2,7 \lt 0;\quad \left| \cdot 10 \right. &-385+27cdot \left(n-1 \right) \lt 0; &-385+27n-27 \lt 0; \ & 27n \lt 412; \ & n \lt 15\frac(7)(27)\Rightarrow ((n)_(\max ))=15. \\ \end(align)\]

Останній рядок вимагає пояснення. Отже, відомо, що $n \lt 15\frac(7)(27)$. З іншого боку, нас влаштують лише цілі значення номера (більше того: $n\in \mathbb(N)$), тому найбільший допустимий номер - саме $n=15$, а в жодному разі не 16.

Завдання №5. В арифметичній прогресії $(()_(5))=-150,(()_(6))=-147$. Знайдіть номер першого позитивного члена цієї прогресії.

Це була б точнісінько така ж задача, як і попередня, проте нам невідомо $((a)_(1))$. Зате відомі сусідні члени: $((a)_(5))$ і $((a)_(6))$, тому ми легко знайдемо різницю прогресії:

Крім того, спробуємо висловити п'ятий член через перший і різницю за стандартною формулою:

\[\begin(align) & ((a)_(n))=((a)_(1))+\left(n-1 \right)\cdot d; \\ ((a)_(5))=((a)_(1))+4d; \\ & -150=((a)_(1))+4\cdot 3; \&((a)_(1))=-150-12=-162. \\ \end(align)\]

Тепер чинимо за аналогією з попереднім завданням. З'ясовуємо, коли в нашій послідовності виникнуть позитивні числа:

\[\begin(align) & ((a)_(n))=-162+\left(n-1 \right)\cdot 3 \gt 0; &-162+3n-3 \gt 0; \ & 3n \gt 165; \n n \gt 55\Rightarrow ((n)_(\min ))=56. \\ \end(align)\]

Мінімальне цілечисленне розв'язання цієї нерівності - число 56.

Зверніть увагу: в останньому завданні все звелося до суворої нерівності, тому варіант $ n = 55 $ нас не влаштує.

Тепер, коли ми навчилися вирішувати прості завдання, перейдемо до складніших. Але для початку давайте вивчимо ще одну дуже корисну властивість арифметичних прогресій, яка в майбутньому заощадить нам купу часу та нерівних клітин.

Середнє арифметичне та рівні відступи

Розглянемо кілька послідовних членів зростання арифметичної прогресії $\left(((a)_(n)) \right)$. Спробуємо відзначити їх на числовій прямій:

Члени арифметичної прогресії на числовій прямій

Я спеціально відзначив довільні члени $((a)_(n-3)),...,((a)_(n+3))$, а не якісь $((a)_(1)) ,\((a)_(2)),\((a)_(3))$ і т.д. Тому що правило, про яке я зараз розповім, однаково працює для будь-яких відрізків.

А правило дуже просте. Згадаймо рекурентну формулу і запишемо її для всіх зазначених членів:

\[\begin(align) & ((a)_(n-2))=((a)_(n-3))+d; \&((a)_(n-1))=((a)_(n-2))+d; \((a)_(n))=((a)_(n-1))+d; \& ((a)_(n+1))=((a)_(n))+d; \((a)_(n+2))=((a)_(n+1))+d; \\ \end(align)\]

Однак ці рівності можна переписати інакше:

\[\begin(align) & ((a)_(n-1))=((a)_(n))-d; \&((a)_(n-2))=((a)_(n))-2d; \&((a)_(n-3))=((a)_(n))-3d; \& ((a)_(n+1))=((a)_(n))+d; \& ((a)_(n+2))=((a)_(n))+2d; \& ((a)_(n+3))=((a)_(n))+3d; \\ \end(align)\]

Ну, і що з того? А те, що члени $((a)_(n-1))$ і $((a)_(n+1))$ лежать на тій самій відстані від $((a)_(n)) $. І ця відстань дорівнює $d$. Те саме можна сказати про члени $((a)_(n-2))$ і $((a)_(n+2))$ — вони теж віддалені від $((a)_(n))$ на однакову відстань, що дорівнює $2d$. Продовжувати можна до нескінченності, але сенс добре ілюструє картинка


Члени прогресії лежать однаково від центру

Що це означає для нас? Це означає, що можна знайти $((a)_(n))$, якщо відомі числа-сусіди:

\[((a)_(n))=\frac(((a)_(n-1))+((a)_(n+1)))(2)\]

Ми вивели чудове твердження: кожен член арифметичної прогресії дорівнює середньому арифметичному сусідніх членів! Більше того: ми можемо відступити від нашого $((a)_(n))$ ліворуч і праворуч не на один крок, а на $k$ кроків — і все одно формула буде вірною:

\[((a)_(n))=\frac(((a)_(n-k))+((a)_(n+k)))(2)\]

Тобто. ми спокійно можемо знайти якесь $((a)_(150))$, якщо знаємо $((a)_(100))$ і $((a)_(200))$, тому що $(( a)_(150))=\frac(((a)_(100))+((a)_(200)))(2)$. На перший погляд може здатися, що цей факт не дає нам нічого корисного. Однак на практиці багато завдань спеціально «заточено» під використання середнього арифметичного. Погляньте:

Завдання №6. Знайдіть усі значення $x$, при яких числа $-6((x)^(2))$, $x+1$ і $14+4((x)^(2))$ є послідовними членами арифметичної прогресії (у вказаному порядку).

Рішення. Оскільки ці числа є членами прогресії, для них виконується умова середнього арифметичного: центральний елемент $x+1$ можна виразити через сусідні елементи:

\[\begin(align) & x+1=\frac(-6((x)^(2))+14+4((x)^(2)))(2); \& x+1=\frac(14-2((x)^(2)))(2); \& x+1=7-((x)^(2)); \ \ & ((x) ^ (2)) + x-6 = 0. \\ \end(align)\]

Вийшло класичне квадратне рівняння. Його коріння: $ x = 2 $ і $ x = -3 $ - це і є відповіді.

Відповідь: −3; 2.

Завдання №7. Знайдіть значення $$, у яких числа $-1;4-3;(()^(2))+1$ становлять арифметичну прогресію (у зазначеному порядку).

