Метод наближених квадратів. Де застосовується метод найменших квадратів

Знаходить широке застосування економетриці як чіткої економічної інтерпретації її параметрів.

Лінійна регресія зводиться до знаходження рівняння виду

або

Рівняння виду дозволяє за заданими значеннями параметра хмати теоретичні значення результативної ознаки, підставляючи в нього фактичні значення фактора х.

Побудова лінійної регресіїзводиться до оцінки її параметрів аі в.Оцінки параметрів лінійної регресії можна знайти різними методами.

Класичний підхід до оцінювання параметрів лінійної регресії заснований на методі найменших квадратів (МНК).

МНК дозволяє отримати такі оцінки параметрів аі в,при яких сума квадратів відхилень фактичних значень результативної ознаки (у)від розрахункових (теоретичних) мінімальна:

Щоб знайти мінімум функції, треба обчислити часткові похідні по кожному з параметрів аі bта прирівняти їх до нуля.

Позначимо через S, тоді:

Перетворюючи формулу, отримаємо таку систему нормальних рівняньдля оцінки параметрів аі в:

Вирішуючи систему нормальних рівнянь (3.5) чи шляхом послідовного виключеннязмінних, чи шляхом визначників, знайдемо шукані оцінки властивостей аі в.

Параметр вназивається коефіцієнтом регресії. Його величина показує середню зміну результату із зміною фактора на одну одиницю.

Рівняння регресії завжди доповнюється показником тісноти зв'язку. При використанні лінійної регресії як такий показник виступає лінійний коефіцієнт кореляції. Існують різні модифікації формули лінійного коефіцієнтакореляції. Деякі з них наведені нижче:

Як відомо, лінійний коефіцієнт кореляції знаходиться у межах: -1 1.

Для оцінки якості підбору лінійної функціїрозраховується квадрат

Лінійний коефіцієнт кореляції званий коефіцієнтом детермінації.Коефіцієнт детермінації характеризує частку дисперсії результативної ознаки у,пояснювану регресією, в загальної дисперсіїрезультативної ознаки:

Відповідно величина 1 - характеризує частку диспер-сії у,викликану впливом інших не врахованих у моделі чинників.

Запитання для самоконтролю

1. Суть методу найменших квадратів?

2. Скільки змінних надається парна регресія?

3. Яким коефіцієнтом визначається тіснота зв'язку між змінами?

4. У яких межах визначається коефіцієнт детермінації?

5. Оцінка параметра b у кореляційно-регресійному аналізі?

1. Крістофер Доугерті. Введення в економетрію. – М.: ІНФРА – М, 2001 – 402 с.

2. С.А. Бородіч. Економетрики. Мінськ ТОВ "Нове знання" 2001.


3. Р.У. Рахметова Короткий курсз економетрики. Навчальний посібник. Алмати. 2004. -78с.

4. І.І. Елісєєва. Економетрика. - М.: «Фінанси та статистика», 2002

5. Щомісячний інформаційно-аналітичний журнал.

Нелінійні економічні моделі. Нелінійні моделі регресії. Перетворення змінних.

Нелінійні економічні моделі.

Перетворення змінних.

Коефіцієнт еластичності.

Якщо між економічними явищами існують нелінійні співвідношення, то вони виражаються за допомогою відповідних нелінійних функцій: наприклад, рівносторонньої гіперболи , параболи другого ступеня та ін.

Розрізняють два класи нелінійних регресій:

1. Регресії, нелінійні щодо включених в аналіз пояснюючих змінних, але лінійні за параметрами, що оцінюються, наприклад:

Поліноми різних ступенів - , ;

Рівностороння гіпербола -;

Напівлогарифмічна функція - .

2. Регресії, нелінійні за параметрами, що оцінюються, наприклад:

Ступінна -;

Показова -;

Експонентна - .

Загальна сума квадратів відхилень індивідуальних значень результативної ознаки увід середнього значення спричинена впливом безлічі причин. Умовно розділимо всю сукупність причин на дві групи: досліджуваний фактор хі інші фактори.

Якщо фактор не впливає на результат, то лінія регресії на графіку паралельна осі охі

Тоді вся дисперсія результативної ознаки обумовлена ​​впливом інших факторів та Загальна сумаквадратів відхилень збігається з залишковою. Якщо інші чинники не впливають на результат, то у пов'язанийз хфункціонально та залишкова сума квадратів дорівнює нулю. І тут сума квадратів відхилень, пояснена регресією, збігається із загальною сумою квадратів.

Оскільки не всі точки поля кореляції лежать на лінії регресії, то завжди має місце їх розкид як обумовлений впливом фактора х, тобто регресією упо х,і викликаний дією інших причин (непояснена варіація). Придатність лінії регресії для прогнозу залежить від того, яка частина загальної варіації ознаки уприпадає на пояснену варіацію

Очевидно, що якщо сума квадратів відхилень, обумовлена ​​регресією, буде більшою від залишкової суми квадратів, то рівняння регресії статистично значуще і фактор хістотно впливає на результат у.

, тобто з числом свободи незалежного варіювання ознаки. Число ступенів свободи пов'язане з числом одиниць сукупності n і з числом констант, що визначаються за нею. Стосовно досліджуваної проблеми число ступенів свободи має показати, скільки незалежних відхилень з п

Оцінка значущості рівняння регресії в цілому дається за допомогою F-Крітерія Фішера. У цьому висувається нульова гіпотеза, що коефіцієнт регресії дорівнює нулю, тобто. b = 0, і отже, фактор хне впливає на результат у.

Безпосереднім розрахунком F-критерію передує аналіз дисперсії. Центральне місцеу ньому займає розкладання загальної суми квадратів відхилень змінної увід середнього значення уна дві частини - «пояснену» та «непояснену»:

- загальна сума квадратів відхилень;

- Сума квадратів відхилення пояснена регресією;

- Залишкова сума квадратів відхилення.

Будь-яка сума квадратів відхилень пов'язана з числом ступенів свободи , тобто з числом свободи незалежного варіювання ознаки. Число ступенів свободи пов'язане з числом одиниць сукупності nі з числом визначених нею констант. Стосовно досліджуваної проблеми число ступенів свободи має показати, скільки незалежних відхилень з пможливих потрібно освіти цієї суми квадратів.

Дисперсія на один ступінь свободиD.

F-відносини (F-критерій):

Якщо нульова гіпотеза справедлива, то факторна і залишкова дисперсіяне відрізняються одна від одної. Для Н 0 необхідно спростування, щоб факторна дисперсія перевищувала залишкову у кілька разів. Англійським статистиком Снедекором розроблені таблиці критичних значень F-відносин при різних рівнях суттєвості нульової гіпотези та різному числі ступенів свободи. Табличне значення F-критерія - це максимальна величина відношення дисперсій, яка може мати місце привипадковому їх розбіжності для даного рівняймовірність наявності нульової гіпотези. Обчислене значення F-відносини визнається достовірним, якщо про більше табличного.

У цьому випадку нульова гіпотеза про відсутність зв'язку ознак відхиляється і робиться висновок про суттєвість зв'язку: F факт > F таблН0 відхиляється.

Якщо ж величина виявиться меншою за табличну F факт ‹, F табл, то ймовірність нульової гіпотези вище заданого рівня і вона може бути відхилена без серйозного ризику зробити неправильний висновок про наявність зв'язку. І тут рівняння регресії вважається статистично незначимим. Але не відхиляється.

Стандартна помилка коефіцієнта регресії

Для оцінки суттєвості коефіцієнта регресії його величина порівнюється з його стандартною помилкою, тобто визначається фактичне значення t-критерія Стьюдента: яке потім порівнюється з табличним значенням при певному рівні значущості та числі ступенів свободи ( n- 2).

Стандартна помилка параметра а:

Значимість лінійного коефіцієнта кореляції перевіряється на основі величини помилки коефіцієнта кореляції т r:

Загальна дисперсія ознаки х:

Множинна лінійна регресія

Побудова моделі

Множинна регресіяє регресією результативної ознаки з двома і більшим числомфакторів, тобто модель виду

Регресія може дати хороший результат при моделюванні, якщо впливом інших факторів, що впливають на об'єкт дослідження, можна знехтувати. Поведінка окремих економічних змінних контролювати не можна, тобто не вдається забезпечити рівність всіх інших умов для оцінки впливу одного досліджуваного фактора. У цьому випадку слід спробувати виявити вплив інших факторів, ввівши їх у модель, тобто пострівати рівняння множинної регресії: y = a+b 1 x 1 +b 2 +…+b p x p + .

