Межа функції дві чудові межі. Калькулятор онлайн.Рішення меж

Доведення:

Доведемо спочатку теорему для випадку послідовності

За формулою бінома Ньютона:

Вважаючи отримаємо

З цієї рівності (1) випливає, що зі збільшенням n число позитивних доданків у правій частині збільшується. Крім того, при збільшенні n число зменшується, тому величини зростають. Тому послідовність зростаюча, при цьому (2)*Покажемо, що вона обмежена. Замінимо кожну дужку у правій частині рівності на одиницю, права частиназбільшиться, отримаємо нерівність

Посилимо отриману нерівність, замінимо 3,4,5, …, що стоять у знаменниках дробів, числом 2: Суму в дужці знайдемо за формулою суми членів геометричній прогресії: Тому (3)*

Отже, послідовність обмежена зверху, при цьому виконуються нерівності (2) та (3): Отже, виходячи з теореми Вейерштрасса (критерій збіжності послідовності) послідовність монотонно зростає і обмежена, отже має межу, що позначається буквою e. Тобто.

Знаючи, що друга чудова межа вірна для натуральних значень x, доведемо другу чудову межу для речовинних x, тобто доведемо, що . Розглянемо два випадки:

1. Нехай Кожне значення x укладено між двома позитивними цілими числами: де - це ціла частина x. => =>

Якщо , то Тому, відповідно до межі Маємо

За ознакою (про межу проміжної функції) існування меж

2. Нехай. Зробимо підстановку − x = t, тоді

Із двох цих випадків випливає, що для речового x.

Наслідки:

9 .) Порівняння нескінченно малих. Теорема про заміну нескінченно малих на еквівалентні в межі та теорема про головну частину нескінченно малих.

Нехай функції a ( x) та b( x) - Б.М. при x ® x 0 .

ВИЗНАЧЕННЯ.

1) a( x) називається нескінченно малої більше високого порядкучим b (x) якщо

Записують: a ( x) = o(b( x)) .

2) a( x) і b( x)називаються нескінченно малими одного порядку, якщо

де СÎℝ та C¹ 0 .

Записують: a ( x) = O(b( x)) .

3) a( x) і b( x) називаються еквівалентними , якщо

Записують: a ( x) ~ b ( x).

4) a( x) називається нескінченно малою порядку k відноси-
дуже нескінченно малої
b( x),
якщо нескінченно малі a( x)і(b( x)) k мають одне порядок, тобто. якщо

де СÎℝ та C¹ 0 .

ТЕОРЕМА 6 (про заміну нескінченно малих на еквівалентні).

Нехай a( x), b( x), a 1 ( x), b 1 ( x)- Б.М. при x ® x 0 . Якщо a( x) ~ a 1 ( x), b( x) ~ b 1 ( x),

то

Доказ: Нехай a( x) ~ a 1 ( x), b( x) ~ b 1 ( x)тоді

ТЕОРЕМА 7 (про головну частину нескінченно малої).

Нехай a( x)і b( x)- Б.М. при x ® x 0 , причому b( x)- Б.М. вищого порядку ніж a( x).

= , a оскільки b( x) - вищого порядку ніж a ( x), то, тобто. з ясно, що a( x) + b( x) ~ a ( x)

10) Безперервність функції у точці (мовою меж эпсилон-дельта, геометричне) Одностороння безперервність. Безперервність на інтервалі, відрізку. Властивості безперервних функцій.

1. Основні визначення

Нехай f(x) визначена в деякій околиці точки x 0 .

ВИЗНАЧЕННЯ 1. Функція f(x) називається безперервний у точці x 0 якщо справедлива рівність

Зауваження.

1) У силу теореми 5 §3 рівність (1) можна записати у вигляді

Умова (2) – визначення безперервності функції у точці мовою односторонніх меж.

2) Рівність (1) можна також записати у вигляді:

Кажуть: «якщо функція безперервна у точці x 0 то знак межі і функцію можна поміняти місцями ».

ВИЗНАЧЕННЯ 2 (мовою e-d).

Функція f(x) називається безперервний у точці x 0 якщо"e>0 $d>0 таке, що

якщо xÎU( x 0, d) (тобто. | xx 0 | < d),

то f(x)ÎU( f(x 0), e) (тобто | | f(x) – f(x 0) | < e).