Рішення. Знову висловимо середній член через середнє арифметичне сусідніх членів:

\[\begin(align) & 4x-3=\frac(x-1+((x)^(2))+1)(2); \\ & 4x-3=\frac(((x)^(2))+x)(2);\quad \left| \cdot 2 \right.; \\ & 8x-6=((x)^(2))+x; \((x)^(2))-7x+6=0. \\ \end(align)\]

Знову квадратне рівняння. І знову два корені: $ x = 6 $ і $ x = 1 $.

Відповідь: 1; 6.

Якщо в процесі розв'язання задачі у вас вилазять якісь звірячі числа, або ви не до кінця впевнені в правильності знайдених відповідей, то є чудовий прийом, що дозволяє перевірити: чи ми вирішили завдання?

Припустимо, у задачі №6 ми отримали відповіді −3 та 2. Як перевірити, що ці відповіді вірні? Давайте просто підставимо їх у вихідну умову та подивимося, що вийде. Нагадаю, що у нас є три числа ($-6(()^(2))$, $+1$ і $14+4(()^(2))$), які мають становити арифметичну прогресію. Підставимо $x=-3$:

\[\begin(align) & x=-3\Rightarrow \\ & -6((x)^(2))=-54; \ & x+1=-2; \ & 14 + 4 ((x) ^ (2)) = 50. \end(align)\]

Отримали числа -54; −2; 50, які відрізняються на 52 — безперечно, це арифметична прогресія. Те саме відбувається і при $x=2$:

\[\begin(align) & x=2\Rightarrow \\ & -6((x)^(2))=-24; \ & x + 1 = 3; \ & 14 + 4 ((x) ^ (2)) = 30. \end(align)\]

Знову прогресія, але з різницею 27. Отже, завдання вирішено правильно. Бажаючі можуть перевірити друге завдання самостійно, але одразу скажу: там теж все правильно.

Загалом, вирішуючи останні завдання, ми натрапили на ще один цікавий факт, який також необхідно запам'ятати:

Якщо три числа такі, що друге є середнім арифметичним першого та останнього, то ці числа утворюють арифметичну прогресію.

У майбутньому розуміння цього твердження дозволить нам буквально «конструювати» потрібні прогресії, спираючись умову завдання. Але перш ніж ми займемося подібним конструюванням, слід звернути увагу на ще один факт, який прямо випливає з вже розглянутого.

Угруповання та сума елементів

Давайте ще раз повернемося до числової осі. Зазначимо там кілька членів прогресії, між якими можливо. коштує дуже багато інших членів:

На числовій прямій відзначено 6 елементів

Спробуємо виразити "лівий хвіст" через $((a)_(n))$ і $d$, а "правий хвіст" через $((a)_(k))$ і $d$. Це дуже просто:

\[\begin(align) & ((a)_(n+1))=((a)_(n))+d; \& ((a)_(n+2))=((a)_(n))+2d; \&((a)_(k-1))=((a)_(k))-d; \&((a)_(k-2))=((a)_(k))-2d. \\ \end(align)\]

А тепер зауважимо, що рівні такі суми:

\[\begin(align) & ((a)_(n))+((a)_(k))=S; \((a)_(n+1))+((a)_(k-1))=((a)_(n))+d+((a)_(k))-d= S; \& ((a)_(n+2))+((a)_(k-2))=((a)_(n))+2d+((a)_(k))-2d= S. \end(align)\]

Простіше кажучи, якщо ми розглянемо як старт два елементи прогресії, які в сумі дорівнюють якомусь числу $S$, а потім почнемо крокувати від цих елементів у протилежні сторони (назустріч один одному або навпаки на видалення), то суми елементів, на які ми натикатимемося, теж будуть рівні$S$. Найбільш наочно це можна уявити графічно:


Однакові відступи дають рівні суми

Розуміння цього факту дозволить вирішувати завдання принципово вищого рівня складності, ніж ті, що ми розглядали вище. Наприклад, такі:

Завдання №8. Визначте різницю арифметичної прогресії, у якій перший член дорівнює 66, а твір другого та дванадцятого членів є найменшим із можливих.

Рішення. Запишемо все, що нам відомо:

\[\begin(align) & ((a)_(1))=66; \&d=? \\ ((a)_(2))\cdot ((a)_(12))=\min . \end(align)\]

Отже, нам невідома різниця прогресії $d$. Власне, навколо різниці і будуватиметься все рішення, оскільки добуток $((a)_(2))\cdot ((a)_(12))$ можна переписати так:

\[\begin(align) & ((a)_(2))=((a)_(1))+d=66+d; \& ((a)_(12))=((a)_(1))+11d=66+11d; \& ((a)_(2))\cdot ((a)_(12))=\left(66+d \right)\cdot \left(66+11d \right)= \\ & =11 \cdot \left(d+66 \right)\cdot \left(d+6 \right). \end(align)\]

Для тих, хто в танку: я виніс загальний множник 11 з другої дужки. Таким чином, шуканий твір є квадратичною функцією щодо змінної $d$. Тому розглянемо функцію $ f \ left (d \ right) = 11 \ left (d + 66 \ right) \ left (d + 6 \ right) $ - її графіком буде парабола гілками вгору, т.к. якщо розкрити дужки, ми отримаємо:

\[\begin(align) & f\left(d \right)=11\left(((d)^(2))+66d+6d+66\cdot 6 \right)= \\ & =11(( d)^(2))+11cdot 72d+11cdot 66cdot 6 \end(align)\]

Як бачимо, коефіцієнт при старшому доданку дорівнює 11 - це позитивне число, тому дійсно маємо справу з параболою гілками вгору:


графік квадратичної функції - парабола

Зверніть увагу: мінімальне значення ця парабола набуває у своїй вершині з абсцисою $((d)_(0))$. Звичайно, ми можемо порахувати цю абсцису за стандартною схемою (є ж формула $((d)_(0))=(-b)/(2a)\;$), але куди розумніше буде помітити, що вершина, що шукається, лежить на осі симетрії параболи, тому точка $((d)_(0))$ рівновіддалена від коренів рівняння $f\left(d \right)=0$:

\[\begin(align) & f\left(d \right)=0; \ \ & 11 \ cdot \ left (d +66 \ right) \ cdot \ left (d +6 \ right) = 0; \&((d)_(1))=-66;\quad((d)_(2))=-6. \\ \end(align)\]

Саме тому я не надто поспішав розкривати дужки: у вихідному вигляді коріння було знайти дуже і дуже просто. Отже, абсцис дорівнює середньому арифметичному чисел −66 і −6:

\[((d)_(0))=\frac(-66-6)(2)=-36\]

Що нам дає виявлене число? При ньому необхідний твір набуває найменшого значення (ми, до речі, так і не порахували $((y)_(\min ))$ — від нас це не потрібно). Водночас це число є різницею вихідної прогресії, тобто. ми знайшли відповідь.:)

Відповідь: −36

Завдання №9. Між числами $-\frac(1)(2)$ і $-\frac(1)(6)$ вставте три числа так, щоб вони разом з цими числами склали арифметичну прогресію.