Основна мета множинної регресії - побудувати модель з великою кількістю факторів, визначивши при цьому вплив кожного з них окремо, а також сукупний їх вплив на показник, що моделюється. Специфікація моделі включає два кола питань: відбір факторів і вибір виду рівняння регресії

приклад.

Експериментальні дані про значення змінних хі унаведено у таблиці.

В результаті їх вирівнювання отримано функцію

Використовуючи метод найменших квадратів, апроксимувати ці дані лінійною залежністю y=ax+b(Знайти параметри аі b). З'ясувати, яка з двох ліній краще (у сенсі способу найменших квадратів) вирівнює експериментальні дані. Зробити креслення.

Суть методу найменших квадратів (МНК).

Завдання полягає у знаходженні коефіцієнтів лінійної залежності, при яких функція двох змінних аі b набуває найменшого значення. Тобто, за даними аі bсума квадратів відхилень експериментальних даних від знайденої прямої буде найменшою. У цьому суть методу найменших квадратів.

Таким чином, рішення прикладу зводиться до знаходження екстремуму функції двох змінних.

Висновок формул знаходження коефіцієнтів.

Складається та вирішується система із двох рівнянь із двома невідомими. Знаходимо приватні похідні функції за змінними аі b, Прирівнюємо ці похідні до нуля.

Вирішуємо отриману систему рівнянь будь-яким методом (наприклад методом підстановкиабо методом Крамера) та отримуємо формули для знаходження коефіцієнтів за методом найменших квадратів (МНК).

За даними аі bфункція набуває найменшого значення. Доказ цього факту наведено нижче за текстом наприкінці сторінки.

Ось і весь спосіб найменших квадратів. Формула для знаходження параметра aмістить суми ,,,і параметр n- Кількість експериментальних даних. Значення цих сум рекомендуємо обчислювати окремо. Коефіцієнт bзнаходиться після обчислення a.

Настав час згадати про вихідний приклад.

Рішення.

У нашому прикладі n=5. Заповнюємо таблицю для зручності обчислення сум, що входять до формул шуканих коефіцієнтів.

Значення у четвертому рядку таблиці отримані множенням значень 2-го рядка на значення 3-го рядка для кожного номера i.

Значення у п'ятому рядку таблиці отримані зведенням у квадрат значень другого рядка для кожного номера i.

Значення останнього стовпця таблиці – це суми значень рядків.

Використовуємо формули методу найменших квадратів для знаходження коефіцієнтів аі b. Підставляємо у них відповідні значення з останнього стовпця таблиці:

Отже, y = 0.165x+2.184- пряма апроксимуюча.

Залишилося з'ясувати, яка з ліній y = 0.165x+2.184або краще апроксимує вихідні дані, тобто провести оцінку шляхом найменших квадратів.

Оцінка похибки способу менших квадратів.

Для цього потрібно обчислити суми квадратів відхилень вихідних даних від цих ліній і менше значення відповідає лінії, яка краще в сенсі методу найменших квадратів апроксимує вихідні дані.

Оскільки , то пряма y = 0.165x+2.184краще наближає вихідні дані.

Графічна ілюстрація методу найменших квадратів (МНК).

На графіках все чудово видно. Червона лінія – це знайдена пряма y = 0.165x+2.184, синя лінія – це , Рожеві точки - це вихідні дані.

На практиці при моделюванні різних процесів - зокрема, економічних, фізичних, технічних, соціальних - широко використовуються ті чи інші способи обчислення наближених значень функцій за відомими значеннями в деяких фіксованих точках.

Такі завдання наближення функцій часто виникають:

    при побудові наближених формул для обчислення значень характерних величин досліджуваного процесу за табличними даними, отриманими в результаті експерименту;

    при чисельному інтегруванні, диференціюванні, рішенні диференціальних рівняньі т.д.;

    при необхідності обчислення значень функцій у проміжних точках інтервалу, що розглядається;

    щодо значень характерних величин процесу поза розглядуваного інтервалу, зокрема при прогнозуванні.

Якщо для моделювання деякого процесу, заданого таблицею, побудувати функцію, що наближено описує даний процес на основі методу найменших квадратів, вона буде називатися апроксимуючою функцією (регресією), а завдання побудови апроксимуючих функцій - завданням апроксимації.

У цій статті розглянуто можливості пакету MS Excel для вирішення такого роду завдань, крім того, наведено методи та прийоми побудови (створення) регресій для таблично заданих функцій(що є основою регресійного аналізу).

Excel для побудови регресій є дві можливості.

    Додавання обраних регресій (ліній тренду - trendlines) у діаграму, побудовану на основі таблиці даних для досліджуваної характеристики процесу (доступне лише за наявності побудованої діаграми);

    Використання вбудованих статистичних функцій робочого листа Excel, дозволяють отримувати регресії (лінії тренду) безпосередньо з урахуванням таблиці вихідних даних.

Додавання ліній тренду до діаграми

Для таблиці даних, що описують деякий процес і представлених діаграмою, Excel є ефективний інструмент регресійного аналізу, що дозволяє:

    будувати на основі методу найменших квадратів і додавати в діаграму п'ять типів регресій, які з тим чи іншим ступенем точності моделюють досліджуваний процес;

    додавати до діаграми рівняння побудованої регресії;

    визначати ступінь відповідності обраної регресії даних, що відображаються на діаграмі.

На основі даних діаграми Excel дозволяє отримувати лінійний, поліноміальний, логарифмічний, статечний, експоненційний типи регресій, які задаються рівнянням:

y = y(x)

де x - незалежна змінна, яка часто набуває значення послідовності натурального ряду чисел (1; 2; 3; …) і здійснює, наприклад, відлік часу протікання досліджуваного процесу (характеристики).

1 . Лінійна регресія хороша при моделюванні характеристик, значення яких збільшуються або зменшуються з постійною швидкістю. Це найпростіша у побудові модель досліджуваного процесу. Вона будується відповідно до рівняння:

y = mx + b

де m – тангенс кута нахилу лінійної регресії до осі абсцис; b - координата точки перетину лінійної регресії з віссю ординат.

2 . Поліноміальна лінія тренду корисна для опису характеристик, що мають кілька яскраво виражених екстремумів (максимумів та мінімумів). Вибір ступеня полінома визначається кількістю екстремумів досліджуваної характеристики. Так, поліном другого ступеня може добре описати процес, що має лише один максимум або мінімум; поліном третього ступеня - трохи більше двох екстремумів; поліном четвертого ступеня - трохи більше трьох екстремумів тощо.

У цьому випадку лінія тренду будується відповідно до рівняння:

y = c0 + c1x + c2x2 + c3x3 + c4x4 + c5x5 + c6x6

де коефіцієнти c0, c1, c2, c6 - константи, значення яких визначаються в ході побудови.

3 . Логарифмічна лінія тренду успішно застосовується при моделюванні характеристик, значення яких спочатку швидко змінюються, та був поступово стабілізуються.

y = c ln(x) + b

4 . Ступінна лінія тренду дає хороші результати, якщо значення досліджуваної залежності характеризуються постійною зміною швидкості зростання. Прикладом такої залежності може бути графік рівноприскореного руху автомобіля. Якщо серед даних зустрічаються нульові або від'ємні значення, використовувати статечну лінію тренду не можна.

Будується відповідно до рівняння:

y = c xb

де коефіцієнти b, с – константи.

5 . Експонентну лінію тренда слід використовувати у тому випадку, якщо швидкість зміни даних безперервно зростає. Для даних, що містять нульові або негативні значення, цей вид наближення також не застосовується.

Будується відповідно до рівняння:

y = c ebx

де коефіцієнти b, с – константи.

При підборі лінії тренду Excel автоматично розраховує значення величини R2, яка характеризує достовірність апроксимації: чим ближче значення R2 до одиниці, тим надійніше лінія тренду апроксимує досліджуваний процес. За потреби значення R2 завжди можна відобразити на діаграмі.

Визначається за такою формулою:

Для додавання лінії тренду до ряду даних слід:

    активізувати побудовану з урахуванням низки даних діаграму, т. е. клацнути у межах області діаграми. У головному меню з'явиться пункт Діаграма;

    після натискання на цьому пункті на екрані з'явиться меню, в якому слід вибрати команду Додати лінію тренда.

