Правило розв'язання системи лінійних рівнянь методом гауса. Метод Гауса: опис алгоритму розв'язання системи лінійних рівнянь, приклади, рішення

Метод Гауса – це просто!Чому? Відомий німецький математик Йоган Карл Фрідріх Гаусс ще за життя отримав визнання найбільшого математика всіх часів, генія і навіть прізвисько «короля математики». А все геніальне, як відомо просто!До речі, на гроші потрапляють не лише лохи, а ще й генії – портрет Гауса красувався на купюрі в 10 дойчмарок (до введення євро), і Гаус досі загадково посміхається німцям зі звичайних поштових марок.

Метод Гауса простий тим, що для його освоєння ДОСИТЬ ЗНАНЬ П'ЯТИКЛАСНИКА. Необхідно вміти складати та множити!Не випадково метод послідовного виключенняневідомі викладачі часто розглядають на шкільних математичних факультативах. Парадокс, але у студентів метод Гауса викликає найбільші складнощі. Нічого дивного – вся річ у методиці, і я постараюся в доступній формі розповісти про алгоритм методу.

Спочатку трохи систематизуємо знання про системи лінійних рівнянь. Система лінійних рівнянь може:

1) Мати єдине рішення.
2) Мати безліч рішень.
3) Не мати рішень (бути несумісний).

Метод Гауса – найбільш потужний та універсальний інструмент для знаходження рішення будь-якийсистеми лінійних рівнянь Як ми пам'ятаємо, правило Крамера та матричний методнепридатні у випадках, коли система має нескінченно багато рішень чи несовместна. А метод послідовного виключення невідомих в будь-якому випадкуприведе нас до відповіді! На цьому уроці ми знову розглянемо метод Гауса для випадку №1 (єдине рішення системи), під ситуації пунктів №2-3 відведено статтю. Зауважу, що сам алгоритм методу у всіх трьох випадках працює однаково.

Повернемося до найпростішою системіз уроку Як розв'язати систему лінійних рівнянь?
і вирішимо її методом Гауса.

На першому етапі слід записати розширену матрицю системи:
. За яким принципом записані коефіцієнти, гадаю, всім видно. Вертикальна характеристика всередині матриці не несе ніякого математичного сенсу - це просто накреслення для зручності оформлення.

Довідка :рекомендую запам'ятати термінилінійної алгебри. Матриця системи– це матриця, складена лише з коефіцієнтів при невідомих, у цьому прикладі матриця системы: . Розширена матриця системи– це та сама матриця системи плюс стовпець вільних членів, у разі: . Будь-яку з матриць можна для стислості називати просто матрицею.

Після того, як розширена матриця системи записана, з нею необхідно виконати деякі дії, які також називаються елементарними перетвореннями .

Існують такі елементарні перетворення:

1) Рядкиматриці можна, можливо переставлятимісцями. Наприклад, у матриці можна безболісно переставити перший і другий рядки:

2) Якщо в матриці є (або з'явилися) пропорційні (як окремий випадок – однакові) рядки, слід видалитиз матриці всі ці рядки крім одного. Розглянемо, наприклад, матрицю . У цій матриці останні три рядки пропорційні, тому достатньо залишити лише одну з них: .

3) Якщо в матриці в ході перетворень з'явився нульовий рядок, то його також слідує видалити. Малювати не буду, зрозуміло, нульовий рядок – це рядок, у якому одні нулі.

4) Рядок матриці можна помножити (розділити)на будь-яке число, відмінне від нуля. Розглянемо, наприклад, матрицю. Тут доцільно перший рядок розділити на –3, а другий рядок – помножити на 2: . Ця діядуже корисно, оскільки полегшує подальші перетворення матриці.

5) Це перетворення викликає найбільші труднощі, але насправді нічого складного також немає. До рядка матриці можна додати інший рядок, помножений на число, відмінне від нуля. Розглянемо нашу матрицю з практичного прикладу: . Спочатку я розпишу перетворення дуже докладно. Помножуємо перший рядок на -2: , і до другого рядка додаємо перший рядок помножений на –2: . Тепер перший рядок можна розділити «назад» на –2: . Як бачите, рядок, який ПРИДБА ЧИне змінилась. Завждизмінюється рядок, ДО ЯКОГО ДОДАТИ ЮТ.

Насправді так докладно, звісно, ​​не розписують, а пишуть коротше:

Ще раз: до другого рядка додали перший рядок, помножений на -2. Помножують рядок зазвичай усно або на чернетці, при цьому уявний хід розрахунків приблизно такий:

«Переписую матрицю та переписую перший рядок: »

«Спочатку перший стовпець. Внизу мені потрібно отримати нуль. Тому одиницю вгорі множу на –2: , і до другого рядка додаю перший: 2 + (–2) = 0. Записую результат у другий рядок: »

«Тепер другий стовпець. Угорі –1 множу на –2: . До другого рядка додаю перший: 1 + 2 = 3. Записую результат до другого рядка: »

«І третій стовпець. Угорі –5 множу на –2: . До другого рядка додаю перший: –7 + 10 = 3. Записую результат до другого рядка: »

Будь ласка, ретельно осмисліть цей приклад і розберіться в послідовному алгоритмі обчислень, якщо ви це зрозуміли, то метод Гауса практично «в кишені». Але, звісно, ​​над цим перетворенням ми ще попрацюємо.

Елементарні перетворення не змінюють рішення системи рівнянь

! УВАГА: розглянуті маніпуляції не можна використовуватиякщо Вам запропоновано завдання, де матриці дано «самі по собі». Наприклад, при «класичних» діях з матрицямищось переставляти всередині матриць в жодному разі не можна!

Повернемося до нашої системи. Вона практично розібрана по кісточках.

Запишемо розширену матрицю системи та за допомогою елементарних перетворень наведемо її до східчастого вигляду:

(1) До другого рядка додали перший рядок, помножений на -2. І знову: чому перший рядок множимо саме на -2? Для того щоб внизу отримати нуль, а значить, позбавитися однієї змінної в другому рядку.

(2) Ділимо другий рядок на 3.