Рішення. По суті нам потрібно скласти послідовність з п'яти чисел, причому перше і останнє число вже відомо. Позначимо недостатні числа змінними $x$, $y$ і $z$:

\[\left(((a)_(n)) \right)=\left\( -\frac(1)(2);x;y;z;-\frac(1)(6) \right\ )\]

Зазначимо, що число $y$ є "серединою" нашої послідовності - воно рівновіддалено і від чисел $x$ і $z$, і від чисел $-\frac(1)(2)$ і $-\frac(1)( 6) $. І якщо з чисел $x$ і $z$ ми в даний момент не можемо отримати $y$, то з кінцями прогресії справа інакша. Згадуємо про середнє арифметичне:

Тепер, знаючи $y$, ми знайдемо числа, що залишилися. Зауважимо, що $x$ лежить між числами $-\frac(1)(2)$ і щойно знайденим $y=-\frac(1)(3)$. Тому

Аналогічно розмірковуючи, знаходимо число, що залишилося:

Готово! Ми знайшли усі три числа. Запишемо їх у відповіді у тому порядку, в якому вони мають бути вставлені між вихідними числами.

Відповідь: $-\frac(5)(12);\ -\frac(1)(3);\ -\frac(1)(4)$

Завдання №10. Між числами 2 і 42 вставте кілька чисел, які разом із даними числами утворюють арифметичну прогресію, якщо відомо, що сума першого, другого та останнього із вставлених чисел дорівнює 56.

Рішення. Ще більш складне завдання, яке, однак, вирішується за тією ж схемою, що й попередні через середнє арифметичне. Проблема в тому, що нам невідомо скільки конкретно чисел треба вставити. Тому припустимо для певності, що після вставки всього буде рівно $n$ чисел, причому перше з них - це 2, а останнє - 42. У цьому випадку шукана арифметична прогресія представима у вигляді:

\[\left(((a)_(n)) \right)=\left\( 2;((a)_(2));((a)_(3));...;(( a)_(n-1));42 \right\)\]

\[((a)_(2))+((a)_(3))+((a)_(n-1))=56\]

Зауважимо, проте, що числа $((a)_(2))$ і $((a)_(n-1))$ виходять із чисел 2 і 42, що стоять по краях, шляхом одного кроку назустріч один одному, тобто . до центру послідовності. А це означає, що

\[((a)_(2))+((a)_(n-1))=2+42=44\]

Але тоді записане вище вираз можна переписати так:

\[\begin(align) & ((a)_(2))+((a)_(3))+((a)_(n-1))=56; \\ & \left(((a)_(2))+((a)_(n-1)) \right)+((a)_(3))=56; \ & 44+((a)_(3))=56; \ & ((a)_(3)) = 56-44 = 12. \\ \end(align)\]

Знаючи $((a)_(3))$ і $((a)_(1))$, ми легко знайдемо різницю прогресії:

\[\begin(align) & ((a)_(3))-((a)_(1))=12-2=10; \& ((a)_(3))-((a)_(1))=\left(3-1 \right)\cdot d=2d; \ & 2d = 10 \ Rightarrow d = 5. \\ \end(align)\]

Залишилося лише знайти інші члени:

\[\begin(align) & ((a)_(1))=2; \ & ((a)_(2))=2+5=7; \ & ((a)_(3)) = 12; \ & ((a)_(4)) = 2 +3 \ cdot 5 = 17; \ & ((a)_(5))=2+4\cdot 5=22; \ & ((a)_(6))=2+5\cdot 5=27; \ & ((a)_(7))=2+6\cdot 5=32; \ & ((a)_(8)) = 2 +7 \ cdot 5 = 37; \ & ((a)_(9)) = 2 +8 \ cdot 5 = 42; \\ \end(align)\]

Таким чином, вже на 9-му кроці ми прийдемо в лівий кінець послідовності — число 42. Усього потрібно було вставити лише 7 чисел: 7; 12; 17; 22; 27; 32; 37.

Відповідь: 7; 12; 17; 22; 27; 32; 37

Текстові завдання з прогресіями

Насамкінець хотілося б розглянути парочку щодо простих завдань. Ну, як простих: для більшості учнів, які вивчають математику в школі і не читали того, що написано вище, ці завдання можуть здатися жерстю. Проте саме такі завдання трапляються в ОДЕ та ЄДІ з математики, тому рекомендую ознайомитися з ними.

Завдання №11. Бригада виготовила у січні 62 деталі, а кожного наступного місяця виготовляла на 14 деталей більше, ніж у попередній. Скільки деталей виготовила бригада у листопаді?

Рішення. Очевидно, кількість деталей, розписана по місяцях, являтиме собою зростаючу арифметичну прогресію. Причому:

\[\begin(align) & ((a)_(1))=62;\quad d=14; \\ ((a)_(n))=62+\left(n-1 \right)\cdot 14. \\ \end(align)\]

Листопад - це 11-й місяць на рік, тому нам потрібно знайти $((a)_(11))$:

\[((a)_(11))=62+10\cdot 14=202\]

Отже, у листопаді буде виготовлено 202 деталі.

Завдання №12. Палітурна майстерня переплела в січні 216 книг, а кожного наступного місяця вона переплітала на 4 книги більше, ніж у попередній. Скільки книг переплела майстерня у грудні?

Рішення. Все теж саме:

$\begin(align) & ((a)_(1))=216;\quad d=4; \\ ((a)_(n))=216+\left(n-1 \right)\cdot 4. \\ \end(align)$

Грудень - це останній, 12-й місяць на рік, тому шукаємо $((a)_(12))$:

\[((a)_(12))=216+11\cdot 4=260\]

Це і є відповідь – 260 книг буде переплетено у грудні.