Ці ж дії легко реалізуються, якщо навести покажчик миші на графік, що відповідає одному з рядів даних, та клацнути правою кнопкою миші; у контекстному меню, що з'явилося, вибрати команду Додати лінію тренда. На екрані з'явиться діалогове вікно Лінія тренду з відкритою вкладкою Тип (рис. 1).

Після цього необхідно:

Вибрати на вкладці Тип необхідний тип лінії тренда (за замовчуванням вибирається тип Лінійний). Для Поліноміального типу в полі Ступінь слід задати ступінь обраного полінома.

1 . У полі Побудований ряд перераховані всі ряди даних аналізованої діаграми. Для додавання лінії тренда до конкретного ряду даних слід у полі Побудований на ряді вибрати його ім'я.

При необхідності, перейшовши на вкладку Параметри (мал. 2), можна для лінії тренда задати такі параметри:

    змінити назву лінії тренду в полі Назва апроксимуючої (згладженої) кривої.

    задати кількість періодів (вперед чи назад) для прогнозу у полі Прогноз;

    вивести в ділянку діаграми рівняння лінії тренда, для чого слід включити прапорець показати рівняння на діаграмі;

    вивести в ділянку діаграми значення достовірності апроксимації R2, для чого слід включити прапорець помістити на діаграму величину достовірності апроксимації (R^2);

    задати точку перетину лінії тренду з віссю Y, навіщо слід включити прапорець перетин кривої з віссю Y у точці;

    клацнути на кнопці OK, щоб закрити діалогове вікно.

Для того, щоб розпочати редагування вже побудованої лінії тренду, існує три способи:

    скористатися командою Виділена лінія тренду з меню Формат, вибравши попередньо лінію тренда;

    вибрати команду Формат лінії тренда з контекстного меню, яке викликається клацанням правої кнопки миші по лінії тренду;

    подвійним клацанням по лінії тренду.

На екрані з'явиться діалогове вікно Формат лінії тренду (рис. 3), що містить три вкладки: Вид, Тип, Параметри, причому вміст останніх двох повністю збігається з аналогічними вкладками діалогового вікна Лінія тренду (рис.1-2). На вкладці Вигляд можна задати тип лінії, її колір та товщину.

Для видалення вже побудованої лінії тренда слід вибрати лінію тренда, що видаляється, і натиснути клавішу Delete.

Перевагами розглянутого інструменту регресійного аналізу є:

    відносна легкість побудови на діаграмах лінії тренду без створення нею таблиці даних;

    досить широкий перелік типів запропонованих ліній трендів, причому до цього переліку входять найчастіше використовувані типи регресії;

    можливість прогнозування поведінки досліджуваного процесу на довільне (у межах здорового глузду) кількість кроків уперед, а також назад;

    можливість одержання рівняння лінії тренда в аналітичному вигляді;

    можливість, за потреби, отримання оцінки достовірності проведеної апроксимації.

До недоліків можна віднести такі моменти:

    побудова лінії тренду здійснюється лише за наявності діаграми, побудованої ряді даних;

    процес формування рядів даних для досліджуваної характеристики на основі отриманих для неї рівнянь ліній тренду дещо захаращений: шукані рівняння регресій оновлюються при кожній зміні значень вихідного ряду даних, але тільки в межах області діаграми, тоді як ряд даних, сформований на основі старого рівняння лінії тренду, залишається без зміни;

    у звітах зведених діаграм при зміні представлення діаграми або пов'язаного звіту зведеної таблиці наявні лінії тренду не зберігаються, тобто до проведення ліній тренду або іншого форматування звіту зведених діаграм слід переконатися, що макет звіту відповідає необхідним вимогам.

Лініями тренду можна доповнити ряди даних, представлені на діаграмах типу графік, гістограма, плоскі ненормовані діаграми з областями, лінійчасті, точкові, пухирцеві та біржові.

Не можна доповнити лініями тренду ряди даних на об'ємних, нормованих, пелюсткових, кругових та кільцевих діаграмах.

Використання вбудованих функцій Excel

В Excel є також інструмент регресійного аналізу для побудови ліній тренду поза ділянкою діаграми. З цією метою можна використовувати низку статистичних функцій робочого листа, проте вони дозволяють будувати лише лінійні чи експоненційні регресії.

В Excel є кілька функцій для побудови лінійної регресії, зокрема:

    ТЕНДЕНЦІЯ;

  • Нахил і відрізок.

А також кілька функцій для побудови експоненційної лінії тренду, зокрема:

    ЛДРФПРИБЛ.

Слід зазначити, що прийоми побудови регресій за допомогою функцій ТЕНДЕНЦІЯ та РОСТ практично збігаються. Те саме можна сказати і про пару функцій Лінейн і ЛГРФПРИБЛ. Для чотирьох цих функцій під час створення таблиці значень використовуються такі можливості Excel, як формули масивів, що дещо захаращує процес побудови регресій. Зауважимо також, що побудова лінійної регресії, на наш погляд, найлегше здійснити за допомогою функцій НАКЛОН та ВІДРІЗОК, де перша з них визначає кутовий коефіцієнт лінійної регресії, а друга - відрізок, що відсікається регресією на осі ординат.

Достоїнствами інструменту вбудованих функцій для регресійного аналізу є:

    досить простий однотипний процес формування рядів даних досліджуваної характеристики всім вбудованих статистичних функцій, що задають лінії тренду;

    стандартна методика побудови ліній тренду на основі сформованих рядів даних;

    можливість прогнозування поведінки досліджуваного процесу на необхідна кількістькроків уперед чи назад.

А до недоліків відноситься те, що в Excel немає вбудованих функцій для створення інших (крім лінійного та експонентного) типів ліній тренду. Ця обставина часто дозволяє підібрати досить точну модель досліджуваного процесу, і навіть отримати близькі до реальності прогнози. Крім того, при використанні функцій ТЕНДЕНЦІЯ та РОСТ не відомі рівняння ліній тренду.

Слід зазначити, що автори не ставили за мету статті викладення курсу регресійного аналізу з тим чи іншим ступенем повноти. Основне її завдання - на конкретних прикладах показати можливості пакета Excel під час вирішення завдань апроксимації; продемонструвати, якими ефективними інструментами для побудови регресій та прогнозування має Excel; проілюструвати, як щодо легко такі завдання можуть бути вирішені навіть користувачем, який не володіє глибокими знаннями регресійного аналізу.

Приклади вирішення конкретних завдань

Розглянемо рішення конкретних завдань за допомогою перерахованих інструментів Excel.

Завдання 1

З таблицею даних про прибуток автотранспортного підприємства за 1995-2002 рр. необхідно виконати такі дії.

    Побудувати діаграму.

    У діаграму додати лінійну та поліноміальну (квадратичну та кубічну) лінії тренду.

    Використовуючи рівняння ліній тренду, отримати табличні дані щодо прибутку підприємства для кожної лінії тренду за 1995-2004 роки.

    Скласти прогноз щодо прибутку підприємства на 2003 та 2004 роки.

Рішення задачі

    У діапазон осередків A4:C11 робочого листа Excel вводимо робочу таблицю, подану на рис. 4.

    Виділивши діапазон осередків В4: С11, будуємо діаграму.

    Активізуємо побудовану діаграму та за описаною вище методикою після вибору типу лінії тренду в діалоговому вікні Лінія тренду (див. рис. 1) по черзі додаємо в діаграму лінійну, квадратичну та кубічну лінії тренду. У цьому ж діалоговому вікні відкриваємо вкладку Параметри (див. рис. 2), в полі Назва апроксимуючої (згладженої) кривої вводимо найменування тренда, що додається, а в полі Прогноз вперед на: періодів задаємо значення 2, так як планується зробити прогноз по прибутку на два року наперед. Для виведення в області діаграми рівняння регресії та значення достовірності апроксимації R2 включаємо прапорці показувати рівняння на екрані та помістити на діаграму величину достовірності апроксимації (R^2). Для кращого візуального сприйняття змінюємо тип, колір та товщину побудованих ліній тренду, для чого скористаємося вкладкою Вид діалогового вікна Формат лінії тренда (див. рис. 3). Отримана діаграма із доданими лініями тренду представлена ​​на рис. 5.