Ціль елементарних перетвореньпривести матрицю до ступінчастого вигляду: . В оформленні завдання прямо так і наголошують простим олівцем"сходи", а також обводять кружальцями числа, які розташовуються на "сходинках". Сам термін «ступінчастий вигляд» не цілком теоретичний, у науковій та навчальної літературивін часто називається трапецієподібний виглядабо трикутний вигляд.

В результаті елементарних перетворень отримано еквівалентнавихідна система рівнянь:

Тепер систему потрібно «розкрутити» у зворотному напрямку – знизу нагору, цей процес називається зворотним ходом методу Гауса.

У нижньому рівнянні ми вже готовий результат: .

Розглянемо перше рівняння системи та підставимо до нього вже відоме значення«Ігрек»:

Розглянемо найпоширенішу ситуацію, коли методом Гауса потрібно вирішити систему трьохлінійних рівнянь із трьома невідомими.

Приклад 1

Розв'язати методом Гауса систему рівнянь:

Запишемо розширену матрицю системи:

Зараз я одразу намалюю результат, до якого ми прийдемо під час рішення:

І повторюся, наша мета – за допомогою елементарних перетворень привести матрицю до східчастого вигляду. З чого розпочати дії?

Спочатку дивимося на ліве верхнє число:

Майже завжди тут має бути одиниця. Взагалі кажучи, влаштує і –1 (а іноді й інші числа), але якось традиційно склалося, що туди зазвичай поміщають одиницю. Як організувати одиницю? Дивимось на перший стовпець – готова одиниця у нас є! Перетворення перше: міняємо місцями перший і третій рядки:

Тепер перший рядок у нас залишиться незмінним до кінця рішення. Вже легше.

Одиниця у лівому верхньому кутку організована. Тепер потрібно отримати нулі на цих місцях:

Нулі отримуємо саме за допомогою «важкого» перетворення. Спочатку знаємося з другим рядком (2, -1, 3, 13). Що потрібно зробити, щоби на першій позиції отримати нуль? Потрібно до другого рядка додати перший рядок, помножений на –2. Подумки чи чернетці множимо перший рядок на –2: (–2, –4, 2, –18). І послідовно проводимо (знову ж таки подумки або на чернетці) додавання, до другого рядка додаємо перший рядок, вже помножений на –2:

Результат записуємо у другий рядок:

Аналогічно розуміємося з третім рядком (3, 2, -5, -1). Щоб отримати на першій позиції нуль, потрібно до третього рядка додати перший рядок, помножений на –3. Подумки чи чернетці множимо перший рядок на –3: (–3, –6, 3, –27). І до третього рядка додаємо перший рядок, помножений на –3:

Результат записуємо у третій рядок:

Насправді ці дії зазвичай виконуються усно і записуються за один крок:

Не треба рахувати все відразу і одночасно. Порядок обчислень та «вписування» результатів послідовнийі зазвичай такий: спочатку переписуємо перший рядок, і пихкаємо собі потихеньку - НАСЛІДНО і Уважно:


А уявний хід самих розрахунків я вже розглянув вище.

У цьому прикладі це зробити легко, другий рядок ділимо на –5 (оскільки там усі числа діляться на 5 без залишку). Заодно ділимо третій рядок на -2, чим менше числа, тим простіше рішення:

На заключному етапі елементарних перетворень потрібно отримати ще один нуль:

Для цього до третього рядка додаємо другий рядок, помножений на –2:


Спробуйте розібрати цю дію самостійно - помножте другий рядок на -2 і проведіть додавання.

Остання виконана дія – зачіска результату, ділимо третій рядок на 3.

В результаті елементарних перетворень отримано еквівалентну вихідну систему лінійних рівнянь:

Круто.

Тепер набуває чинності Зворотній хідметоду Гауса. Рівняння розкручуються знизу вгору.

У третьому рівнянні ми вже готовий результат:

Дивимося друге рівняння: . Значення «зет» вже відоме, таким чином:

І, нарешті, перше рівняння: . «Ігрек» і «Зет» відомі, справа за малим:


Відповідь:

Як вже неодноразово зазначалося, для будь-якої системи рівнянь можна і потрібно зробити перевірку знайденого рішення, благо це нескладно і швидко.

Приклад 2


Це приклад для самостійного рішення, зразок чистового оформлення та відповідь наприкінці уроку.

Слід зазначити, що ваш хід рішенняможе не збігтися з моїм ходом рішення, і це – особливість методу Гауса. Але відповіді обов'язково повинні вийти однаковими!

Приклад 3

Розв'язати систему лінійних рівнянь методом Гауса

Запишемо розширену матрицю системи та за допомогою елементарних перетворень наведемо її до ступінчастого вигляду:

Дивимося на ліву верхню сходинку. Там у нас має бути одиниця. Проблема полягає в тому, що у першому стовпці одиниць немає взагалі, тому перестановкою рядків нічого не вирішити. У разі одиницю треба організувати з допомогою елементарного перетворення. Зазвичай це можна зробити кількома способами. Я вчинив так:
(1) До першого рядка додаємо другий рядок, помножений на –1. Тобто подумки помножили другий рядок на –1 і виконали додавання першого і другого рядка, при цьому другий рядок у нас не змінився.

Тепер ліворуч угорі «мінус один», що нас цілком влаштує. Хто хоче отримати +1, може виконати додатковий рух тіла: помножити перший рядок на –1 (змінити у неї знак).

(2) До другого рядка додали перший рядок, помножений на 5. До третього рядка додали перший рядок, помножений на 3.

(3) Перший рядок помножили на -1, в принципі це для краси. У третього рядка також змінили знак і переставили її на друге місце, таким чином, на другому сходинці у нас з'явилася потрібна одиниця.

(4) До третього рядка додали другий рядок, помножений на 2.

(5) Третій рядок поділили на 3.

Поганою ознакою, яка свідчить про помилку в обчисленнях (рідше – про друкарську помилку), є «поганий» нижній рядок. Тобто, якби в нас унизу вийшло щось на зразок, і, відповідно, , то з великою часткою ймовірності можна стверджувати, що припущена помилка під час елементарних перетворень.

Заряджаємо зворотний хід, в оформленні прикладів часто не переписують саму систему, а рівняння "беруть прямо з наведеної матриці". Зворотний хід, нагадую, працює, знизу нагору. Та тут подарунок вийшов:


Відповідь: .