Що ж, якщо ви дочитали до сюди, поспішаю вас привітати: «курс молодого бійця» арифметичними прогресіями ви успішно пройшли. Можна сміливо переходити до наступного уроку, де вивчимо формулу суми прогресії, а також важливі і дуже корисні наслідки з неї.

У чому головна сутність формули?

Ця формула дозволяє знайти будь-який ЗА ЙОГО НОМЕРЕ " n" .

Зрозуміло, треба знати ще перший член a 1і різниця прогресії d, Так без цих параметрів конкретну прогресію і не запишеш.

Завчити (або зашпаргалити) цю формулу мало. Потрібно засвоїти її суть і застосувати формулу в різних завданнях. Та ще й не забути в потрібний момент, так...) Як не забути- я не знаю. А от як згадати,при необхідності - точно підкажу. Тим, хто урок до кінця подужає.)

Отже, розберемося із формулою n-го члена арифметичної прогресії.

Що таке формула взагалі – ми собі уявляємо.) Що таке арифметична прогресія, номер члена, різниця прогресії – доступно викладено у попередньому уроці. Загляньте, до речі, як не читали. Там просто все. Залишилося розібратися, що таке n-й член.

Прогресію у загальному вигляді можна записати у вигляді ряду чисел:

a 1, a 2, a 3, a 4, a 5, .....

a 1- Позначає перший член арифметичної прогресії, a 3- третій член, a 4- Четвертий, і так далі. Якщо нас цікавить п'ятий член, скажімо, ми працюємо з a 5, якщо сто двадцятий - з a 120.

А як позначити у загальному вигляді будь-якийчлен арифметичної прогресії, з будь-якимномером? Дуже просто! Ось так:

a n

Це і є n-й член арифметичної прогресії.Під літерою n ховаються відразу всі номери членів: 1, 2, 3, 4 тощо.

І що нам дає такий запис? Подумаєш, замість цифри букву записали...

Цей запис дає нам потужний інструмент для роботи з арифметичною прогресією. Використовуючи позначення a n, ми можемо швидко знайти будь-якийчлен будь-якийарифметичній прогресії. І ще купу завдань щодо прогресії вирішити. Самі далі побачите.

У формулі n-го члена арифметичної прогресії:

a n = a 1 + (n-1)d

a 1- Перший член арифметичної прогресії;

n- Номер члена.

Формула пов'язує ключові параметри будь-якої прогресії: a n; a 1; dі n. Навколо цих властивостей і крутяться всі завдання з прогресії.

Формула n-го члена можна використовувати й у записи конкретної прогресії. Наприклад, завдання може бути сказано, що прогресія задана умовою:

a n = 5 + (n-1) ·2.

Таке завдання може і в глухий кут поставити ... Немає ні ряду, ні різниці ... Але, порівнюючи умову з формулою, легко збагнути, що в цій прогресії a 1 =5, а d=2.

А буває ще зліше!) Якщо взяти ту ж умову: a n = 5 + (n-1) · 2,та розкрити дужки та привести подібні? Отримаємо нову формулу:

a n = 3 + 2n.

Це Тільки не загальна, а для конкретної прогресії. Ось тут і ховається підводний камінь. Деякі думають, що перший член – це трійка. Хоча реально перший член - п'ятірка... Трохи нижче ми попрацюємо з такою формулою.

У завдання на прогресію зустрічається ще одне позначення - a n+1. Це, як ви здогадалися, "ен плюс перший" член прогресії. Сенс його простий і нешкідливий.) Це член прогресії, номер якого більший за номер n на одиницю. Наприклад, якщо в якомусь завданні ми беремо за a nп'ятий член, то a n+1буде шостим членом. І тому подібне.

Найчастіше позначення a n+1зустрічається у рекурентних формулах. Не лякайтеся цього страшного слова!) Це просто спосіб висловлювання члена арифметичної прогресії через попередній.Припустимо, нам дана арифметична прогресія ось у такому вигляді, за допомогою рекурентної формули:

a n+1 = a n +3

a 2 = a 1 + 3 = 5+3 = 8

a 3 = a 2 + 3 = 8+3 = 11

Четвертий – через третій, п'ятий – через четвертий, тощо. А як порахувати одразу, скажімо двадцятий член, a 20? А ніяк!) Поки 19-й член не дізнаємось, 20-й не порахувати. У цьому є принципова відмінність рекурентної формули від формули n-го члена. Рекурентна працює тільки через попереднійчлен, а формула n-го члена – через першийі дозволяє відразузнаходити будь-який член за його номером. Не прораховуючи цілий ряд чисел по порядку.

В арифметичній прогресії рекурентну формулу легко перетворити на звичайну. Порахувати пару послідовних членів, обчислити різницю d,знайти, якщо треба, перший член a 1, Записати формулу у звичайному вигляді, та й працювати з нею. У ДПА подібні завдання часто зустрічаються.

Застосування формули n члена арифметичної прогресії.

Спочатку розглянемо пряме застосування формули. Наприкінці попереднього уроку було завдання:

Дана арифметична прогресія (a n). Знайти a 121 якщо a 1 =3, а d=1/6.

Це завдання можна без будь-яких формул вирішити, просто з сенсу арифметичної прогресії. Додавати, та додавати... Годинник-другий.)

А за формулою рішення займе менше хвилини. Можете засікати час.) Вирішуємо.

В умовах наведено всі дані для використання формули: a 1 =3, d=1/6.Залишається збагнути, чому одно n.Не питання! Нам треба знайти a 121. Ось і пишемо:

Прошу звернути увагу! Замість індексу nз'явилося конкретне число: 121. Що цілком логічно.) Нас цікавить член арифметичної прогресії номер сто двадцять один.Ось це і буде наше n.Саме це значення n= 121 ми і підставимо далі до формули, до дужок. Підставляємо всі числа у формулу та вважаємо:

a 121 = 3 + (121-1) · 1/6 = 3 +20 = 23

Ось і всі справи. Так само швидко можна було знайти і п'ятсот десятий член, і тисяча третій, кожен. Ставимо замість nпотрібний номер в індексі у літери " a"і в дужках, та й рахуємо.

Нагадаю суть: ця формула дозволяє знайти будь-якийчлен арифметичної прогресії ЗА ЙОГО НОМЕРЕ " n" .