    Для отримання табличних даних щодо прибутку підприємства для кожної лінії тренду за 1995-2004 роки. скористаємось рівняннями ліній тренду, представленими на рис. 5. Для цього в комірки діапазону D3:F3 вводимо текстову інформацію про тип обраної лінії тренду: Лінійний тренд, Квадратичний тренд, Кубічний тренд. Далі вводимо в комірку D4 формулу лінійної регресії і, використовуючи маркер заповнення, копіюємо цю формулу з відносними посиланнями діапазону комірок D5:D13. Слід зазначити, що кожному осередку з формулою лінійної регресії з діапазону осередків D4:D13 як аргумент стоїть відповідний осередок з діапазону A4:A13. Аналогічно для квадратичної регресії заповнюється діапазон осередків E4: E13, а кубічної регресії - діапазон осередків F4: F13. Таким чином, складено прогноз щодо прибутку підприємства на 2003 та 2004 роки. за допомогою трьох трендів. Отримана таблиця значень представлена ​​рис. 6.

Завдання 2

    Побудувати діаграму.

    У діаграму додати логарифмічну, статечну та експоненційну лінії тренду.

    Вивести рівняння отриманих ліній тренду, і навіть величини достовірності апроксимації R2 кожної з них.

    Використовуючи рівняння ліній тренду, отримати табличні дані про прибуток підприємства кожної лінії тренду за 1995-2002 гг.

    Скласти прогноз про прибуток підприємства на 2003 та 2004 рр., використовуючи ці лінії тренду.

Рішення задачі

Дотримуючись методики, наведеної при вирішенні задачі 1, отримуємо діаграму з доданими до неї логарифмічної, статечної та експоненційної лініями тренду (рис. 7). Далі, використовуючи отримані рівняння ліній тренду, заповнюємо таблицю значень із прибутку підприємства, включаючи прогнозовані значення на 2003 та 2004 роки. (Рис. 8).

На рис. 5 та рис. видно, що моделі з логарифмічним трендом відповідає найменше значення достовірності апроксимації.

R2 = 0,8659

Найбільші значення R2 відповідають моделям з поліноміальним трендом: квадратичним (R2 = 0,9263) і кубічним (R2 = 0,933).

Завдання 3

З таблицею даних про прибуток автотранспортного підприємства за 1995-2002 рр., що наведена в задачі 1, необхідно виконати такі дії.

    Отримати ряди даних для лінійної та експоненційної лінії тренду з використанням функцій ТЕНДЕНЦІЯ та РОСТ.

    Використовуючи функції ТЕНДЕНЦІЯ та РОСТ, скласти прогноз про прибуток підприємства на 2003 та 2004 роки.

    Для вихідних даних та отриманих рядів даних побудувати діаграму.

Рішення задачі

Скористайтеся робочою таблицею задачі 1 (див. рис. 4). Почнемо з функції ТЕНДЕНЦІЯ:

    виділяємо діапазон осередків D4:D11, який слід заповнити значеннями функції ТЕНДЕНЦІЯ, що відповідають відомим даним про прибуток підприємства;

    викликаємо команду Функція з меню Вставка. У діалоговому вікні Майстер функцій виділяємо функцію ТЕНДЕНЦІЯ з категорії Статистичні, після чого клацаємо по кнопці ОК. Цю операцію можна здійснити натисканням кнопки (Вставка функції) стандартної панелі інструментів.

    У діалоговому вікні, що з'явилося Аргументи функції вводимо в поле Відомі_значення_y діапазон осередків C4:C11; у полі Відомі_значення_х - діапазон осередків B4: B11;

    щоб формула, що вводиться, стала формулою масиву, використовуємо комбінацію клавіш + + .

Введена нами формула у рядку формул матиме вигляд: =(ТЕНДЕНЦІЯ(C4:C11;B4:B11)).

В результаті діапазон осередків D4:D11 заповнюється відповідними значеннями функції ТЕНДЕНЦІЯ (рис. 9).

Для складання прогнозу про прибуток підприємства на 2003 та 2004 роки. необхідно:

    виділити діапазон осередків D12:D13, куди заноситимуться значення, прогнозовані функцією ТЕНДЕНЦІЯ.

    викликати функцію ТЕНДЕНЦІЯ і в діалоговому вікні, що з'явилося Аргументи функції ввести в поле Відомі_значення_y - діапазон осередків C4:C11; у полі Відомі_значення_х - діапазон осередків B4: B11; а в полі Нові_значення_х - діапазон осередків B12: B13.

    перетворити цю формулу на формулу масиву, використовуючи комбінацію клавіш Ctrl + Shift + Enter.

    Введена формула матиме вигляд: =(ТЕНДЕНЦІЯ(C4:C11;B4:B11;B12:B13)), а діапазон осередків D12:D13 заповниться прогнозованими значеннями функції ТЕНДЕНЦІЯ (див. рис. 9).

Аналогічно заповнюється ряд даних за допомогою функції РОСТ, яка використовується при аналізі нелінійних залежностей і працює так само, як її лінійний аналог ТЕНДЕНЦІЯ.

На рис.10 представлена ​​таблиця як показу формул.

Для вихідних даних та отриманих рядів даних побудовано діаграму, зображену на рис. 11.

Завдання 4

З таблицею даних про вступ до диспетчерської служби автотранспортного підприємства заявок на послуги за період з 1 по 11 число поточного місяця необхідно виконати такі дії.

    Отримати ряди даних для лінійної регресії: використовуючи функції НАКЛОН та ВІДРІЗОК; використовуючи функцію Лінейн.

    Отримати ряд даних для експоненційної регресії з використанням функції ЛГРФПРИБЛ.

    Використовуючи вищезгадані функції, скласти прогноз про надходження заявок до диспетчерської служби на період з 12 до 14 числа поточного місяця.

    Для вихідних та отриманих рядів даних побудувати діаграму.

Рішення задачі

Зазначимо, що, на відміну від функцій ТЕНДЕНЦІЯ і ЗРОСТАННЯ, жодна з перерахованих вище функцій (НАХИЛ, ВІДРІЗОК, ЛІНІЙН, ЛГРФПРИБ) не є регресією. Ці функції грають лише допоміжну роль, визначаючи необхідні параметри регресії.

Для лінійної та експоненційної регресій, побудованих за допомогою функцій НАКЛОН, ВІДРІЗОК, ЛІНІЙН, ЛГРФПРИБ, зовнішній вигляд їх рівнянь завжди відомий, на відміну від лінійної та експоненційної регресій, що відповідають функціям ТЕНДЕНЦІЯ та РОЗДІЛ.

1 . Побудуємо лінійну регресію, яка має рівняння:

y = mx+b

за допомогою функцій НАХИЛ і ВІДРІЗОК, причому кутовий коефіцієнт регресії m визначається функцією НАХИЛ, а вільний член b - функцією ВІДРІЗОК.

Для цього здійснюємо такі дії:

    заносимо вихідну таблицю в діапазон осередків A4: B14;

    значення параметра m буде визначатися в комірці С19. Вибираємо з категорії Статистичні функції Нахил; заносимо діапазон осередків B4:B14 у поле відомі_значення_y та діапазон осередків А4:А14 у поле відомі_значення_х. У комірку С19 буде введена формула: = НАХЛАН(B4:B14;A4:A14);

    за аналогічною методикою визначається значення параметра b у комірці D19. І її вміст матиме вигляд: = ВІДРІЗОК (B4: B14; A4: A14). Таким чином, необхідні для побудови лінійної регресії значення параметрів m і b зберігатимуться відповідно в осередках C19, D19;

    далі заносимо в комірку С4 формулу лінійної регресії як: =$C*A4+$D. У цій формулі осередки С19 та D19 записані з абсолютними посиланнями (адреса осередку не повинна змінюватися при можливому копіюванні). Знак абсолютного посилання $ можна набити або з клавіатури або за допомогою клавіші F4, попередньо встановивши курсор на адресу комірки. Скориставшись маркером наповнення, копіюємо цю формулу в діапазон осередків С4:С17. Отримуємо потрібний ряд даних (рис. 12). У зв'язку з тим, що кількість заявок - ціле число, слід встановити на вкладці Число вікна Формат осередків числовий формат із числом десяткових знаків 0.

2 . Тепер збудуємо лінійну регресію, задану рівнянням:

y = mx+b

за допомогою функції ЛІНІЙН.

Для цього:

    вводимо в діапазон осередків C20:D20 функцію ЛІНІЙН як формулу масиву: =(ЛІНЕЙН(B4:B14;A4:A14)). В результаті отримуємо в комірці C20 значення параметра m, а в комірці D20 значення параметра b;

    вводимо в комірку D4 формулу: = $ C * A4 + $ D;

    копіюємо цю формулу за допомогою маркера заповнення в діапазон осередків D4: D17 і отримуємо ряд даних, що шукається.