Приклад 4

Розв'язати систему лінійних рівнянь методом Гауса

Це приклад для самостійного рішення, він дещо складніший. Нічого страшного, якщо хтось заплутається. Повне рішеннята зразок оформлення наприкінці уроку. Ваше рішення може відрізнятись від мого рішення.

В останній частині розглянемо деякі особливості алгоритму Гаусса.
Перша особливість полягає в тому, що іноді в рівняннях системи відсутні деякі змінні, наприклад:

Як правильно записати розширену матрицю системи? Про цей момент я вже розповідав на уроці Правило Крамер. Матричний метод. У розширеній матриці системи на місці відсутніх змінних ставимо нулі:

До речі, це досить легкий приклад, оскільки в першому стовпці вже є один нуль, і потрібно виконати менше елементарних перетворень.

Друга особливість полягає ось у чому. У всіх розглянутих прикладах на «сходинки» ми поміщали або -1 або +1. Чи можуть там бути інші цифри? У деяких випадках можуть. Розглянемо систему: .

Тут на лівій верхній сходинці у нас двійка. Але помічаємо той факт, що всі числа в першому стовпці поділяються на 2 без залишку - й інша двійка та шістка. І двійка зліва нагорі нас влаштує! На першому кроці потрібно виконати такі перетворення: до другого рядка додати перший рядок, помножений на -1; до третього рядка додати перший рядок, помножений на -3. Таким чином, ми отримаємо потрібні нулі у першому стовпці.

Або ще такий умовний приклад: . Тут трійка на другому «сході» теж нас влаштовує, оскільки 12 (місце, де нам потрібно отримати нуль) ділиться на 3 без залишку. Необхідно провести наступне перетворення: до третього рядка додати другий рядок, помножений на -4, в результаті чого буде отримано потрібний нам нуль.

Метод Гауса універсальний, але є одна своєрідність. Впевнено навчитися вирішувати системи іншими методами (методом Крамера, матричним методом) можна буквально з першого разу - там дуже жорсткий алгоритм. Але щоб впевнено себе почувати в методі Гауса, слід «набити руку», і вирішувати хоча б 5-10 систем. Тому спочатку можливі плутанина, помилки у обчисленнях і в цьому немає нічого незвичайного чи трагічного.

Дощова осіння погода за вікном. Тому для всіх бажаючих більше складний прикладдля самостійного вирішення:

Приклад 5

Вирішити методом Гауса систему чотирьох лінійних рівнянь із чотирма невідомими.

Таке завдання практично зустрічається негаразд і рідко. Думаю, навіть чайнику, який докладно вивчив цю сторінку, інтуїтивно зрозумілий алгоритм розв'язання такої системи. Принципово так само – просто дій більше.

Випадки, коли система не має рішень (несумісна) або має безліч рішень, розглянуті на уроці Несумісні системи та системи із загальним рішенням . Там можна закріпити розглянутий алгоритм методу Гаусса.

Бажаю успіхів!

Рішення та відповіді:

Приклад 2: Рішення : Запишемо розширену матрицю системи та за допомогою елементарних перетворень наведемо її до ступінчастого вигляду.


Виконані елементарні перетворення:
(1) До другого рядка додали перший рядок, помножений на -2. До третього рядка додали перший рядок, помножений на -1. Увага!Тут може виникнути спокуса від третього рядка відняти першу, вкрай не рекомендую віднімати - сильно підвищується ризик помилки. Тільки складаємо!
(2) У другому рядку змінили знак (помножили на –1). Другий і третій рядки поміняли місцями. Зверніть увагу, Що на «сходинках» нас влаштовує не тільки одиниця, але ще й -1, що навіть зручніше.
(3) До третього рядка додали другий рядок, помножений на 5.
(4) У другому рядку змінили знак (помножили на –1). Третій рядок поділили на 14.

Зворотній хід:

Відповідь: .

Приклад 4: Рішення : Запишемо розширену матрицю системи та за допомогою елементарних перетворень наведемо її до ступінчастого вигляду:

Виконані перетворення:
(1) До першого рядка додали другий. Таким чином, організована потрібна одиниця на лівій верхній сходинці.
(2) До другого рядка додали перший рядок, помножений на 7. До третього рядка додали перший рядок, помножений на 6.

З другою «сходинкою» все гірше , «Кандидати» неї - числа 17 і 23, а нам необхідна або одиниця, або -1. Перетворення (3) та (4) будуть спрямовані на отримання потрібної одиниці

(3) До третього рядка додали другий, помножений на –1.
(4) До другого рядка додали третій, помножений на –3.
(3) До третього рядка додали другий, помножений на 4. До четвертого рядка додали другий, помножений на –1.
(4) У другому рядку змінили знак. Четвертий рядок розділили на 3 та помістили замість третього рядка.
(5) До четвертого рядка додали третій рядок, помножений на -5.

Зворотній хід:



Даний онлайн калькуляторзнаходить рішення системи лінійних рівнянь (СЛП) методом Гаусса. Дається докладне рішення. Для обчислення вибирайте кількість змінних та кількість рівнянь. Потім введіть дані в комірки та натискайте на кнопку "Обчислити."

x 1

+x 2

+x 3

x 1

+x 2

+x 3

x 1

+x 2

+x 3

=

=

=

Подання чисел:

Цілі числа та (або) Звичайні дроби
Цілі числа та (або) Десяткові дроби

Число знаків після десяткового роздільника

×

Попередження

Очистити всі комірки?

Закрити Очистити

Інструкція щодо введення даних.Числа вводяться як цілих чисел (приклади: 487, 5, -7623 тощо.), десяткових чисел (напр. 67., 102.54 тощо.) чи дробів. Дроб треба набирати у вигляді a/b, де a і b (b>0) цілі або десяткові числа. Приклади 45/5, 6.6/76.4, -7/6.7 тощо.

Метод Гауса

Метод Гауса - це метод переходу від вихідної системи лінійних рівнянь (за допомогою еквівалентних перетворень) до системи, яка вирішується простіше, ніж вихідна система.

Еквівалентними перетвореннями системи лінійних рівнянь є:

  • зміна місцями двох рівнянь у системі,
  • множення будь-якого рівняння у системі на ненульове дійсне число,
  • додавання одного рівняння іншого рівняння, помноженого на довільне число.