Вирішимо завдання хитрішим. Нехай нам трапилося таке завдання:

Знайдіть перший член арифметичної прогресії (a n), якщо a 17 = -2; d=-0,5.

Якщо виникли труднощі, підкажу перший крок. Запишіть формулу n члена арифметичної прогресії!Так Так. Руками запишіть, прямо в зошиті:

a n = a 1 + (n-1)d

А тепер, дивлячись на літери формули, розуміємо, які дані ми маємо, а чого не вистачає? Є d=-0,5,є сімнадцятий член ... Все? Якщо вважаєте, що все, то завдання не вирішите, так...

У нас ще є номер n! В умові a 17 =-2заховані два параметри.Це значення сімнадцятого члена (-2), та її номер (17). Тобто. n=17.Ця "дрібниця" часто проскакує повз голову, а без неї, (без "дрібниці", а не голови!) завдання не вирішити. Хоча... і без голови теж.)

Тепер можна просто тупо підставити наші дані у формулу:

a 17 = a 1 + (17-1) · (-0,5)

Ах да, a 17нам відомо, що це -2. Ну гаразд, підставимо:

-2 = a 1 + (17-1) · (-0,5)

Ось по суті, і все. Залишилося висловити перший член арифметичної прогресії з формули, та порахувати. Вийде відповідь: a 1 = 6.

Такий прийом – запис формули та проста підстановка відомих даних – чудово допомагає у простих завданнях. Ну, треба, звичайно, вміти висловлювати змінну з формули, а що робити! Без цього вміння математику можна взагалі не вивчати.

Ще одне популярне завдання:

Знайдіть різницю арифметичної прогресії (a n), якщо a 1 =2; a 15 = 12.

Що робимо? Ви здивуєтеся, пишемо формулу!)

a n = a 1 + (n-1)d

Розуміємо, що нам відомо: a 1 = 2; a 15 = 12; та (спеціально виокремлю!) n=15. Сміливо підставляємо у формулу:

12 = 2 + (15-1) d

Вважаємо арифметику.)

12 = 2 + 14d

d=10/14 = 5/7

Це правильна відповідь.

Так, завдання на a n , a 1і dвирішили. Залишилося навчитися знаходити:

Число 99 є членом арифметичної прогресії (a n), де a 1 = 12; d=3. Знайти номер члена.

Підставляємо у формулу n-го члена відомі нам величини:

a n = 12 + (n-1) · 3

На перший погляд, тут дві невідомі величини: a n та n.Але a n- це якийсь член прогресії з номером n... І цей член прогресії ми знаємо! Це 99. Ми не знаємо його номер n,так цей номер і потрібно знайти. Підставляємо член прогресії 99 у формулу:

99 = 12 + (n-1) · 3

Висловлюємося з формули nвважаємо. Отримаємо відповідь: n=30.

А тепер завдання на ту саму тему, але більш творча):

Визначте, чи буде число 117 членом арифметичної прогресії (a n):

-3,6; -2,4; -1,2 ...

Знову пишемо формулу. Що немає ніяких параметрів? Гм... А очі нам навіщо дано?) Перший член прогресії бачимо? Бачимо. Це –3,6. Можна сміливо записати: a 1 = -3,6.Різниця dможна з ряду визначити? Легко, якщо знаєте, що таке різницю арифметичної прогресії:

d = -2,4 - (-3,6) = 1,2

Так, найпростіше зробили. Залишилося розібратися з невідомим номером nі незрозумілим числом 117. У попередній задачі хоч було відомо, що дано саме член прогресії. А тут і того не знаємо... Як бути! Ну, як бути, як бути... Включити творчі здібності!

Ми припустимо,що 117 - це все-таки член нашої прогресії. З невідомим номером n. І, як у попередній задачі, спробуємо знайти цей номер. Тобто. пишемо формулу (так-так!) і підставляємо наші числа:

117 = -3,6 + (n-1) · 1,2

Знову висловлюємося з формулиn, вважаємо та отримуємо:

Опаньки! Номер вийшов дробовий!Сто один із половиною. А дрібних номерів у прогресіях не буває.Який висновок зробимо? Так! Число 117 не єчленом нашої прогресії. Воно знаходиться десь між сто першим і сто другим членом. Якби номер вийшов натуральним, тобто. позитивним цілим, число було б членом прогресії зі знайденим номером. А в нашому випадку відповідь завдання буде: ні.

Завдання на основі реального варіанту ГІА:

Арифметична прогресія задана умовою:

a n = -4 + 6,8 n

Знайти перший і десятий члени прогресії.

Тут прогресію задано не зовсім звичним чином. Формула якась... Буває.) Однак, ця формула (як я писав вище) - теж формула n-го члена арифметичної прогресії!Вона також дозволяє знайти будь-який член прогресії за його номером.

Шукаємо перший член. Той, хто думає. що перший член – мінус чотири, фатально помиляється!) Тому, що формула у завданні – видозмінена. Перший член арифметичної прогресії у ній захований.Нічого, зараз знайдемо.)

Так само, як і в попередніх завданнях, підставляємо n=1у цю формулу:

a 1 = -4 + 6,8 · 1 = 2,8

Ось! Перший член 2,8, а чи не -4!

Аналогічно шукаємо десятий член:

a 10 = -4 + 6,8 · 10 = 64

Ось і всі справи.

А тепер тим, хто дочитав до цих рядків, - обіцяний бонус.)

Припустимо, у складній бойовій обстановці ГІА або ЄДІ ви забули корисну формулу n-го члена арифметичної прогресії. Щось пригадується, але невпевнено якось... Чи то nтам, чи n+1, чи то n-1...Як бути!?

Спокій! Цю формулу легко вивести. Не дуже суворо, але для впевненості та правильного рішення точно вистачить!) Для висновку достатньо пам'ятати елементарний сенс арифметичної прогресії та мати пару-трійку хвилин часу. Потрібно просто намалювати картинку. Для наочності.

Малюємо числову вісь та відзначаємо на ній перший. другий, третій тощо. члени. І відзначаємо різницю dміж членами. Ось так:

Дивимося на картинку і розуміємо: чому дорівнює другий член? Другий одне d:

a 2 =a 1 + 1 ·d

Чому дорівнює третій член? Третійчлен дорівнює перший член плюс два d.

a 3 =a 1 + 2 ·d

Уловлюєте? Я не дарма деякі слова виділяю жирним шрифтом. Ну гаразд, ще один крок).