3 . Будуємо експоненційну регресію, яка має рівняння:

за допомогою функції ЛГРФПРИБЛ воно виконується аналогічно:

    в діапазон осередків C21:D21 вводимо функцію ЛГРФПРИБЛ як формулу масиву: =( ЛГРФПРИБЛ (B4:B14;A4:A14)). При цьому в комірці C21 буде визначено значення параметра m, а в комірці D21 значення параметра b;

    у комірку E4 вводиться формула: =$D*$C^A4;

    за допомогою маркера заповнення ця формула копіюється в діапазон клітин E4:E17, де і розташується ряд даних для експоненційної регресії (див. рис. 12).

На рис. 13 наведено таблицю, де видно використовувані нами функції з необхідними діапазонами осередків, а також формули.

Величина R 2 називається коефіцієнтом детермінації.

Завданням побудови регресійної залежності є знаходження вектора коефіцієнтів m моделі (1) при якому коефіцієнт R набуває максимального значення.

Для оцінки значущості R застосовується F-критерій Фішера, що обчислюється за формулою

де n- розмір вибірки (кількість експериментів);

k – число коефіцієнтів моделі.

Якщо F перевищує деяке критичне значення для даних nі kі прийнятої довірчої ймовірності, величина R вважається істотною. Таблиці критичних значень F наводяться у довідниках математичної статистики.

Отже, значимість R визначається як його величиною, а й співвідношенням між кількістю експериментів і кількістю коефіцієнтів (параметрів) моделі. Дійсно, кореляційне відношення для n=2 для простої лінійної моделі дорівнює 1 (через 2 точки на площині завжди можна провести єдину пряму). Однак, якщо експериментальні дані є випадковими величинами, довіряти такому значенню R слід з великою обережністю. Зазвичай отримання значимого R і достовірної регресії прагнуть до того, щоб кількість експериментів істотно перевищувала кількість коефіцієнтів моделі (n>k).

Для побудови лінійної регресійної моделінеобхідно:

1) підготувати список з n рядків і m стовпців, що містить експериментальні дані (стовпець, що містить вихідну величину Yмає бути або першим, або останнім у списку); Наприклад візьмемо дані попереднього завдання, додавши стовпець під назвою "№ періоду", пронумеруємо номери періодів від 1 до 12. (це значення Х)

2) звернутися до меню Дані/Аналіз даних/Регресія

Якщо пункт "Аналіз даних" у меню "Сервіс" відсутній, слід звернутися до пункту "Надбудови" того ж меню і встановити прапорець "Пакет аналізу".

3) у діалоговому вікні "Регресія" задати:

· Вхідний інтервал Y;

· Вхідний інтервал X;

· Вихідний інтервал - верхній лівий осередок інтервалу, в який будуть розміщуватися результати обчислень (рекомендується розмістити на новому робочому аркуші);

4) натиснути "Ok" та проаналізувати результати.

Після вирівнювання отримаємо функцію наступного виду: g(x) = x + 1 3 + 1 .

Ми можемо апроксимувати ці дані за допомогою лінійної залежності y = a x + b, обчисливши відповідні параметри. Для цього нам потрібно буде застосувати так званий метод найменших квадратів. Також потрібно зробити креслення, щоб перевірити, яка лінія краще вирівнюватиме експериментальні дані.

Yandex.RTB R-A-339285-1

У чому полягає МНК (метод найменших квадратів)

Головне, що нам потрібно зробити, – знайти такі коефіцієнти лінійної залежності, при яких значення функції двох змінних F (a, b) = ∑ i = 1 n (y i - (a x i + b)) 2 буде найменшим. Інакше кажучи, при певних значеннях a і b сума квадратів відхилень представлених даних від прямої буде мати мінімальне значення. У цьому полягає сенс методу найменших квадратів. Все, що нам треба зробити для вирішення прикладу, – це знайти екстремум функції двох змінних.

Як вивести формули для обчислення коефіцієнтів

Для того щоб вивести формули для обчислення коефіцієнтів, потрібно скласти та вирішити систему рівнянь із двома змінними. Для цього ми обчислюємо окремі похідні вирази F (a, b) = ∑ i = 1 n (y i - (a x i + b)) 2 по a і b і прирівнюємо їх до 0 .

δ F (a , b) δ a = 0 δ F (a , b) δ b = 0 ⇔ - 2 ∑ i = 1 n (y i - (a x i + b)) x i = 0 - 2 ∑ i = 1 n ( y i - (a x i + b)) = 0 ⇔ a ∑ i = 1 n x i 2 + b ∑ i = 1 n x i = ∑ i = 1 n x i y i a ∑ i = 1 n x i + ∑ i = 1 n b = ∑ i = 1 ∑ i = 1 n x i 2 + b ∑ i = 1 n x i = ∑ i = 1 n x i y i a ∑ i = 1 n x i + n b = ∑ i = 1 n y i

Для вирішення системи рівнянь можна використовувати будь-які методи, наприклад підстановку або метод Крамера. У результаті маємо вийти формули, з допомогою яких обчислюються коефіцієнти методом найменших квадратів.

n ∑ i = 1 n x i y i - ∑ i = 1 n x i ∑ i = 1 n y i n ∑ i = 1 n - ∑ i = 1 n x i 2 b = ∑ i = 1 n y i - a ∑ i = 1 n x i n

Ми вирахували значення змінних, при яких функція
F (a, b) = ∑ i = 1 n (y i - (a x i + b)) 2 прийме мінімальне значення. У третьому пункті ми доведемо, чому воно є таким.

І це застосування методу найменших квадратів практично. Його формула, яка застосовується для пошуку параметра a включає ∑ i = 1 n x i , ∑ i = 1 n y i , ∑ i = 1 n x i y i , ∑ i = 1 n x i 2 , а також параметр
n – їм зазначено кількість експериментальних даних. Радимо вам обчислювати кожну суму окремо. Значення коефіцієнта b обчислюється відразу після a.

Звернемося знову до вихідного прикладу.

Приклад 1

Тут у нас n дорівнює п'яти. Щоб було зручніше обчислювати потрібні суми, що входять до формул коефіцієнтів, заповнимо таблицю.

i = 1 i = 2 i = 3 i = 4 i = 5 ∑ i = 1 5
x i 0 1 2 4 5 12
y i 2 , 1 2 , 4 2 , 6 2 , 8 3 12 , 9
x i y i 0 2 , 4 5 , 2 11 , 2 15 33 , 8
x i 2 0 1 4 16 25 46

Рішення

Четвертий рядок включає дані, отримані при множенні значень з другого рядка на значення третього для кожного окремого i . П'ятий рядок містить дані з другого, зведені у квадрат. В останньому стовпці наводяться суми значень окремих рядків.

Скористаємося методом найменших квадратів, щоб обчислити потрібні нам коефіцієнти a і b. Для цього підставимо потрібні значення з останнього стовпця та підрахуємо суми:

n ∑ i = 1 n x i y i - ∑ i = 1 n x i ∑ i = 1 n y i n ∑ i = 1 n - ∑ i = 1 n x i 2 b = ∑ i = 1 n y i - a ∑ i = 1 n x i n 8 - 12 · 12 , 9 5 · 46 - 12 2 b = 12 , 9 - a · 12 5 ⇒ a ≈ 0 , 165 b ≈ 2 , 184

У нас вийшло, що потрібна пряма апроксимує виглядатиме як y = 0 , 165 x + 2 , 184 . Тепер нам треба визначити, яка лінія краще апроксимувати дані – g(x) = x + 1 3 + 1 або 0 , 165 x + 2 , 184 . Зробимо оцінку за допомогою методу найменших квадратів.

Щоб обчислити похибку, нам треба знайти суми квадратів відхилень даних від прямих σ 1 = ∑ i = 1 n (y i - (a x i + b i)) 2 і σ ​​2 = ∑ i = 1 n (y i - g (x i)) 2 , мінімальне значення буде відповідати більш відповідної лінії.

σ 1 = ∑ i = 1 n (y i - (a x i + b i)) 2 = = ∑ i = 1 5 (y i - (0 , 165 x i + 2 , 184)) 2 ≈ 0, 019 σ 2 = ∑ i = 1 n (y i - g (x i)) 2 = = ∑ i = 1 5 (y i - (x i + 1 3 + 1)) 2 ≈ 0 , 096

Відповідь:оскільки σ 1< σ 2 , то прямой, найкращим чиномапроксимує вихідні дані, буде
y = 0,165 x + 2,184.