Нехай x, x 0 Î D(f) (x 0 – фіксована, x –довільна)

Позначимо: D x= x – x 0 – приріст аргументу

D f(x 0) = f(x) – f(x 0) – збільшення функції в точціx 0

ВИЗНАЧЕННЯ 3 (геометричне).

Функція f(x) на зується безперервний у точці x 0 якщо в цій точці нескінченно малому прирощенню аргументу відповідає нескінченно мале збільшення функції, тобто.

Нехай функція f(x) визначено на проміжку [ x 0 ; x 0 + d) (на проміжку ( x 0 – d; x 0 ]).

ВИЗНАЧЕННЯ. Функція f(x) називається безперервний у точці x 0 справа (ліворуч ), якщо справедлива рівність

Очевидно, що f(x) безперервна в точці x 0 Û f(x) безперервна в точці x 0 праворуч та ліворуч.

ВИЗНАЧЕННЯ. Функція f(x) називається безперервний на інтервал е ( a; b) якщо вона безперервна в кожній точці цього інтервалу.

Функція f(x) називається безперервною на відрізку [a; b] якщо вона безперервна на інтервалі (a; b) і має односторонню безперервність у граничних точках(Тобто безперервна в точці aправоруч, у точці b- ліворуч).

11) Точки розриву, їхня класифікація

ВИЗНАЧЕННЯ. Якщо функція f(x) визначена в деякій околиці точки x 0 , але не є безперервною в цій точці, то f(x) називають розривною в точці x 0 , а саму точку x 0 називають точкою розриву функції f(x) .

Зауваження.

1) f(x) може бути визначена в неповній околиці точки x 0 .

Тоді розглядають відповідну односторонню безперервність функції.

2) З визначення Þ точка x 0 є точкою розриву функції f(x) у двох випадках:

а) U( x 0 , d)Î D(f) , але для f(x) не виконується рівність

б) U * ( x 0 , d)Î D(f) .

Для елементарних функцій можливе лише випадок б).

Нехай x 0 – точка розриву функції f(x) .

ВИЗНАЧЕННЯ. Крапка x 0 називається точкою розриву I роду якщо функція f(x)має в цій точці кінцеві межі зліва та справа.

Якщо при цьому ці межі дорівнюють, то точка x 0 називається точкою усуненого розриву , в іншому випадку - точкою стрибка .

ВИЗНАЧЕННЯ. Крапка x 0 називається точкою розриву II роду якщо хоча б одна з односторонніх меж функції f(x)у цій точці дорівнює¥ чи не існує.

12) Властивості функцій, безперервних на відрізку (теореми Вейєрштрасса (без док-ва) та Коші

Теорема Вейєрштраса

Нехай функція f(x) безперервна на відрізку тоді

1)f(x)обмежена на

2)f(x) приймає на проміжку своє найменше і найбільше значення

Визначення: Значення функції m=f називається найменшим, якщо m≤f(x) для будь-якого x€ D(f).

Значення функції m=f називається найбільшим, якщо m≥f(x) для будь-якого x€ D(f).

Найменше\найбільше значення функція може приймати у кількох точках відрізка.

f(x 3)=f(x 4)=max

Теорема Коші.

Нехай функція f(x) безперервна на відрізку і х – число, укладене між f(a) та f(b), тоді існує хоча б одна точка х 0 € така, що f(x 0) = g

Ця стаття: «Друга чудова межа» присвячена розкриттю в межах невизначеностей виду:

$ \bigg[\frac(\infty)(\infty)\bigg]^\infty $ і $^\infty $.

Так само такі невизначеності можна розкривати за допомогою логарифмування показово-ступеневої функції, але це вже інший метод рішення, про який буде висвітлено в іншій статті.

Формула та наслідки

Формуладругого чудової межізаписується так: $$ \lim_(x \to \infty) \bigg (1+\frac(1)(x)\bigg)^x = e, \text( де ) e \approx 2.718 $$

З формули випливають слідства, які дуже зручно застосовувати для вирішення прикладів з межами: $$ \lim_(x \to \infty) \bigg (1 + \frac(k)(x) \bigg)^x = e^k, \text( де ) k \in \mathbb(R) $$ $$ \lim_(x \to \infty) \bigg (1 + \frac(1)(f(x)) \bigg)^(f(x)) = e $ $ $$ \lim_(x \to 0) \bigg (1 + x \bigg)^\frac(1)(x) = e $$

Варто зауважити, що друга чудова межа можна застосовувати не завжди до показово-ступеневої функції, а лише у випадках коли основа прагне одиниці. Для цього спочатку в розумі обчислюють межу основи, а потім роблять висновки. Все це буде розглянуто у прикладах рішень.