Чому дорівнює четвертий член? Четвертийчлен дорівнює перший член плюс три d.

a 4 =a 1 + 3 ·d

Час зрозуміти, що кількість проміжків, тобто. d, завжди один менше, ніж номер шуканого члена n. Тобто, до номера n, кількість проміжківбуде n-1.Отже, формула буде (без варіантів!):

a n = a 1 + (n-1)d

Взагалі, наочні картинки дуже допомагають вирішувати багато завдань у математиці. Не нехтуйте картинками. Але якщо картинку намалювати важко, то... тільки формула!) Крім того, формула n-го члена дозволяє підключити до вирішення весь потужний арсенал математики - рівняння, нерівності, системи і т.д. Картинку в рівняння не вставиш...

Завдання для самостійного вирішення.

Для розминки:

1. В арифметичній прогресії (a n) a 2 = 3; a 5 =5,1. Знайти a 3 .

Підказка: за картинкою завдання вирішується секунд за 20... За формулою – складніше виходить. Але для освоєння формули - корисніше.) У Розділі 555 це завдання вирішено і з картинці, і за формулою. Відчуйте різницю!)

А це – вже не розминка.)

2. В арифметичній прогресії (a n) a 85 = 19,1; a 236 = 49, 3. Знайти a 3 .

Що, не хочеться малюнок малювати?) Ще б пак! Краще за формулою, так...

3. Арифметична прогресія задана умовою:a 1 =-5,5; an+1 = an+0,5. Знайдіть сто двадцять п'ятий член цієї прогресії.

У цьому вся завдання прогресія задана рекурентним способом. Але рахувати до сто двадцять п'ятого члена... Не всім такий подвиг під силу. Зате формула n-го члена під силу кожному!

4. Дана арифметична прогресія (a n):

-148; -143,8; -139,6; -135,4, .....

Знайти номер найменшого позитивного члена прогресії.

5. За умовою завдання 4 знайти суму найменшого позитивного та найбільшого негативного членів прогресії.

6. Добуток п'ятого та дванадцятого членів зростаючої арифметичної прогресії дорівнює -2,5, а сума третього та одинадцятого членів дорівнює нулю. Знайти a 14 .

Не найпростіше завдання, так ...) Тут спосіб "на пальцях" не прокотить. Прийде формули писати і рівняння розв'язувати.

Відповіді (безладно):

3,7; 3,5; 2,2; 37; 2,7; 56,5

Вийшло? Це приємно!)

Чи не все виходить? Буває. До речі, в останньому завданні є один тонкий момент. Уважність під час читання завдання буде потрібна. І логіка.

Розв'язання цих завдань докладно розібрано у Розділі 555. І елемент фантазії для четвертої, і тонкий момент для шостий, і загальні підходи на вирішення будь-яких завдань на формулу n-го члена - все розписано. Рекомендую.

Якщо Вам подобається цей сайт...

До речі, у мене є ще кілька цікавих сайтів для Вас.)

Можна потренуватися у вирішенні прикладів та дізнатися свій рівень. Тестування з миттєвою перевіркою. Вчимося – з інтересом!)

можна познайомитися з функціями та похідними.

Початковий рівень

Арифметична прогресія. Детальна теорія з прикладами (2019)

Числова послідовність

Отже, сядемо і почнемо писати якісь числа. Наприклад:
Писати можна будь-які числа, і може бути скільки завгодно (у разі їх). Скільки б чисел ми не написали, ми завжди можемо сказати, яке з них перше, яке друге і так далі до останнього, тобто можемо їх пронумерувати. Це і є приклад числової послідовності:

Числова послідовність
Наприклад, для нашої послідовності:

Присвоєний номер характерний лише однієї числа послідовності. Іншими словами, у послідовності немає трьох других чисел. Друге число (як і число) завжди одне.
Число з номером називається членом послідовності.

Всю послідовність ми зазвичай називаємо якоюсь літерою (наприклад,), і кожен член цієї послідовності - тією ж літерою з індексом, що дорівнює номеру цього члена: .

У нашому випадку:

Припустимо, у нас є числова послідовність, у якій різниця між сусідніми числами однакова і дорівнює.
Наприклад:

і т.д.
Така числова послідовність називається арифметичною прогресією.
Термін «прогресія» було запроваджено римським автором Боецієм ще шостому столітті і розумівся у ширшому значенні, як нескінченна числова послідовність. Назва «арифметична» було перенесено з теорії безперервних пропорцій, якими займалися давні греки.

Це числова послідовність, кожен член якої дорівнює попередньому, складеному з тим самим числом. Це число називається різницею арифметичної прогресії та позначається.

Спробуй визначити, які числові послідовності є арифметичною прогресією, а які:

a)
b)
c)
d)

Розібрався? Порівняємо наші відповіді:
Єарифметичною прогресією – b, c.
Не єарифметичною прогресією – a, d.

Повернемося до заданої прогресії () і спробуємо знайти значення її члена. Існує дваспособу його знаходження.

1. Спосіб

Ми можемо додавати до попереднього значення числа прогресії, поки не дійдемо до члена прогресії. Добре, що підсумувати нам залишилося небагато – лише три значення:

Отже, -ой член описаної арифметичної прогресії дорівнює.

2. Спосіб

А якщо нам потрібно було б знайти значення -го члена прогресії? Підсумовування зайняло б у нас не одну годину, і не факт, що ми не помилилися б при складанні чисел.
Зрозуміло, математики вигадали спосіб, у якому не потрібно додавати різницю арифметичної прогресії до попереднього значення. Придивись уважно до намальованого малюнка… Напевно, ти вже помітив якусь закономірність, а саме:

Наприклад, подивимося, з чого складається значення члена даної арифметичної прогресії:


Іншими словами:

Спробуй самостійно знайти у такий спосіб значення члена даної арифметичної прогресії.

Розрахував? Порівняй свої записи з відповіддю:

Зверніть увагу, що в тебе вийшло таке ж число, як і в попередньому способі, коли ми послідовно додавали до попереднього значення членів арифметичної прогресії.
Спробуємо «знеособити» цю формулу – наведемо її у загальний вигляд і отримаємо:

Рівняння арифметичної прогресії.