Метод найменших квадратів наочно показано на графічній ілюстрації. За допомогою червоної лінії відзначено пряму g(x) = x + 1 3 + 1, синю – y = 0, 165 x + 2, 184 . Вихідні дані позначені рожевими крапками.

Пояснимо, навіщо саме потрібні наближення такого виду.

Вони можуть бути використані в завданнях, що вимагають згладжування даних, а також у тих, де дані треба інтерполювати або екстраполювати. Наприклад, у задачі, розібраній вище, можна було б знайти значення спостерігається величини y при x = 3 або x = 6 . Таким прикладам ми присвятили окрему статтю.

Доказ методу МНК

Щоб функція прийняла мінімальне значення при обчислених a і b потрібно, щоб у цій точці матриця квадратичної форми диференціала функції виду F (a, b) = ∑ i = 1 n (y i - (a x i + b)) 2 була позитивно визначеною. Покажемо, як це має виглядати.

Приклад 2

Ми маємо диференціал другого порядку наступного виду:

d 2 F (a ; b) = δ 2 F (a ; b) δ a 2 d 2 a + 2 δ 2 F (a ; b) δ a δ b d a d b + δ 2 F (a ; b) δ b 2 d 2 b

Рішення

δ 2 F (a ; b) δ a 2 = δ δ F (a ; b) δ a δ a = = δ - 2 ∑ i = 1 n (y i - (a x i + b)) x i δ a = 2 ∑ i = 1 n (x i) 2 δ 2 F (a ; b) δ a δ b = δ δ F (a ; b) δ a δ b = = δ - 2 ∑ i = 1 n (y i - (a x i + b) ) x i δ b = 2 ∑ i = 1 n x i δ 2 F (a ; b) δ b 2 = δ δ F (a ; b) δ b δ b = δ - 2 ∑ i = 1 n (y i - (a x i + b)) δ b = 2 ∑ i = 1 n (1) = 2 n

Інакше кажучи, можна записати так: d 2 F (a; b) = 2 ∑ i = 1 n (x i) 2 d 2 a + 2 · 2 ∑ x i i = 1 n d a d b + (2 n) d 2 b .

Ми отримали матрицю квадратичної форми виду M = 2 ∑ i = 1 n (x i) 2 2 ∑ i = 1 n x i 2 ∑ i = 1 n x i 2 n .

У цьому випадку значення окремих елементівне змінюватимуться залежно від a і b. Чи ця матриця є позитивно визначеною? Щоб відповісти на це питання, перевіримо, чи є її кутові мінори позитивними.

Обчислюємо кутовий мінор першого порядку: 2 ∑ i = 1 n (xi) 2 > 0 . Оскільки точки x i не збігаються, то нерівність є суворою. Матимемо це на увазі при подальших розрахунках.

Обчислюємо кутовий мінор другого порядку:

d e t (M) = 2 ∑ i = 1 n (x i) 2 2 ∑ i = 1 n x i 2 ∑ i = 1 n x i 2 n = 4 n ∑ i = 1 n (xi) 2 - ∑ i = 1 n x i 2

Після цього переходимо до доказу нерівності n ∑ i = 1 n (x i) 2 - ∑ i = 1 n x i 2 > 0 за допомогою математичної індукції.

  1. Перевіримо, чи буде ця нерівність справедливою за довільного n . Візьмемо 2 і підрахуємо:

2 ∑ i = 1 2 (x i) 2 - ∑ i = 1 2 x i 2 = 2 x 1 2 + x 2 2 - x 1 + x 2 2 = = x 1 2 - 2 x 1 x 2 + x 2 2 = x 1 + x 2 2 > 0

У нас вийшла правильна рівність (якщо значення x 1 і x 2 не співпадатимуть).

  1. Зробимо припущення, що це нерівність буде правильним для n , тобто. n ∑ i = 1 n (x i) 2 - ∑ i = 1 n x i 2 > 0 – справедливо.
  2. Тепер доведемо справедливість при n + 1, тобто. що (n + 1) ∑ i = 1 n + 1 (x i) 2 - ∑ i = 1 n + 1 x i 2 > 0, якщо правильно n ∑ i = 1 n (x i) 2 - ∑ i = 1 n x i 2 > 0 .

Обчислюємо:

(n + 1) ∑ i = 1 n + 1 (x i) 2 - ∑ i = 1 n + 1 x i 2 = = (n + 1) ∑ i = 1 n (x i) 2 + x n + 1 2 - ∑ i = 1 n x i + x n + 1 2 = = n ∑ i = 1 n (x i) 2 + n · x n + 1 2 + ∑ i = 1 n (x i) 2 + x n + 1 2 - - ∑ i = 1 n x i 2 + 2 x n + 1 ∑ i = 1 n x i + x n + 1 2 = = ∑ i = 1 n (x i) 2 - ∑ i = 1 n x i 2 + n · x n + 1 2 - x n + 1 ∑ i = 1 n x i + ∑ i = 1 n (x i) 2 = = ∑ i = 1 n (xi) 2 - ∑ i = 1 n x i 2 + x n + 1 2 - 2 x n + 1 x 1 + x 1 2 + + x n + 1 2 - 2 x n + 1 x 2 + x 2 2 +. . . + x n + 1 2 - 2 x n + 1 x 1 + x n 2 = = n ∑ i = 1 n (x i) 2 - ∑ i = 1 n x i 2 + + (x n + 1 - x 1) 2 + (x n + 1 - x 2) 2+. . . + (x n – 1 – x n) 2 > 0

Вираз, укладений у фігурні дужки, буде більше 0 (виходячи з того, що ми припускали в пункті 2), та інші доданки будуть більшими за 0, оскільки всі вони є квадратами чисел. Ми довели нерівність.

Відповідь:знайдені a та b будуть відповідати найменшому значеннюфункції F (a , b) = ∑ i = 1 n (y i - (a x i + b)) 2 , отже, вони є параметрами методу найменших квадратів (МНК).

Якщо ви помітили помилку в тексті, будь ласка, виділіть її та натисніть Ctrl+Enter

Якщо деяка фізична величиназалежить від іншої величини, то цю залежність можна досліджувати, вимірюючи y при різних значеннях x. В результаті вимірів виходить ряд значень:

x 1, x 2, ..., x i, ..., x n;

y 1 , y 2 , ..., y i , ... , y n .

За даними такого експерименту, можна побудувати графік залежності y = ƒ(x). Отримана крива дозволяє судити про вид функції ƒ(x). Однак постійні коефіцієнти, які входять до цієї функції, залишаються невідомими. Визначити їх дозволяє метод найменших квадратів. Експериментальні точки, зазвичай, не лягають точно на криву. Метод найменших квадратів вимагає, щоб сума квадратів відхилень експериментальних точок від кривої, тобто. 2 була найменшою.

Насправді цей метод найчастіше (і найпростіше) використовується у разі лінійної залежності, тобто. коли

y = kxабо y = a + bx.

Лінійна залежність дуже поширена у фізиці. І навіть коли залежність нелінійна, зазвичай намагаються будувати графік те щоб отримати пряму лінію. Наприклад, якщо припускають, що показник заломлення скла n пов'язаний з довжиною λ світлової хвилі співвідношенням n = a + b/λ 2 то на графіку будують залежність n від λ -2 .

Розглянемо залежність y = kx(Пряма, що проходить через початок координат). Складемо величину φ суму квадратів відхилень наших точок від прямої

Величина φ завжди позитивна і виявляється тим меншою, чим ближче до прямої лежать наші точки. Метод найменших квадратів стверджує, що для k слід вибирати таке значення, при якому має мінімум


або
(19)

Обчислення показує, що середньоквадратична помилка визначення величини k дорівнює при цьому

, (20)
де n число вимірювань.

Розглянемо тепер трохи складніший випадок, коли точки повинні задовольнити формулу y = a + bx(Пряма, що не проходить через початок координат).

Завдання полягає в тому, щоб за наявним набором значень x i , y i знайти найкращі значення a та b.

Знову складемо квадратичну форму? рівну суміквадратів відхилень точок x i , y i від прямої

і знайдемо значення a і b , при яких має мінімум

;

.

.