Розглянемо систему лінійних рівнянь:

(1)

Запишемо систему (1) у матричному вигляді:

Ax=b (2)
(3)

A-називається матриця коефіцієнтів системи, bправа частинаобмежень, x− вектор змінних, яку потрібно знайти. Нехай rang( A)=p.

Еквівалентні перетворення не змінюють ранг матриці коефіцієнтів та ранг розширеної матриці системи. Не змінюється безліч рішень системи при еквівалентних перетвореннях. Суть методу Гауса полягає у приведенні матраца коефіцієнтів Aдо діагонального чи ступінчастого.

Побудуємо розшрену матрицю системи:

На наступному етапі обнулюємо всі елементи стовпця 2 нижче елемента . Якщо цей елемент нульовий, то цей рядок міняємо місцями з рядком, що лежить нижче за цей рядок і має ненульовий елемент у другому стовпці. Далі обнулюємо всі елементи стовпця 2 нижче провідного елемента a 22 . Для цього складемо рядки 3, ... mз рядком 2, помноженим на − a 32 /a 22 , ..., −a m2 / a 22 відповідно. Продовжуючи процедуру, отримаємо матрицю діагонального чи ступінчастого вигляду. Нехай отримана розширена матриця має вигляд:

(7)

Так як rangA=rang(A|b), то безліч рішень (7) є ( n−p) - Різноманітність. Отже n−pневідомих можна вибрати довільно. Інші невідомі із системи (7) обчислюються так. З останнього рівняння виражаємо x p через інші змінні та вставляємо у попередні вирази. Далі з передостаннього рівняння виражаємо x p−1 через інші змінні та вставляємо у попередні вирази тощо. Розглянемо метод Гауса на конкретних прикладах.

Приклади розв'язання системи лінійних рівнянь методом Гаусса

Приклад 1. Знайти загальне рішеннясистеми лінійних рівнянь методом Гауса:

Позначимо через a ij елементи i-ого рядка та j-ого стовпця.

a 1 1 . Для цього складемо рядки 2,3 з рядком 1, помноженим на -2/3,-1/2 відповідно:

Матричний вид запису: Ax=b, де

Позначимо через a ij елементи i-ого рядка та j-ого стовпця.

Виключимо елементи 1-го стовпця матриці нижче елемента a 11 . Для цього складемо рядки 2,3 з рядком 1, помноженим на -1/5,-6/5 відповідно:

Ділимо кожен рядок матриці на відповідний провідний елемент (якщо провідний елемент існує):

де x 3 , x

Підставивши верхні вирази у нижні, отримаємо рішення.

Тоді векторне рішення можна уявити так:

де x 3 , x 4 − довільні дійсні числа.

Нехай дана система , ∆≠0. (1)
Метод Гауса- Це метод послідовного виключення невідомих.

Суть методу Гауса полягає у перетворенні (1) до системи з трикутною матрицею , з якої потім послідовно (зворотним ходом) виходять значення всіх невідомих. Розглянемо одну з обчислювальних схем. Ця схема називається схемою єдиного поділу. Отже, розглянемо цю схему. Нехай a11 ≠0 (провідний елемент) розділимо на a11 перше рівняння. Отримаємо
(2)
Користуючись рівнянням (2), легко виключити невідомі x 1 з інших рівнянь системи (для цього достатньо від кожного рівняння відняти рівняння (2) попередньо помножене на відповідний коефіцієнт при x 1), тобто на першому кроці отримаємо
.
Іншими словами, на 1 кроці кожен елемент наступних рядків, починаючи з другого, дорівнює різниці між вихідним елементом і добутком його «проекції» на перший стовпець і перший (перетворений) рядок.
Після цього залишивши перше рівняння у спокої, над іншими рівняннями системи, отриманої першому кроці, зробимо аналогічне перетворення: виберемо з їхньої рівняння з провідним елементом і виключимо з його допомогою з інших рівнянь x 2 (крок 2).
Після n кроків замість (1) отримаємо рівносильну систему
(3)
Отже, першому етапі ми отримаємо трикутну систему (3). Цей етап називається прямим перебігом.
На другому етапі (зворотний хід) ми знаходимо послідовно (3) значення x n , x n -1 , …, x 1 .
Позначимо отримане рішення за x0. Тоді різниця ε=b-A·x 0 називається нев'язкою.
Якщо ε=0, то знайдене рішення x0 є вірним.

Обчислення за методом Гауса виконуються у два етапи:

  1. Перший етап називається прямим перебігом методу. У першому етапі вихідну систему перетворять до трикутному виду.
  2. Другий етап називається зворотним ходом. З другого краю етапі вирішують трикутну систему, еквівалентну вихідної.
Коефіцієнти а 11 22 … називають провідними елементами.
На кожному кроці передбачалося, що провідний елемент відрізняється від нуля. Якщо це не так, то як ведучий можна використовувати будь-який інший елемент, як би переставивши рівняння системи.

Призначення методу Гаусса

Метод Гаусса призначений на вирішення систем лінійних рівнянь. Належить до прямих методів рішення.

Види методу Гауса

  1. Класичний метод Гаусса;
  2. Модифікації методу Гауса. Однією з модифікацій методу Гаус є схема з вибором головного елемента. Особливістю методу Гауса з вибором головного елемента є така перестановка рівнянь, щоб на k-му кроці провідним елементом виявлявся найбільший за модулем елемент k-го стовпця.
  3. Метод Жордано-Гаусса;
Відмінність методу Жордано-Гаусса від класичного методу Гаусаполягає у застосуванні правила прямокутника, коли напрямок пошуку рішення відбувається по головній діагоналі (перетворення до одиничної матриці). У методі Гауса напрямок пошуку рішення відбувається по стовпцям (перетворення до системи з трикутною матрицею).
Проілюструємо відмінність методу Жордано-Гауссавід методу Гауса на прикладах.

Приклад рішення методом Гаусса
Вирішимо систему:

Для зручності обчислень поміняємо рядки місцями:

Помножимо 2-й рядок на (2). Додамо 3-й рядок до 2-го

Помножимо 2-й рядок на (-1). Додамо 2-ий рядок до 1-го

З першого рядка виражаємо x 3:
З другого рядка виражаємо x 2:
З 3-го рядка виражаємо x 1:

Приклад рішення методом Жордано-Гаусса
Цю ж СЛАУ вирішимо методом Жордано-Гаусса.