Арифметичні прогресії бувають зростаючі, а бувають спадні.

Зростаючі- прогресії, у яких кожне наступне значення членів більше попереднього.
Наприклад:

Знижені- прогресії, у яких кожне наступне значення членів менше попереднього.
Наприклад:

Виведена формула застосовується для членів як у зростаючих, і у спадних членах арифметичної прогресії.
Перевіримо це практично.
Нам дана арифметична прогресія, що складається з наступних чисел: Перевіримо, яке вийде число даної арифметичної прогресії, якщо при його розрахунку використовувати нашу формулу:


Тому що:

Таким чином, ми переконалися, що формула діє як у спадній, так і в зростаючій арифметичній прогресії.
Спробуй самостійно знайти члени цієї арифметичної прогресії.

Порівняємо отримані результати:

Властивість арифметичної прогресії

Ускладнимо завдання - виведемо властивість арифметичної прогресії.
Припустимо, нам дано таку умову:
- арифметична прогресія, знайти значення.
Легко, скажеш ти і почнеш вважати за вже відомою тобі формулою:

Нехай, а тоді:

Абсолютно вірно. Виходить ми спочатку знаходимо, потім додаємо його до першого числа і отримуємо шукане. Якщо прогресія представлена ​​невеликими значеннями, то нічого складного в цьому немає, а якщо нам за умови дані числа? Погодься, є ймовірність помилитися у обчисленнях.
А тепер подумай, чи можна вирішити це завдання в одну дію з використанням будь-якої формули? Звичайно, так, і саме її ми спробуємо зараз вивести.

Позначимо шуканий член арифметичної прогресії як формула його знаходження нам відома - це та сама формула, виведена нами на початку:
тоді:

  • попередній член прогресії це:
  • наступний член прогресії це:

Підсумуємо попередній та наступний члени прогресії:

Виходить, що сума попереднього та наступного членів прогресії – це подвоєне значення члена прогресії, що перебуває між ними. Іншими словами, щоб знайти значення члена прогресії при відомих попередніх та послідовних значеннях, необхідно скласти їх та розділити на.

Все вірно, ми отримали це число. Закріпимо матеріал. Вважай значення для прогресії самостійно, адже це зовсім нескладно.

Молодець! Ти знаєш про прогрес майже всі! Залишилося дізнатися тільки одну формулу, яку за легендами легко вивів для себе один з найбільших математиків усіх часів, «король математиків» - Карл Гаус...

Коли Карлу Гауссу було 9 років, учитель, зайнятий перевіркою робіт учнів інших класів, поставив на уроці таке завдання: «Порахувати суму всіх натуральних чисел від до (за іншими джерелами до) включно». Яке ж було здивування вчителя, коли один із його учнів (це і був Карл Гаусс) через хвилину дав правильну відповідь на поставлене завдання, при цьому більшість однокласників сміливця після довгих підрахунків отримали неправильний результат.

Юний Карл Гаусс помітив деяку закономірність, яку легко помітиш і ти.
Припустимо, у нас є арифметична прогресія, що складається з членів: Нам необхідно знайти суму даних членів арифметичної прогресії. Звичайно, ми можемо вручну підсумувати всі значення, але що робити, якщо в завданні потрібно буде знайти суму її членів, як це шукав Гаус?

Зобразимо задану нам прогресію. Придивись уважно до виділених чисел та спробуй зробити з ними різні математичні дії.


Спробував? Що ти помітив? Правильно! Їхні суми рівні


А тепер дай відповідь, скільки всього набереться таких пар у заданій нам прогресії? Звичайно, рівно половина всіх чисел, тобто.
Виходячи з того, що сума двох членів арифметичної прогресії дорівнює, а подібних рівних пар ми отримуємо, що загальна сума дорівнює:
.
Таким чином, формула для суми перших членів будь-якої арифметичної прогресії буде такою:

У деяких завданнях нам невідомий член, але відома різниця прогресії. Спробуй підставити формулу суми, формулу -го члена.
Що в тебе вийшло?

Молодець! Тепер повернемося до завдання, яке задали Карлу Гаусс: порахуй самостійно, чому дорівнює сума чисел, починаючи від -го, і сума чисел починаючи від -го.

Скільки у тебе вийшло?
Гаус вийшло, що сума членів дорівнює, а сума членів. Чи ти так вирішував?

Насправді формула суми членів арифметичної прогресії була доведена давньогрецьким вченим Діофантом ще в 3 столітті, та й протягом усього цього часу дотепні люди користувалися властивостями арифметичної прогресії.
Наприклад, уяви Стародавній Єгипет і наймасштабніше будівництво того часу - будівництво піраміди ... На малюнку представлена ​​одна її сторона.

Де тут прогресія скажеш ти? Подивися уважно та знайди закономірність у кількості піщаних блоків у кожному ряді стіни піраміди.


Чим не арифметична прогресія? Порахуй, скільки всього блоків необхідно для будівництва однієї стіни, якщо в основу кладеться цегла. Сподіваюся, ти не вважатимеш, водячи пальцем по монітору, ти ж пам'ятаєш останню формулу і все, що ми говорили про арифметичну прогресію?

У разі прогресія виглядає так: .
Різниця арифметичної прогресії.
Кількість членів арифметичної прогресії.
Підставимо останні формули наші дані (порахуємо кількість блоків 2 способами).

Спосіб 1.

Спосіб 2.

А тепер можна і на моніторі порахувати: порівняй отримані значення з тією кількістю блоків, яка є в нашій піраміді. Зійшлося? Молодець, ти освоїв суму членів арифметичної прогресії.
Звичайно, з блоків у підставі піраміду не побудуєш, а от із? Спробуй розрахувати, скільки необхідно піщаної цегли, щоб побудувати стіну з такою умовою.
Впорався?
Вірна відповідь - блоків:

Тренування

Завдання:

  1. Маша приходить у форму до літа. Щодня вона збільшує кількість присідань. Скільки разів присідатиме Маша через тижні, якщо на першому тренуванні вона зробила присідань.
  2. Якою є сума всіх непарних чисел, що містяться в.
  3. Лісоруби при зберіганні колод укладають їх таким чином, що кожен верхній шар містить одну колоду менше, ніж попередній. Скільки колод знаходиться в одній кладці, якщо основою кладки є колод.