Спільне рішенняцих рівнянь дає

(21)

Середньоквадратичні помилки визначення a та b рівні

(23)

.  (24)

При обробці результатів вимірювання цим методом зручно всі дані зводити в таблицю, в якій попередньо підраховуються всі суми, що входять до формул (19) (24). Форми цих таблиць наведені в наведених нижче прикладах.

приклад 1.Досліджувалося основне рівняння динаміки обертального руху = M/J (пряма, що проходить через початок координат). При різних значеннях моменту M вимірювалося кутове прискорення деякого тіла ε. Потрібно визначити момент інерції цього тіла. Результати вимірювань моменту сили та кутового прискорення занесені до другого та третього стовпців таблиці 5.

Таблиця 5
n M, Н · м ε, c -1 M 2 M · ε ε - kM (ε - kM) 2
1 1.44 0.52 2.0736 0.7488 0.039432 0.001555
2 3.12 1.06 9.7344 3.3072 0.018768 0.000352
3 4.59 1.45 21.0681 6.6555 -0.08181 0.006693
4 5.90 1.92 34.81 11.328 -0.049 0.002401
5 7.45 2.56 55.5025 19.072 0.073725 0.005435
– – 123.1886 41.1115 – 0.016436

За формулою (19) визначаємо:

.

Для визначення середньоквадратичної помилки скористаємося формулою (20)

0.005775кг-1 · м -2 .

За формулою (18) маємо

; .

S J = (2.996 · 0.005775) / 0.3337 = 0.05185 кг · м 2.

Задавшись надійністю P = 0.95, за таблицею коефіцієнтів Стьюдента для n = 5, знаходимо t = 2.78 і визначаємо абсолютну помилкуΔJ = 2.78 · 0.05185 = 0.1441 ≈ 0.2 кг · м 2.

Результати запишемо у вигляді:

J = (3.0 ± 0.2) кг · м 2;


приклад 2.Обчислимо температурний коефіцієнт опору металу методом найменших квадратів. Опір залежить від температури за лінійним законом

R t = R 0 (1 + α t °) = R 0 + R 0 α t °.

Вільний член визначає опір R 0 при температурі 0° C , а кутовий коефіцієнт твір температурного коефіцієнта α на опір R 0 .

Результати вимірювань та розрахунків наведені в таблиці ( див. таблицю 6).

Таблиця 6
n t°, c r, Ом t-¯ t (t-¯ t) 2 (t-¯ t)r r - bt - a (r - bt - a) 2,10 -6
1 23 1.242 -62.8333 3948.028 -78.039 0.007673 58.8722
2 59 1.326 -26.8333 720.0278 -35.581 -0.00353 12.4959
3 84 1.386 -1.83333 3.361111 -2.541 -0.00965 93.1506
4 96 1.417 10.16667 103.3611 14.40617 -0.01039 107.898
5 120 1.512 34.16667 1167.361 51.66 0.021141 446.932
6 133 1.520 47.16667 2224.694 71.69333 -0.00524 27.4556
515 8.403 – 8166.833 21.5985 – 746.804
∑/n 85.83333 1.4005 – – – – –

За формулами (21), (22) визначаємо

R 0 = ? R - α R 0 ? Ом.

Знайдемо помилку у визначенні α. Оскільки , то за формулою (18) маємо:

.

Користуючись формулами (23), (24) маємо

;

0.014126 Ом.

Задавшись надійністю P = 0.95, за таблицею коефіцієнтів Стьюдента для n = 6, знаходимо t = 2.57 та визначаємо абсолютну помилку Δα = 2.57 · 0.000132 = 0.000338 град -1.

α = (23 ± 4) · 10 -4 град-1 за P = 0.95.


приклад 3.Потрібно визначити радіус кривизни лінзи по кільцях Ньютона. Вимірювалися радіуси кілець Ньютона r m та визначалися номери цих кілець m. Радіуси кілець Ньютона пов'язані з радіусом кривизни лінзи R і номером кільця рівнянням

r 2 m = mλR - 2d 0 R,

де d 0 товщина зазору між лінзою і плоскопаралельною пластинкою (або деформація лінзи),

λ | довжина хвилі падаючого світла.

λ = (600 ± 6) нм;
r 2 m = y;
m = x;
λR = b;
-2d 0 R = a,

тоді рівняння набуде вигляду y = a + bx.

.

Результати вимірювань та обчислень занесені до таблицю 7.

Таблиця 7
n x = m y = r 2 10 -2 мм 2 m - m (m - m) 2 (m - m)y y - bx - a, 10 -4 (y - bx - a) 2 , 10 -6
1 1 6.101 -2.5 6.25 -0.152525 12.01 1.44229
2 2 11.834 -1.5 2.25 -0.17751 -9.6 0.930766
3 3 17.808 -0.5 0.25 -0.08904 -7.2 0.519086
4 4 23.814 0.5 0.25 0.11907 -1.6 0.0243955
5 5 29.812 1.5 2.25 0.44718 3.28 0.107646
6 6 35.760 2.5 6.25 0.894 3.12 0.0975819
21 125.129 – 17.5 1.041175 – 3.12176
∑/n 3.5 20.8548333 – – – – –

  • Tutorial

Вступ

Я математик-програміст. Найбільший стрибок у своїй кар'єрі я зробив, коли навчився говорити: "Я нічого не розумію!"Зараз мені не соромно сказати світилу науки, що читає лекцію, що я не розумію, про що воно, світило, мені говорить. І це дуже складно. Так, зізнатися у своєму незнанні складно та соромно. Кому сподобається визнаватись у тому, що він не знає азів чогось там. Через свою професію я повинен бути присутнім на великій кількості презентацій та лекцій, де, зізнаюся, в переважній більшості випадків мені хочеться спати, бо я нічого не розумію. А я не розумію тому, що величезна проблема поточної ситуації в науці криється в математиці. Вона припускає, що всі слухачі знайомі з усіма областями математики (що абсурдно). Зізнатися в тому, що ви не знаєте, що таке похідна (про те, що це трохи пізніше) - соромно.

Але я навчився говорити, що не знаю, що таке множення. Так, я не знаю, що таке подалгебра над алгеброю Лі. Так, я не знаю, навіщо потрібні в житті квадратні рівняння. До речі, якщо ви впевнені, що ви знаєте, то нам є над чим поговорити! Математика – це серія фокусів. Математики намагаються заплутати та залякати публіку; там, де немає збентеження, немає репутації, немає авторитету. Так, це престижно говорити якомога абстрактнішою мовою, що є по собі повна нісенітниця.

Чи знаєте ви, що таке похідна? Найімовірніше ви мені скажете про межу різницевого відношення. На першому курсі матуху СПбГУ Віктор Петрович Хавін мені визначивпохідну як коефіцієнт першого члена ряду Тейлора функції у точці (це була окрема гімнастика, щоб визначити ряд Тейлора без похідних). Я довго сміявся над таким визначенням, поки не зрозумів, про що воно. Похідна не що інше, як просто міра того, наскільки функція, яку ми диференціюємо, схожа на функцію y=x, y=x^2, y=x^3.

Я зараз маю честь читати лекції студентам, які боятьсяматематики. Якщо ви боїтеся математики – нам з вами по дорозі. Як тільки ви намагаєтеся прочитати якийсь текст, і вам здається, що він надмірно складний, то знайте, що він написано хронічно. Я стверджую, що немає жодної галузі математики, про яку не можна говорити «на пальцях», не втрачаючи при цьому точності.

Завдання найближчим часом: я доручив своїм студентам зрозуміти, що таке лінійно-квадратичний регулятор. Не посоромтеся, витратите три хвилини свого життя, сходіть на заслання. Якщо ви нічого не зрозуміли, то нам з вами по дорозі. Я (професійний математик-програміст) також нічого не зрозумів. І я запевняю, що в цьому можна розібратися «на пальцях». На даний момент я не знаю, що це таке, але я запевняю, що ми зможемо розібратися.

Отже, перша лекція, яку я збираюся прочитати своїм студентам після того, як вони з жахом вдадуться до мене зі словами, що лінійно-квадратичний регулятор - це страшна бяка, яку ніколи в житті не подужати, це методи найменших квадратів. Чи вмієте ви вирішувати лінійні рівняння? Якщо ви читаєте цей текст, то, швидше за все, ні.