Послідовно вибиратимемо роздільну здатність елемент РЕ, який лежить на головній діагоналі матриці.
Роздільний елемент дорівнює (1).



НЕ = СЕ - (А * В) / РЕ
РЕ - роздільна здатність елемент (1), А і В - елементи матриці, що утворюють прямокутник з елементами СТЕ і РЕ.
Уявимо розрахунок кожного елемента у вигляді таблиці:

x 1 x 2 x 3 B
1 / 1 = 1 2 / 1 = 2 -2 / 1 = -2 1 / 1 = 1


Роздільний елемент дорівнює (3).
На місці роздільного елемента отримуємо 1, а в самому стовпці записуємо нулі.
Решта всіх елементів матриці, включаючи елементи стовпця B, визначаються за правилом прямокутника.
Для цього вибираємо чотири числа, які розташовані у вершинах прямокутника і завжди включають роздільну здатність елемент РЕ.
x 1 x 2 x 3 B
0 / 3 = 0 3 / 3 = 1 1 / 3 = 0.33 4 / 3 = 1.33


Роздільний елемент дорівнює (-4).
На місці роздільного елемента отримуємо 1, а в самому стовпці записуємо нулі.
Решта всіх елементів матриці, включаючи елементи стовпця B, визначаються за правилом прямокутника.
Для цього вибираємо чотири числа, які розташовані у вершинах прямокутника і завжди включають роздільну здатність елемент РЕ.
Уявимо розрахунок кожного елемента у вигляді таблиці:
x 1 x 2 x 3 B
0 / -4 = 0 0 / -4 = 0 -4 / -4 = 1 -4 / -4 = 1


Відповідь: x 1 = 1, x 2 = 1, x 3 = 1

Реалізація методу Гауса

Метод Гауса реалізований багатьма мовами програмування, зокрема: Pascal, C++, php, Delphi, а також є реалізація методу Гауса в онлайн режимі.

Використання методу Гауса

Застосування методу Гауса в теорії ігор

Теоретично ігор при знайденні максимальної оптимальної стратегії гравця складається система рівнянь, яка вирішується шляхом Гаусса.

Застосування методу Гаусса під час вирішення диференціальних рівнянь

Для пошуку приватного рішення диференціального рівняння спочатку знаходять похідні відповідного ступеня для записаного приватного рішення (y=f(A,B,C,D)), які підставляють вихідне рівняння. Далі, щоб знайти змінні A, B, C, Dскладається система рівнянь, що вирішується методом Гаусса.

Застосування методу Жордано-Гаусса у лінійному програмуванні

У лінійному програмуванні, зокрема в симплекс-методі перетворення симплексной таблиці кожної ітерації використовується правило прямокутника, у якому використовується метод Жордано-Гаусса.

1. Система лінійних алгебраїчних рівнянь

1.1 Поняття системи лінійних рівнянь алгебри

Система рівнянь – це умова, яка полягає у одночасному виконанні кількох рівнянь щодо кількох змінних. Системою лінійних рівнянь алгебри (далі – СЛАУ), що містить m рівнянь і n невідомих, називається система виду:

де числа a ij називаються коефіцієнтами системи, числа b i – вільними членами, a ijі b i(i=1,…, m; b=1,…, n) є деякі відомі числа, а x 1 ,…, x n- Невідомі. У позначенні коефіцієнтів a ijперший індекс i означає номер рівняння, а другий j – номер невідомого, при якому стоїть цей коефіцієнт. Підлягають знаходженню числа xn. Таку систему зручно записувати у компактній матричній формі: AX=B.Тут А - матриця коефіцієнтів системи, яка називається основною матрицею;

- Вектор стовпець з невідомих xj.
– вектор-стовпець із вільних членів bi.

Добуток матриць А*Х визначено, оскільки у матриці А стовпців стільки ж, скільки рядків у матриці Х (n штук).

Розширеною матрицею системи називається матриця A системи, доповнена стовпцем вільних членів

1.2 Розв'язання системи лінійних рівнянь алгебри

Рішенням системи рівнянь називається впорядкований набір чисел (значень змінних), при підстановці яких замість змінних кожне із рівнянь системи перетворюється на правильну рівність.

Рішенням системи називається n значень невідомих х1 = c1, x2 = c2, ..., xn = cn, при підстановці яких усі рівняння системи звертаються у вірні рівності. Будь-яке рішення системи можна записати у вигляді матриці-стовпця

Система рівнянь називається спільною, якщо вона має хоча б одне рішення, і несумісною, якщо вона не має жодного рішення.

Спільна система називається певною, якщо вона має єдине рішення, та невизначеною, якщо вона має більше одного рішення. У разі кожне її рішення називається приватним рішенням системи. Сукупність всіх окремих рішень називається загальним рішенням.

Вирішити систему – це означає з'ясувати, спільна вона чи несовместна. Якщо система спільна, то знайти її загальне рішення.

Дві системи називаються еквівалентними (рівносильними), якщо вони мають те саме загальне рішення. Іншими словами, системи еквівалентні, якщо кожне рішення однієї з них є рішенням іншої, і навпаки.

Перетворення, застосування якого перетворює систему на нову систему, еквівалентну вихідної, називається еквівалентним або рівносильним перетворенням. Прикладами еквівалентних перетворень можуть бути такі перетворення: перестановка місцями двох рівнянь системи, перестановка місцями двох невідомих разом із коефіцієнтами в усіх рівнянь, множення обох частин будь-якого рівняння системи відмінне від нуля число.

Система лінійних рівнянь називається однорідною, якщо всі вільні члени дорівнюють нулю:

Однорідна система завжди спільна, тому що x1 = x2 = x3 = ... = xn = 0 є рішенням системи. Це рішення називається нульовим чи тривіальним.

2. Метод виключення Гауса

2.1 Сутність методу виключення Гауса

Класичним методом вирішення систем лінійних рівнянь алгебри є метод послідовного виключення невідомих – метод Гауса(його ще називають методом гаусових винятків). Це метод послідовного виключення змінних, коли за допомогою елементарних перетворень система рівнянь приводиться до рівносильної системи ступінчастого (або трикутного) виду, з якого послідовно, починаючи з останніх (за номером) змінних, знаходяться інші змінні.