Приклади рішень

Розглянемо приклади рішень із використанням прямої формули та її наслідків. Також розберемо випадки, у яких формула не потрібна. Достатньо записати лише готову відповідь.

Приклад 1
Знайти межу $ \lim_(x\to\infty) \bigg(\frac(x+4)(x+3) \bigg)^(x+3) $
Рішення

Підставимо нескінченність у межу і подивимося на невизначеність: $$ \lim_(x\to\infty) \bigg(\frac(x+4)(x+3) \bigg)^(x+3) = \bigg(\frac (\infty)(\infty)\bigg)^\infty $$

Знайдемо межу основи: $$ \lim_(x\to\infty) \frac(x+4)(x+3)= \lim_(x\to\infty) \frac(x(1+\frac(4)( x)))(x(1+\frac(3)(x))) = 1 $$

Отримали підставу рівну одиниці, а це вже можна застосувати другий чудовий кордон. Для цього підганим основу функції під формулу шляхом віднімання та додавання одиниці:

$$ \lim_(x\to\infty) \bigg(1 + \frac(x+4)(x+3) - 1 \bigg)^(x+3) = \lim_(x\to\infty) \ bigg(1 + \frac(1)(x+3) \bigg)^(x+3) = $$

Дивимося на друге слідство та записуємо відповідь:

$$ \lim_(x\to\infty) \bigg(1 + \frac(1)(x+3) \bigg)^(x+3) = e $$

Якщо не вдається вирішити своє завдання, то надсилайте його до нас. Ми надамо докладне рішення. Ви зможете ознайомитися з ходом обчислення та отримати інформацію. Це допоможе вчасно отримати залік у викладача!

Відповідь
$$ \lim_(x\to\infty) \bigg(1 + \frac(1)(x+3) \bigg)^(x+3) = e $$
Приклад 4
Вирішити межу $ \lim_(x\to \infty) \bigg (\frac(3x^2+4)(3x^2-2) \bigg) ^(3x) $
Рішення

Знаходимо межу основи і бачимо, що $ \lim_(x\to\infty) \frac(3x^2+4)(3x^2-2) = 1 $, отже можна застосувати другу чудову межу. Стандартно за планом додаємо та віднімаємо одиницю з основи ступеня:

$$ \lim_(x\to \infty) \bigg (1+\frac(3x^2+4)(3x^2-2)-1 \bigg) ^(3x) = \lim_(x\to \infty ) \bigg (1+\frac(6)(3x^2-2) \bigg) ^(3x) = $$

Підганяємо дріб під формулу 2-го зауваж. межі:

$$ = \lim_(x\to \infty) \bigg (1+\frac(1)(\frac(3x^2-2)(6)) \bigg) ^(3x) = $$

Тепер підганяємо ступінь. У ступеня має бути дріб рівний знаменнику основи $ \frac(3x^2-2)(6) $. Для цього помножимо та розділимо ступінь на неї, і продовжимо вирішувати:

$$ = \lim_(x\to \infty) \bigg (1+\frac(1)(\frac(3x^2-2)(6)) \bigg) ^(\frac(3x^2-2) (6) \cdot \frac(6)(3x^2-2)\cdot 3x) = \lim_(x\to \infty) e^(\frac(18x)(3x^2-2)) = $$

Межа, розташована в ступені при $ e $ дорівнює: $ \lim_(x\to \infty) \frac(18x)(3x^2-2) = 0$. Тому продовжуючи рішення маємо:

Відповідь
$$ \lim_(x\to \infty) \bigg (\frac(3x^2+4)(3x^2-2) \bigg) ^(3x) = 1 $$

Розберемо випадки, коли завдання схоже на другу чудову межу, але вирішується без неї.

У статті: «Друга чудова межа: приклади рішень» було розібрано формулу, її наслідки та наведено часті типи завдань на цю тему.

З вищевказаної статті Ви зможете дізнатися, що ж таке межа, і з чим її їдять – це дуже важливо. Чому? Можна не розуміти, що таке визначники та успішно їх вирішувати, можна зовсім не розуміти, що таке похідна та знаходити їх на «п'ятірку». Але якщо Ви не розумієте, що таке межа, то з вирішенням практичних завдань доведеться туго. Також не зайвим буде ознайомитись із зразками оформлення рішень та моїми рекомендаціями щодо оформлення. Вся інформація викладена у простій та доступній формі.