Отже, дано дві точки (x0, y0), (x1, y1), наприклад, (1,1) і (3,2), завдання знайти рівняння прямої, що проходить через ці дві точки:

ілюстрація

Ця пряма повинна мати рівняння наступного типу:

Тут альфа і бета нам невідомі, але відомі дві точки цієї прямої:

Можна записати це рівняння у матричному вигляді:

Тут слід зробити ліричний відступ: що таке матриця? Матриця це не що інше, як двовимірний масив. Це спосіб зберігання даних, більше ніяких значень йому не варто надавати. Це залежить від нас, як саме інтерпретувати якусь матрицю. Періодично я її інтерпретуватиму як лінійне відображення, періодично як квадратичну форму, а ще іноді просто як набір векторів. Це все буде уточнено у контексті.

Давайте замінимо конкретні матриці на їхнє символьне уявлення:

Тоді (alpha, beta) може бути легко знайдено:

Більш конкретно для наших попередніх даних:

Що веде до наступного рівняння прямої, що проходить через точки (1,1) та (3,2):

Окей, тут зрозуміло. А давайте знайдемо рівняння прямої, що проходить через триточки: (x0, y0), (x1, y1) та (x2, y2):

Ой-ой-ой, але ж у нас три рівняння на дві невідомі! Стандартний математик скаже, що рішення немає. А що скаже програміст? А він спершу перепише попередню систему рівнянь у наступному вигляді:

У нашому випадку вектори i,j,bтривимірні, отже, (у загальному випадку) рішення цієї системи немає. Будь-який вектор (alpha i i beta i j) лежить у площині, натягнутій на вектори (i, j). Якщо b не належить цій площині, то рішення немає (рівності у рівнянні не досягти). Що робити? Давайте шукати компроміс. Давайте позначимо через e(alpha, beta)наскільки саме ми не досягли рівності:

І намагатимемося мінімізувати цю помилку:

Чому квадрат?

Ми шукаємо не просто мінімум норми, а мінімум квадрата норми. Чому? Сама точка мінімуму збігається, а квадрат дає гладку функцію (квадратичну функцію від агрументів (alpha, beta)), тоді як довжина дає функцію як конуса, недиференційовану у точці мінімуму. Брр. Квадрат зручніший.

Очевидно, що помилка мінімізується, коли вектор eортогональний площині, натягнутій на вектори. iі j.

Ілюстрація

Іншими словами: ми шукаємо таку пряму, що сума квадратів довжин відстаней від усіх точок до цієї прямої мінімальна:

UPDATE: тут у мене одвірок, відстань до прямої має вимірюватися по вертикалі, а не ортогональною проекцією. Ось цей коментатор має рацію.

Ілюстрація

Зовсім іншими словами (обережно, погано формалізовано, але на пальцях має бути ясно): ми беремо всі можливі прямі між усіма парами точок і шукаємо середню пряму між усіма:

Ілюстрація

Інше пояснення на пальцях: ми прикріплюємо пружинку між усіма точками даних (тут у нас три) і пряме, що ми шукаємо, і пряма рівноважного стану є саме те, що ми шукаємо.

Мінімум квадратичної форми

Отже, маючи цей вектор bта площину, натягнуту на стовпці-вектори матриці A(в даному випадку (x0,x1,x2) та (1,1,1)), ми шукаємо вектор eз мінімуму квадрата довжини. Очевидно, що мінімум можна досягти тільки для вектора. e, ортогональної площини, натягнутої на стовпці-вектори матриці. A:

Інакше кажучи, ми шукаємо такий вектор x=(alpha, beta), що:

Нагадую, цей вектор x=(alpha, beta) є мінімумом квадратичні функції| | e (alpha, beta) | | ^2:

Тут не зайвим буде згадати, що матрицю можна інтерпретувати у тому числі як і квадратичну форму, наприклад, одинична матриця ((1,0),(0,1)) може бути інтерпретована як функція x^2 + y^2:

квадратична форма

Вся ця гімнастика відома під ім'ям лінійної регресії.

Рівняння Лапласа з граничною умовою Діріхле

Тепер найпростіше реальне завдання: є якась тріангульована поверхня, необхідно її згладити. Наприклад, давайте завантажимо модель моєї особи:

Початковий коміт доступний. Для мінімізації зовнішніх залежностей я взяв код свого софтверного рендерера вже на хабрі. Для вирішення лінійної системия користуюся OpenNL , це чудовий солвер, який, щоправда, дуже складно встановити: потрібно скопіювати два файли (.h+.c) у папку з вашим проектом. Все згладжування робиться наступним кодом:

For (int d=0; d<3; d++) { nlNewContext(); nlSolverParameteri(NL_NB_VARIABLES, verts.size()); nlSolverParameteri(NL_LEAST_SQUARES, NL_TRUE); nlBegin(NL_SYSTEM); nlBegin(NL_MATRIX); for (int i=0; i<(int)verts.size(); i++) { nlBegin(NL_ROW); nlCoefficient(i, 1); nlRightHandSide(verts[i][d]); nlEnd(NL_ROW); } for (unsigned int i=0; i&face = faces[i]; for (int j = 0; j<3; j++) { nlBegin(NL_ROW); nlCoefficient(face[ j ], 1); nlCoefficient(face[(j+1)%3], -1); nlEnd(NL_ROW); } } nlEnd(NL_MATRIX); nlEnd(NL_SYSTEM); nlSolve(); for (int i=0; i<(int)verts.size(); i++) { verts[i][d] = nlGetVariable(i); } }

X, Y та Z координати відокремлені, я їх згладжую окремо. Тобто, я вирішую три системи лінійних рівнянь, кожне має кількість змінних рівною кількістю вершин у моїй моделі. Перші n рядків матриці A мають лише одну одиницю на рядок, а перші n рядків вектора b мають оригінальні координати моделі. Тобто, я прив'язую по пружинці між новим становищем вершини і старим становищем вершини - нові не повинні занадто далеко йти від старих.

Всі наступні рядки матриці A (faces.size()*3 = кількості ребер всіх трикутників у сітці) мають одне входження 1 та одне входження -1, причому вектор b має нульові компоненти навпаки. Це означає, що я вішаю пружинку на кожне ребро нашої трикутної сітки: всі ребра намагаються отримати одну й ту саму вершину як відправну та фінальну точку.

Ще раз: змінними є всі вершини, причому вони можуть далеко відходити від початкового становища, але заодно намагаються стати схожими друг на друга.

Ось результат:

Все було б добре, модель дійсно згладжена, але вона відійшла від свого початкового краю. Давайте трохи змінимо код:

For (int i=0; i<(int)verts.size(); i++) { float scale = border[i] ? 1000: 1; nlBegin(NL_ROW); nlCoefficient(i, scale); nlRightHandSide(scale*verts[i][d]); nlEnd(NL_ROW); }

У нашій матриці A я для вершин, що знаходяться на краю, не додаю рядок з розряду v_i = verts[i][d], а 1000*v_i = 1000*verts[i][d]. Що це змінює? А змінює це нашу квадратичну форму помилки. Тепер одиничне відхилення від вершини краю коштуватиме не одну одиницю, як раніше, а 1000*1000 одиниць. Тобто, ми повісили сильнішу пружинку на крайні вершини, рішення воліє розтягнути інші. Ось результат:

Давайте вдвічі посилимо пружинки між вершинами:
nlCoefficient (face [j], 2); nlCoefficient(face[(j+1)%3], -2);

Логічно, що поверхня стала гладкішою:

А тепер ще в сто разів сильніше:

Що це? Уявіть, що ми вмочили дротяне кільце в мильну воду. У результаті мильна плівка, що утворилася, буде намагатися мати найменшу кривизну, наскільки це можливо, торкаючись-таки кордону - нашого дротяного кільця. Саме це ми й отримали, зафіксувавши кордон та попросивши отримати гладку поверхню всередині. Вітаю вас, ми тільки-но вирішили рівняння Лапласа з граничними умовами Діріхле. Круто звучить? А насправді лише одну систему лінійних рівнянь вирішити.

Рівняння Пуассона

Давайте ще круте ім'я згадаємо.

Припустимо, що у мене є така картинка:

Всім гарна, тільки стілець мені не подобається.

Розріжу картинку навпіл:



І виділю руками стілець:

Потім все, що біле в масці, притягну до лівої частини картинки, а заразом по всій картинці скажу, що різниця між двома сусідніми пікселями повинна дорівнювати різниці між двома сусідніми пікселями правої картинки:

For (int i=0; i

Ось результат:

Код та зображення доступні

Поділіться з друзями або збережіть для себе:

Завантаження...