Процес рішення за методом Гауса складається з двох етапів: прямий та зворотний ходи.

1. Прямий хід.

На першому етапі здійснюється так званий прямий хід, коли шляхом елементарних перетворень над рядками систему призводять до ступінчастої або трикутної форми або встановлюють, що система несумісна. А саме, серед елементів першого стовпця матриці вибирають ненульовий, переміщують його на крайнє верхнє положення перестановкою рядків і віднімають перший рядок, що вийшов після перестановки, з інших рядків, домноживши її на величину, рівну відношенню першого елемента кожного з цих рядків до першого елемента першого рядка, обнуляя цим стовпець під ним.

Після того, як зазначені перетворення були здійснені, перший рядок і перший стовпець подумки викреслюють і продовжують доки залишиться матриця нульового розміру. Якщо на якійсь із ітерацій серед елементів першого стовпця не знайшовся ненульовий, то переходять до наступного стовпця і роблять аналогічну операцію.

У першому етапі (прямий хід) система наводиться до ступінчастому (зокрема, трикутному) виду.

Наведена нижче система має ступінчастий вигляд:

,

Коефіцієнти aii називаються головними (провідними) елементами системи.

(якщо a11=0, переставимо рядки матриці так, щоб a 11 не дорівнював 0. Це завжди можливо, тому що в іншому випадку матриця містить нульовий стовпець, її визначник дорівнює нулю і система несумісна).

Перетворимо систему, виключивши невідоме х1 у всіх рівняннях, крім першого (використовуючи елементарні перетворення системи). Для цього помножимо обидві частини першого рівняння на

і складемо почленно з другим рівнянням системи (або другого рівняння почленно віднімемо перше, помножене на ). Потім помножимо обидві частини першого рівняння і складемо з третім рівнянням системи (або з третього почленно віднімемо перше, помножене на ). Таким чином, послідовно множимо перший рядок на число і додаємо до i-й рядку, для i= 2, 3, …,n.

Продовжуючи цей процес, отримаємо еквівалентну систему:


– нові значення коефіцієнтів при невідомих та вільні члени в останніх m-1 рівняннях системи, що визначаються формулами:

Таким чином, на першому кроці знищуються всі коефіцієнти, що лежать під провідним першим елементом a 11

0 на другому кроці знищуються елементи, що лежать під другим провідним елементом а 22 (1) (якщо a 22 (1) 0) і т.д. Продовжуючи цей процес і далі, ми нарешті на (m-1) кроці наведемо вихідну систему до трикутної системи.

Якщо процесі приведення системи до ступінчастому виду з'являться нульові рівняння, тобто. рівності виду 0=0 їх відкидають. Якщо ж з'явиться рівняння виду

то це свідчить про несумісність системи.

У цьому прямий хід методу Гаусса закінчується.

2. Зворотний перебіг.

На другому етапі здійснюється так званий зворотний хід, суть якого полягає в тому, щоб висловити всі базисні змінні через небазисні і побудувати. фундаментальну системурішень, чи, якщо всі змінні є базисними, то висловити чисельному вигляді єдине рішення системи лінійних рівнянь.

Ця процедура починається з останнього рівняння, з якого виражають відповідну базисну змінну (вона в ньому всього одна) і підставляють у попередні рівняння, і так далі, піднімаючись «сходинками» нагору.

Кожному рядку відповідає рівно одна базова змінна, тому на кожному кроці, крім останнього (найвищого), ситуація точно повторює випадок останнього рядка.

Примітка: практично зручніше працювати не з системою, а з розширеною її матрицею, виконуючи всі елементарні перетворення над її рядками. Зручно, щоб коефіцієнт a11 дорівнював 1 (рівняння переставити місцями, або розділити обидві частини рівняння на a11).

2.2 Приклади рішення СЛАУ методом Гаусса

У цьому розділі на трьох різних прикладах покажемо, як методом Гауса можна вирішити СЛАУ.

Приклад 1. Вирішити СЛАУ 3-го порядку.

Обнулили коефіцієнти при

у другому та третьому рядках. Для цього домножимо їх на 2/3 та 1 відповідно і складемо з першим рядком:

Метод Гаусса, званий також методом послідовного виключення невідомих, ось у чому. За допомогою елементарних перетворень систему лінійних рівнянь призводять до такого виду, щоб її матриця з коефіцієнтів виявилася трапецієподібної (те ж саме, що трикутної або ступінчастої) або близькою до трапецієподібної (прямий хід методу Гаусса, далі – просто прямий хід). Приклад такої системи та її рішення – на малюнку зверху.

У такій системі останнє рівняння містить лише одну змінну та її значення можна однозначно знайти. Потім значення цієї змінної підставлять у попереднє рівняння ( зворотний хід методу Гауса , Далі - просто зворотний хід), з якого знаходять попередню змінну, і так далі.

У трапецієподібній (трикутній) системі, як бачимо, третє рівняння вже не містить змінних yі x, а друге рівняння - змінною x .

Після того, як матриця системи набула трапецієподібної форми, вже не важко розібратися в питанні про спільність системи, визначити число рішень і знайти самі рішення.

Переваги методу:

  1. при вирішенні систем лінійних рівнянь з числом рівнянь і невідомих більше трьох метод Гауса не такий громіздкий, як метод Крамера, оскільки при вирішенні методом Гауса необхідно менше обчислень;
  2. методом Гауса можна вирішувати невизначені системи лінійних рівнянь, тобто мають спільне рішення (і ми розберемо їх на цьому уроці), а, використовуючи метод Крамера, можна лише констатувати, що система невизначена;
  3. можна вирішувати системи лінійних рівнянь, у яких число невідомих не дорівнює кількості рівнянь (також розберемо їх на цьому уроці);
  4. метод заснований на елементарних (шкільних) методах – методі підстановки невідомих та методі складання рівнянь, яких ми торкнулися у відповідній статті.

Щоб всі перейнялися простотою, з якою вирішуються трапецієподібні (трикутні, ступінчасті) системи лінійних рівнянь, наведемо рішення такої системи із застосуванням зворотного ходу. Швидке рішення цієї системи було показано на зображенні на початку уроку.