А для цілей цього уроку нам знадобляться такі методичні матеріали: Чудові межіі Тригонометричні формули. Їх можна знайти на сторінці. Найкраще методички роздрукувати - це значно зручніше, до того ж до них часто доведеться звертатися в офлайні.

Чим чудові межі? Чудовість цих меж полягає в тому, що вони доведені найбільшими розумами знаменитих математиків, і вдячним нащадкам не доводиться страждати страшними межами з нагромадженням тригонометричних функцій, логарифмів, ступенів. Тобто при знаходженні меж ми користуватимемося готовими результатами, які доведені теоретично.

Чудових меж існує кілька, але на практиці у студентів-заочників у 95% випадків фігурують дві чудові межі: Перша чудова межа, Друга чудова межа. Слід зазначити, що це назви, що історично склалися, і, коли, наприклад, говорять про «першу чудову межу», то мають на увазі під цим цілком певну річ, а не якусь випадкову, взяту зі стелі межу.

Перша чудова межа

Розглянемо наступну межу: (замість рідної літери «хе» я використовуватиму грецьку букву"Альфа", це зручніше з точки зору подачі матеріалу).

Згідно з нашим правилом знаходження меж (див. статтю Межі. Приклади рішень) Пробуємо підставити нуль у функцію: в чисельнику у нас виходить нуль (синус нуля дорівнює нулю), у знаменнику, очевидно, теж нуль. Таким чином, ми стикаємося з невизначеністю виду, яку, на щастя, не треба розкривати. В курсі математичного аналізу, доводиться, що:

Цей математичний факт зветься Першої чудової межі. Аналітичний доказ межі наводити не буду, а ось його геометричний змістрозглянемо на уроці про нескінченно малих функціях.

Нерідко в практичних завданнях функції можуть бути по-іншому, це нічого не змінює:

– та сама перша чудова межа.

Але самостійно переставляти чисельник та знаменник не можна! Якщо дана межа у вигляді , то і вирішувати його потрібно в такому вигляді, нічого не переставляючи.

На практиці як параметр може виступати не тільки змінна , але і елементарна функція, складна функція. Важливо лише, щоб вона прагнула нуля.

Приклади:
, , ,

Тут , , , , і все гуд - перша чудова межа застосовується.

А ось наступний запис – єресь:

Чому? Тому що багаточлен не прагне нуля, він прагне п'ятірки.

До речі, питання на засипку, а чому дорівнює межа ? Відповідь можна знайти наприкінці уроку.

На практиці не все так гладко, майже ніколи студенту не запропонують вирішити халявну межу та отримати легкий залік. Хммм… Пишу ці рядки, і спала на думку дуже важлива думка – все-таки «халявні» математичні визначення та формули начебто краще пам'ятати напам'ять, це може надати неоціненну допомогу на заліку, коли питання вирішуватиметься між «двійкою» та «трійкою», і викладач вирішить поставити студенту якесь просте питання або запропонувати вирішити найпростіший приклад(«А може він (а) все-таки знає чого?!»).

Переходимо до розгляду практичних прикладів:

Приклад 1

Знайти межу

Якщо ми помічаємо в межі синус, то це нас відразу має наштовхувати на думку про можливість застосування першої чудової межі.

Спочатку пробуємо підставити 0 у вираз під знак межі (робимо це подумки або на чернетці):

Отже, у нас є невизначеність виду, її обов'язково вказуємов оформленні рішення. Вираз під знаком межі у нас схоже на першу чудову межу, але це не зовсім він, під синусом знаходиться , а в знаменнику.

У подібних випадках перша чудова межа нам потрібно організувати самостійно, використовуючи штучний прийом. Хід міркувань може бути таким: "під синусом у нас, значить, у знаменнику нам теж потрібно отримати".
А робиться це дуже просто:

Тобто знаменник штучно множиться в даному випадку на 7 і ділиться на ту ж сімку. Тепер запис у нас набув знайомих обрисів.
Коли завдання оформляється від руки, то перша чудова межа бажано помітити простим олівцем:


Що сталося? По суті, обведений вираз у нас перетворився на одиницю і зник у творі:

Тепер тільки залишилося позбутися триповерховості дробу:

Хто забув спрощення багатоповерхових дробів, будь ласка, освіжіть матеріал у довіднику Гарячі формули шкільного курсу математики .