Відповіді:

  1. Визначимо параметри арифметичної прогресії. В даному випадку
    (Тижня = днів).

    Відповідь:Через два тижні Маша повинна присідати щодня.

  2. Перше непарне число, останнє число.
    Різниця арифметичної прогресії.
    Кількість непарних чисел в - половина, проте, перевіримо цей факт, використовуючи формулу знаходження члена арифметичної прогресії:

    У числах справді міститься непарних чисел.
    Наявні дані підставимо у формулу:

    Відповідь:Сума всіх непарних чисел, що містяться, дорівнює.

  3. Згадаймо завдання для піраміди. Для нашого випадку a , так як кожен верхній шар зменшується на одну колоду, то всього в купі шарів, тобто.
    Підставимо дані у формулу:

    Відповідь:У кладці знаходиться колод.

Підведемо підсумки

  1. - Чисельна послідовність, в якій різниця між сусідніми числами однакова і дорівнює. Вона буває зростаючою та спадною.
  2. Формула знаходження-го члена арифметичної прогресії записується формулою - , де - Число чисел в прогресії.
  3. Властивість членів арифметичної прогресії- де - кількість чисел у прогресії.
  4. Суму членів арифметичної прогресіїможна знайти двома способами:

    де - кількість значень.

АРИФМЕТИЧНА ПРОГРЕСІЯ. СЕРЕДНІЙ РІВЕНЬ

Числова послідовність

Давай сядемо і почнемо писати якісь числа. Наприклад:

Писати можна будь-які числа, і їх може бути скільки завгодно. Але завжди можна сказати, яке з них перше, яке друге і так далі, тобто, можемо їх пронумерувати. Це і є приклад числової послідовності.

Числова послідовність- це безліч чисел, кожному з яких можна надати унікальний номер.

Іншими словами, кожному числу можна поставити у відповідність якесь натуральне число, причому єдине. І цей номер ми не надамо більше жодному іншому числу з даної множини.

Число з номером називається членом послідовності.

Всю послідовність ми зазвичай називаємо якоюсь літерою (наприклад,), і кожен член цієї послідовності - тією ж літерою з індексом, що дорівнює номеру цього члена: .

Дуже зручно, якщо член послідовності можна задати який-небудь формулою. Наприклад, формула

задає послідовність:

А формула – таку послідовність:

Наприклад, арифметичною прогресією є послідовність (перший член тут дорівнює, а різниця). Або (, різниця).

Формула n-го члена

Рекурентною ми називаємо таку формулу, в якій щоб дізнатися член, потрібно знати попередній або кілька попередніх:

Щоб знайти за такою формулою, наприклад, член прогресії, нам доведеться обчислити попередні дев'ять. Наприклад, хай. Тоді:

Ну що, зрозуміло тепер якась формула?

У кожному рядку ми додаємо, помножене на якесь число. На яке? Дуже просто: це номер поточного члена мінус:

Тепер набагато зручніше, правда? Перевіряємо:

Виріши сам:

В арифметичній прогресії знайти формулу n-го члена та знайти сотий член.

Рішення:

Перший член дорівнює. А чому дорівнює різниця? А ось чому:

(Вона тому і називається різницею, що дорівнює різниці послідовних членів прогресії).

Отже, формула:

Тоді сотий член дорівнює:

Чому дорівнює сума всіх натуральних чисел від до?

За легендою великий математик Карл Гаусс, будучи 9-річним хлопчиком, порахував цю суму за кілька хвилин. Він зауважив, що сума першого та останнього числа дорівнює, сума другого та передостаннього – теж, сума третього та 3-го з кінця – теж, і так далі. Скільки всього набереться таких пар? Правильно, рівно половина кількості всіх чисел, тобто. Отже,

Загальна формула для суми перших членів будь-якої арифметичної прогресії буде такою:

Приклад:
Знайдіть суму всіх двоцифрових чисел, кратних.

Рішення:

Перше таке число – це. Кожне наступне виходить додаванням до попереднього числа. Таким чином, цікаві для нас числа утворюють арифметичну прогресію з першим членом і різницею.

Формула члена для цієї прогресії:

Скільки членів у прогресії, якщо всі вони мають бути двозначними?

Дуже легко: .

Останній член прогресії дорівнюватиме. Тоді сума:

Відповідь: .

Тепер виріши сам:

  1. Щодня спортсмен пробігає на м більше, ніж у попередній день. Скільки всього кілометрів він пробіжить за тижні, якщо першого дня він пробіг км?
  2. Велосипедист проїжджає щодня на км більше, ніж попереднього. Першого дня він проїхав км. Скільки днів йому треба їхати, щоб подолати кілометри? Скільки кілометрів він проїде за останній день шляху?
  3. Ціна холодильника в магазині щорічно зменшується на ту саму суму. Визначте, на скільки щороку зменшувалася ціна холодильника, якщо виставлений на продаж за рублів через шість років був проданий за рублів.

Відповіді:

  1. Тут найголовніше - розпізнати арифметичну прогресію та визначити її параметри. У цьому випадку (тижня = днів). Визначити потрібно суму перших членів цієї прогресії:
    .
    Відповідь:
  2. Тут дано: треба знайти.
    Очевидно, потрібно використовувати ту саму формулу суми, що й у попередньому завданні:
    .
    Підставляємо значення:

    Корінь, очевидно, не підходить, отже, відповідь.
    Порахуємо шлях, пройдений за останній день за допомогою формули члена:
    (Км).
    Відповідь:

  3. Дано: . Знайти: .
    Простіше не буває:
    (Руб).
    Відповідь:

АРИФМЕТИЧНА ПРОГРЕСІЯ. КОРОТКО ПРО ГОЛОВНЕ

Це числова послідовність, у якій різниця між сусідніми числами однакова і дорівнює.

Арифметична прогресія буває зростаючою () та спадною ().

Наприклад:

Формула знаходження n-ого члена арифметичної прогресії

записується формулою, де - кількість чисел у прогресії.

Властивість членів арифметичної прогресії

Воно дозволяє легко знайти член прогресії, якщо відомі його сусідні члени – де – кількість чисел у прогресії.

Сума членів арифметичної прогресії

Існує два способи знаходження суми:

Де – кількість значень.

Де – кількість значень.

Поділіться з друзями або збережіть для себе:

Завантаження...