приклад 1.Розв'язати систему лінійних рівнянь, застосовуючи зворотний хід:

Рішення. У цій трапецієподібній системі змінна zоднозначно з третього рівняння. Підставляємо її значення у друге рівняння та отримуємо значення зміною y:

Тепер нам відомі значення вже двох змінних - zі y. Підставляємо їх у перше рівняння та отримуємо значення змінної x:

Із попередніх кроків виписуємо рішення системи рівнянь:

Щоб отримати таку трапецієподібну систему лінійних рівнянь, яку ми вирішили дуже просто, потрібно застосовувати прямий хід, пов'язаний із елементарними перетвореннями системи лінійних рівнянь. Це також не дуже складно.

Елементарні перетворення системи лінійних рівнянь

Повторюючи шкільний метод алгебраїчного складання рівнянь системи, ми з'ясували, що одного з рівнянь системи можна додавати інше рівняння системи, причому кожне з рівнянь може бути помножено деякі числа. В результаті отримуємо систему лінійних рівнянь, еквівалентну даній. У ній вже одне рівняння містило лише одну змінну, підставляючи значення якої інші рівнянь, ми приходимо до рішення. Таке додавання - одне із видів елементарного перетворення системи. При використанні методу Гауса можемо користуватися кількома видами перетворень.

На анімації вище показано, як система рівнянь поступово перетворюється на трапецієподібну. Тобто таку, яку ви бачили на першій анімації і самі переконалися в тому, що з неї просто знайти значення всіх невідомих. Про те, як виконати таке перетворення і, звичайно, приклади, йтиметься далі.

При вирішенні систем лінійних рівнянь з будь-яким числом рівнянь та невідомих у системі рівнянь та у розширеній матриці системи можна, можливо:

  1. переставляти місцями рядки (це і було згадано на початку цієї статті);
  2. якщо внаслідок інших перетворень з'явилися рівні або пропорційні рядки, їх можна видалити, крім одного;
  3. видаляти "нульові" рядки, де всі коефіцієнти дорівнюють нулю;
  4. будь-який рядок множити чи ділити на деяке число;
  5. до будь-якого рядка додавати інший рядок, помножений на деяке число.

В результаті перетворень отримуємо систему лінійних рівнянь, еквівалентну даній.

Алгоритм та приклади вирішення методом Гауса системи лінійних рівнянь із квадратною матрицею системи

Розглянемо спочатку рішення систем лінійних рівнянь, у яких число невідомих дорівнює кількості рівнянь. Матриця такої системи - квадратна, тобто в ній число рядків дорівнює числу стовпців.

приклад 2.Розв'язати методом Гауса систему лінійних рівнянь

Вирішуючи системи лінійних рівнянь шкільними методами, ми почленно множили одне з рівнянь на деяке число, те щоб коефіцієнти за першої змінної у двох рівняннях були протилежними числами. При додаванні рівнянь відбувається виключення цієї змінної. Аналогічно діє метод Гауса.

Для спрощення зовнішнього виглядурішення складемо розширену матрицю системи:

У цій матриці зліва до вертикальної межі розташовані коефіцієнти при невідомих, а праворуч після вертикальної межі - вільні члени.

Для зручності розподілу коефіцієнтів при змінних (щоб отримати розподіл на одиницю) переставимо місцями перший і другий рядки матриці системи. Отримаємо систему, еквівалентну даній, оскільки в системі лінійних рівнянь можна переставляти місцями рівняння:

За допомогою нового першого рівняння виключимо змінну xз другого та всіх наступних рівнянь. Для цього до другого рядка матриці додамо перший рядок, помножений на (у нашому випадку на ), до третього рядка – перший рядок, помножений на (у нашому випадку на ).

Це можливо, оскільки

Якби в нашій системі рівнянь було більше трьох, то слід додавати і до всіх наступних рівнянь перший рядок, помножений на відношення відповідних коефіцієнтів, взятих зі знаком мінус.

В результаті отримаємо матрицю еквівалентну даній системі нової системирівнянь, у яких усі рівняння, починаючи з другого не містять змінну x :

Для спрощення другого рядка отриманої системи помножимо її і отримаємо знову матрицю системи рівнянь, еквівалентної даній системі:

Тепер, зберігаючи перше рівняння отриманої системи без змін, за допомогою другого рівняння виключаємо змінну y із усіх наступних рівнянь. Для цього до третього рядка матриці системи додамо другий рядок, помножений на (у нашому випадку на ).

Якби в нашій системі рівнянь було більше трьох, то слід додавати і до всіх наступних рівнянь другий рядок, помножений на відношення відповідних коефіцієнтів, взятих зі знаком мінус.

В результаті знову отримаємо матрицю системи, еквівалентної даній системі лінійних рівнянь:

Ми отримали еквівалентну дану трапецієподібну систему лінійних рівнянь:

Якщо кількість рівнянь і змінних більше, ніж у прикладі, процес послідовного виключення змінних триває до того часу, поки матриця системи стане трапецієподібної, як і нашому демо-примере.

Рішення знайдемо "з кінця" - зворотний хід. Для цього з останнього рівняння визначимо z:
.
Підставивши це значення у попереднє рівняння, знайдемо y:

З першого рівняння знайдемо x:

Відповідь: розв'язання даної системи рівнянь - .

: у цьому випадку буде видана та сама відповідь, якщо система має однозначне рішення. Якщо ж система має безліч рішень, то такою буде і відповідь, і це вже предмет п'ятої частини цього уроку.

Вирішити систему лінійних рівнянь методом Гауса самостійно, а потім переглянути рішення

Перед нами знову приклад спільної та певної системи лінійних рівнянь, у якій число рівнянь дорівнює числу невідомих. Відмінність від нашого демо-прикладу з алгоритму - тут уже чотири рівняння та чотири невідомі.

приклад 4.Розв'язати систему лінійних рівнянь методом Гауса:

Тепер потрібно за допомогою другого рівняння виключити змінну з наступних рівнянь. Проведемо підготовчі роботи. Щоб було зручніше з відношенням коефіцієнтів, потрібно отримати одиницю у другому стовпці другого рядка. Для цього з другого рядка віднімемо третій, а отриманий в результаті другий рядок помножимо на -1.