Готово. Остаточна відповідь:

Якщо не хочеться використовувати позначки олівцем, то рішення можна оформити так:



Використовуємо першу чудову межу

Приклад 2

Знайти межу

Знову ми бачимо межі дріб і синус. Пробуємо підставити в чисельник і знаменник нуль:

Справді, у нас невизначеність і, отже, треба спробувати організувати першу чудову межу. На уроці Межі. Приклади рішеньми розглядали правило, що коли у нас є невизначеність, то потрібно розкласти чисельник та знаменник на множники. Тут – те саме, ступеня ми представимо як твори (множників):

Аналогічно попередньому прикладу, обводимо олівцем чудові межі (тут їх дві), і вказуємо, що вони прагнуть одиниці:

Власне, відповідь готова:

У наступних прикладах, я не займатимуся мистецтвами в Пейнті, думаю, як правильно оформляти рішення у зошиті – Вам вже зрозуміло.

Приклад 3

Знайти межу

Підставляємо нуль у вираз під знаком межі:

Отримано невизначеність, яку потрібно розкривати. Якщо в межі є тангенс, то майже завжди його перетворюють на синус і косинус за відомою тригонометричною формулою (до речі, з котангенсом роблять приблизно те саме, див. методичний матеріал Гарячі тригонометричні формулина сторінці Математичні формули, таблиці та довідкові матеріали).

В даному випадку:

Косинус нуля дорівнює одиниці, і його легко позбутися (не забуваємо помітити, що він прагне одиниці):

Отже, якщо межі косинус є МНОЖИТЕЛЕМ, його, грубо кажучи, треба перетворити на одиницю, що зникає у творі.

Тут все вийшло простіше, без жодних помножень і поділів. Перша чудова межа теж перетворюється на одиницю і зникає у творі:

У результаті отримано нескінченність, буває таке.

Приклад 4

Знайти межу

Пробуємо підставити нуль у чисельник та знаменник:

Отримана невизначеність (косинус нуля, як ми пам'ятаємо, дорівнює одиниці)

Використовуємо тригонометричну формулу. Візьміть на замітку! Межі із застосуванням цієї формули чомусь зустрічаються дуже часто.

Постійні множники винесемо за значок межі:

Організуємо першу чудову межу:


Тут у нас тільки одна чудова межа, яка перетворюється на одиницю і зникає у творі:

Позбавимося триповерховості:

Межа фактично вирішена, вказуємо, що синус, що залишився, прагне до нуля:

Приклад 5

Знайти межу

Цей приклад складніший, спробуйте розібратися самостійно:

Деякі межі можна звести до 1-ї чудової межі шляхом заміни змінної, про це можна прочитати трохи пізніше в статті Методи розв'язання меж.

Друга чудова межа

Теоретично математичного аналізу доведено, що:

Цей факт має назву другої чудової межі.

Довідка: - Це ірраціональне число.

Як параметр може бути як змінна , а й складна функція. Важливо лише, щоб вона прагнула нескінченності.

Приклад 6

Знайти межу

Коли вираз під знаком межі перебуває у ступені – це перша ознака того, що потрібно спробувати застосувати другу чудову межу.

Але спочатку, як завжди, пробуємо підставити нескінченно велике числоу вираз , за яким принципом це робиться, розібрано на уроці Межі. Приклади рішень.

Неважко помітити, що за основа ступеня , а показник – , тобто є, невизначеність виду:

Ця невизначеність якраз і розкривається за допомогою другої чудової межі. Але, як часто буває, друга чудова межа не лежить на блюдечку з блакитною облямівкою, і його потрібно штучно організувати. Розмірковувати можна так: у цьому прикладі параметр , отже, у показнику нам теж треба організувати . Для цього зводимо основу в ступінь , і щоб вираз не змінилося - зводимо в ступінь :

Коли завдання оформляється від руки, позначаємо олівцем:


Практично все готово, страшний ступінь перетворився на симпатичну букву:

При цьому сам значок межі переміщуємо до показника:

Приклад 7

Знайти межу

Увага! Межа подібного типу зустрічається дуже часто, будь ласка, дуже уважно вивчіть цей приклад.