Проведемо тепер власне виняток змінної з третього та четвертого рівнянь. Для цього до третього рядка додамо другий, помножений на , а до четвертого - другий, помножений на .

Тепер за допомогою третього рівняння виключимо змінну із четвертого рівняння. Для цього до четвертого рядка додамо третій, помножений на . Отримуємо розширену матрицю трапецієподібної форми.

Отримали систему рівнянь, якою еквівалентна задана система:

Отже, отримана та дана системи є спільними та певними. Остаточне рішення знаходимо «з кінця». З четвертого рівняння безпосередньо можемо виразити значення змінної "ікс четверте":

Це значення підставляємо у третє рівняння системи та отримуємо

,

,

Зрештою, підстановка значень

У перше рівняння дає

,

звідки знаходимо "ікс перше":

Відповідь: дана система рівнянь має єдине рішення .

Перевірити рішення системи можна і на калькуляторі, що вирішує методом Крамера: у цьому випадку буде видана та сама відповідь, якщо система має однозначне рішення.

Рішення методом Гауса прикладних задач на прикладі задачі на сплави

Системи лінійних рівнянь використовуються для моделювання реальних об'єктів фізичного світу. Вирішимо одне з таких завдань – на сплави. Аналогічні завдання - завдання на суміші, вартість або питома вага окремих товарів у групі товарів тощо.

Приклад 5.Три шматки сплаву мають загальну масу 150 кг. Перший сплав містить 60% міді, другий – 30%, третій – 10%. При цьому у другому та третьому сплавах разом узятих міді на 28,4 кг менше, ніж у першому сплаві, а у третьому сплаві міді на 6,2 кг менше, ніж у другому. Знайти масу кожного шматка металу.

Рішення. Складаємо систему лінійних рівнянь:

Помножуємо друге та третє рівняння на 10, отримуємо еквівалентну систему лінійних рівнянь:

Складаємо розширену матрицю системи:

Увага, прямий перебіг. Шляхом додавання (у нашому випадку - віднімання) одного рядка, помноженого на число (застосовуємо двічі) з розширеною матрицею системи відбуваються наступні перетворення:

Прямий хід завершився. Отримали розширену матрицю трапецієподібної форми.

Застосовуємо зворотний перебіг. Знаходимо рішення з кінця. Бачимо, що .

З другого рівняння знаходимо

Із третього рівняння -

Перевірити рішення системи можна і на калькуляторі, що вирішує методом Крамера : у цьому випадку буде видана відповідь, якщо система має однозначне рішення.

Про простоту методу Гауса говорить хоча б той факт, що німецькому математику Карлу Фрідріху Гауссу на його винахід знадобилося лише 15 хвилин. Крім методу його імені з творчості Гауса відомо вислів "Не слід змішувати те, що нам здається неймовірним і неприродним, з абсолютно неможливим" - свого роду коротка інструкція щодо здійснення відкриттів.

У багатьох прикладних завданнях може і не бути третього обмеження, тобто третього рівняння, тоді доводиться вирішувати методом Гауса систему двох рівнянь із трьома невідомими, або ж навпаки – невідомих менше, ніж рівнянь. Вирішення таких систем рівнянь ми зараз і приступимо.

За допомогою методу Гауса можна встановити, спільна чи несумісна будь-яка система nлінійних рівнянь з nзмінними.

Метод Гауса і системи лінійних рівнянь, що мають безліч рішень

Наступний приклад - спільна, але невизначена система лінійних рівнянь, тобто має безліч рішень.

Після виконання перетворень у розширеній матриці системи (перестановки рядків, множення та поділу рядків на деяке число, додатку до одного рядка інший) могли з'явитися рядки виду

Якщо у всіх рівняннях мають вигляд

Вільні члени рівні нулю, це означає, що система невизначена, тобто має безліч рішень, а рівняння цього виду – «зайві» та їх виключаємо з системи.

Приклад 6.

Рішення. Складемо розширену матрицю системи. Потім за допомогою першого рівняння виключимо змінну наступних рівнянь. Для цього до другого, третього та четвертого рядків додамо перший, помножений відповідно на :

Тепер другий рядок додамо до третього та четвертого.

В результаті приходимо до системи

Останні два рівняння перетворилися на рівняння виду. Ці рівняння задовольняються за будь-яких значень невідомих і їх можна відкинути.

Щоб задовольнити друге рівняння, ми можемо і вибрати довільні значення , тоді значення для визначиться вже однозначно: . З першого рівняння значення також знаходиться однозначно: .

Як задана, і остання системи спільні, але невизначені, і формули

за довільних і дають нам всі рішення заданої системи.

Метод Гауса та системи лінійних рівнянь, які не мають рішень

Наступний приклад - несумісна система лінійних рівнянь, тобто така, що не має рішень. Відповідь такі завдання так і формулюється: система немає рішень.

Як уже говорилося у зв'язку з першим прикладом, після виконання перетворень у розширеній матриці системи могли з'явитися рядки виду

відповідні рівняння виду

Якщо серед них є хоча б одне рівняння з відмінним від нуля вільним членом (тобто ), то дана система рівнянь є несумісною, тобто немає рішень і на цьому її рішення закінчено.

Приклад 7.Розв'язати методом Гауса систему лінійних рівнянь:

Рішення. Складаємо розширену матрицю системи. За допомогою першого рівняння виключаємо з наступних рівнянь змінну. Для цього до другого рядка додаємо перший, помножений на , до третього рядка - перший, помножений на , до четвертого - перший, помножений на .

Тепер потрібно за допомогою другого рівняння виключити змінну з наступних рівнянь. Щоб отримати цілі відносини коефіцієнтів, поміняємо місцями другий і третій рядки розширеної матриці системи.

Для виключення з третього і четвертого рівняння до третього рядка додамо другий, помножений на , а до четвертого - другий, помножений на .

Тепер за допомогою третього рівняння виключимо змінну із четвертого рівняння. Для цього до четвертого рядка додамо третій, помножений на .

Задана системаеквівалентна таким чином наступній:

Отримана система несумісна, оскільки її останнє рівняння може бути задоволене ніякими значеннями невідомих. Отже, ця система не має рішень.

Поділіться з друзями або збережіть для себе:

Завантаження...