Пробуємо підставити нескінченно велике число у вираз, що стоїть під знаком межі:

В результаті отримано невизначеність. Але друга чудова межа застосовується до невизначеності виду. Що робити? Потрібно перетворити основу ступеня. Розмірковуємо так: у знаменнику у нас, значить, у чисельнику теж треба організувати.

Чудових меж існує кілька, але найвідомішими є перший і другий чудові межі. Чудовість цих меж у тому, що вони мають широке застосування і з допомогою можна знайти й інші межі, які у численних завданнях. Цим ми і займатимемося в практичній частині цього уроку. Для вирішення завдань шляхом приведення до першої або другої чудової межі не потрібно розкривати невизначеності, що містяться в них, оскільки значення цих меж вже давно вивели великі математики.

Першою чудовою межеюназивається межа відношення синуса нескінченно малої дуги до тієї ж дуги, вираженої в радіанній мірі:

Переходимо до вирішення завдань на першу чудову межу. Зауважимо: якщо під знаком межі знаходиться тригонометрична функція, це майже вірна ознака того, що цей вираз можна привести до першої чудової межі.

приклад 1.Знайти межу.

Рішення. Підстановка замість xнуля призводить до невизначеності:

.

У знаменнику - синус, отже, вираз можна призвести до першої чудової межі. Починаємо перетворення:

.

У знаменнику - синус трьох ікс, а в чисельнику лише один ікс, отже, потрібно отримати три ікс і в чисельнику. Для чого? Щоб уявити 3 x = aі отримати вираз.

І приходимо до різновиду першої чудової межі:

тому що не має значення, яка літера (змінна) у цій формулі стоїть замість ікса.

Помножуємо ікс на три і відразу ділимо:

.

Відповідно до поміченої першої чудової межі робимо заміну дробового виразу:

Тепер можемо остаточно вирішити цю межу:

.

приклад 2.Знайти межу.

Рішення. Безпосередня підстановка знову призводить до невизначеності "нуль ділити на нуль":

.

Щоб отримати першу чудову межу, потрібно, щоб ікс під знаком синуса в чисельнику і просто ікс у знаменнику були з тим самим коефіцієнтом. Нехай цей коефіцієнт дорівнюватиме 2. Для цього представимо нинішній коефіцієнт при іксі як і далі, роблячи дії з дробами, отримуємо:

.

приклад 3.Знайти межу.

Рішення. При підстановці знову отримуємо невизначеність "нуль ділити на нуль":

.

Напевно, вам уже зрозуміло, що з вихідного виразу можна отримати першу чудову межу, помножену на першу чудову межу. Для цього розкладаємо квадрати ікса в чисельнику і синуса в знаменнику на однакові множники, а щоб отримати у іксів і синуса однакові коефіцієнти, ікси в чисельникі ділимо на 3 і відразу множимо на 3. Отримуємо:

.

приклад 4.Знайти межу.

Рішення. Знову отримуємо невизначеність "нуль ділити на нуль":

.

Можемо отримати відношення двох перших чудових меж. Ділимо і чисельник, і знаменник на ікс. Потім, щоб коефіцієнти при синусах і при іксах збігалися, верхній ікс множимо на 2 і відразу ділимо на 2, а нижній ікс множимо на 3 і відразу ділимо на 3. Отримуємо:

Приклад 5.Знайти межу.

Рішення. І знову невизначеність "нуль ділити на нуль":

Пам'ятаємо з тригонометрії, що тангенс - це ставлення синуса до косінус, а косинус нуля дорівнює одиниці. Виробляємо перетворення та отримуємо:

.

Приклад 6.Знайти межу.

Рішення. Тригонометрична функція під знаком межі знову наштовхує на думку про застосування першої чудової межі. Представляємо його як ставлення синуса до косінус.

Цей математичний калькулятор онлайн допоможе вам якщо потрібно обчислити межу функції. Програма вирішення межне просто дає відповідь задачі, вона наводить докладне рішення з поясненнями, тобто. відображає процес обчислення межі.

Ця програма може бути корисною учням старших класів загальноосвітніх шкілпри підготовці до контрольним роботамта іспитів, під час перевірки знань перед ЄДІ, батькам для контролю вирішення багатьох завдань з математики та алгебри. А може вам занадто накладно наймати репетитора чи купувати нові підручники? Або ви просто хочете якнайшвидше зробити домашнє завданняз математики чи алгебри? У цьому випадку ви можете скористатися нашими програмами з докладним рішенням.

Таким чином ви можете проводити своє власне навчання та/або навчання своїх молодших братів або сестер, при цьому рівень освіти в галузі розв'язуваних завдань підвищується.

Введіть вираз функції
Обчислити межу

Виявлено, що не завантажилися деякі скрипти, необхідні для вирішення цього завдання, і програма може не працювати.
Можливо у вас увімкнено AdBlock.
У цьому випадку вимкніть його та оновіть сторінку.

У браузері вимкнено виконання JavaScript.
Щоб рішення з'явилося, потрібно включити JavaScript.
Ось інструкції, як включити JavaScript у вашому браузері.

Т.к. охочих вирішити завдання дуже багато, ваш запит поставлено в чергу.
За кілька секунд рішення з'явиться нижче.
Будь ласка зачекайте сік...


Якщо ви помітили помилку у рішенні, то про це ви можете написати у Формі зворотного зв'язку.
Не забудьте вказати яке завданняви вирішуєте і що вводьте у поля.



Наші ігри, головоломки, емулятори:

Трохи теорії.

Межа функції при х->х 0

Нехай функція f(x) визначена на деякій множині X і нехай точка \(x_0 \in X \) або \(x_0 \notin X \)

Візьмемо з X послідовність точок, відмінних від х 0:
x 1 , x 2 , x 3 , ..., x n , ... (1)
що сходить до х *. Значення функції у точках цієї послідовності також утворюють числову послідовність
f(x 1), f(x 2), f(x 3), ..., f(x n), ... (2)
і можна порушувати питання про існування її межі.

Визначення. Число А називається межею функції f(х) у точці х = х 0 (або при х -> x 0), якщо для будь-якої послідовності, що сходить до x 0 (1), значень аргументу x, відмінних від x 0 відповідна послідовність (2) значень функції сходиться до A.


$$ \lim_(x\to x_0)( f(x)) = A $$

Функція f(x) може мати у точці x 0 лише одну межу. Це випливає з того, що послідовність
(f(x n)) має лише одну межу.

Існує інше визначення межі функції.

ВизначенняЧисло А називається межею функції f(x) у точці х = x 0 якщо для будь-якого числа \(\varepsilon > 0 \) існує число \(\delta > 0 \) таке, що для всіх \(x \in X, \;x \neq x_0 \), що задовольняють нерівності \(|x-x_0| Використовуючи логічні символи, це визначення можна записати у вигляді
((\forall \varepsilon > 0) (\exists \delta > 0) (\forall x \in X, \; x \neq x_0, \; |x-x_0| Зазначимо, що нерівності \(x \neq x_0 , \;|x-x_0| Перше визначення ґрунтується на понятті межі числової послідовностітому його часто називають визначенням «мовою послідовностей». Друге визначення називають визначенням «мовою \(\varepsilon - \delta\)».
Ці два визначення межі функції еквівалентні і можна використовувати будь-яке з них залежно від того, яке зручніше при вирішенні того чи іншого завдання.

Зауважимо, що визначення межі функції «мовою послідовностей» називають також визначенням межі функції за Гейном, а визначення межі функції «мовою \(\varepsilon - \delta \)» - визначенням межі функції по Коші.

Межа функції при x-> x 0 - і при x-> x 0 +

Надалі будуть використані поняття односторонніх меж функції, які визначаються в такий спосіб.

ВизначенняЧисло А називається правою (лівою) межею функції f(x) у точці x 0 якщо для будь-якої послідовності (1), що сходить до x 0, елементи x n якої більше (менше) x 0 , відповідна послідовність (2) сходиться до А.

Символічно це записується так:
$$ \lim_(x \to x_0+) f(x) = A \; \left(\lim_(x \to x_0-) f(x) = A \right) $$

Можна дати рівносильне визначення односторонніх меж функції «мовою \(\varepsilon - \delta \)»:

Визначеннячисло А називається правою (лівою) межею функції f(х) у точці x 0 якщо для будь-якого \(\varepsilon > 0 \) існує \(\delta > 0 \) таке, що для всіх x, що задовольняють нерівностям \(x_0 Символічні записи:

\((\forall \varepsilon > 0) (\exists \delta > 0) (\forall x, \; x_0
Поділіться з друзями або збережіть для себе:

Завантаження...