Рівняння прямої паралельної вектор онлайн. Різні рівняння прямої

Загальне рівняння прямої:

Часткові випадки загального рівняння прямої:

а якщо C= 0, рівняння (2) матиме вигляд

Ax + By = 0,

і пряма, яка визначається цим рівнянням, проходить через початок координат, оскільки координати початку координат x = 0, y= 0 задовольняють цього рівняння.

б) Якщо у загальному рівнянні прямий (2) B= 0, то рівняння набуде вигляду

Ax + З= 0, або .

Рівняння не містить змінної y, а пряма паралельна осі, що визначається цим рівнянням Ой.

в) Якщо у загальному рівнянні прямий (2) A= 0, то це рівняння набуде вигляду

By + З= 0, або ;

рівняння не містить змінної x, а пряма паралельна осі, яка їм визначається Ox.

Слід запам'ятати: якщо пряма паралельна до будь-якої координатної осі, то в її рівнянні відсутній член, що містить координату, однойменну з цією віссю.

г) При C= 0 і A= 0 рівняння (2) набуває вигляду By= 0, або y = 0.

Це рівняння осі Ox.

д) При C= 0 і B= 0 рівняння (2) запишеться у вигляді Ax= 0 або x = 0.

Це рівняння осі Ой.

Взаємне розташування прямих на площині. Кут між прямими на площині. Умови паралельності прямих. Умови перпендикулярності прямих.

l 1 l 2 l 1: A 1 x + B 1 y + C 1 = 0
l 2: A 2 x + B 2 y + C 2 = 0

S 2 S 1 Вектори S 1 та S 2 називаються напрямними для своїх прямих.

Кут між прямими l 1 і l 2 визначається кутом між напрямними векторами.
Теорема 1: cos кута між l 1 і l 2 = cos(l 1 ; l 2) =

Теорема 2:Для того, щоб 2 прямі дорівнювали необхідно і достатньо:

Теорема 3:щоб 2 прямі були перпендикулярні необхідно і достатньо:

L 1 l 2 ó A 1 A 2 + B 1 B 2 = 0


Загальне рівняння площини та її окремі випадки. Рівняння площини у відрізках.

Загальне рівняння площини:

Ax + By + Cz + D = 0

Приватні випадки:

1. D=0 Ax+By+Cz = 0 – площина проходить через початок координат

2. З=0 Ax+By+D = 0 – площина || OZ

3. У=0 Ax+Cz+d = 0 – площина || OY

4. A=0 By+Cz+D = 0 – площина || OX

5. A=0 та D=0 By+Cz = 0 – площина проходить через OX

6. В=0 та D=0 Ax+Cz = 0 – площина проходить через OY

7. C=0 та D=0 Ax+By = 0 – площина проходить через OZ

Взаємне розташування площин та прямих ліній у просторі:

1. Кутом між прямими в просторі називається кут між їх напрямними векторами.

Cos (l 1 ; l 2) = cos(S 1 ; S 2) = =

2. Кутом між площинами визначається через кут між їхніми нормальними векторами.

Cos (l 1 ; l 2) = cos(N 1 ; N 2) = =

3. Косинус кута між прямою та площиною можна знайти через sin кута між напрямним вектором прямої та нормальним вектором площини.

4. 2 Прямі || у просторі, коли їх || напрямні вектора

5. 2 поверхні || коли || нормальний вектор

6. Аналогічно вводяться поняття перпендикулярності прямих та площин.


Запитання №14

Різні видирівняння прямої лінії на площині (рівняння прямої у відрізках, з кутовим коефіцієнтом та ін.)

Рівняння прямої у відрізках:
Припустимо, що у загальному рівнянні прямий:

1. С = 0 Ах + Ву = 0 - Пряма проходить через початок координат.

2. а = 0 Ву + С = 0 у =

3. в = 0 Ах + С = 0 х =

4. в = С = 0 Ах = 0 х = 0

5. а = С = 0 Ву = 0 у = 0

Рівняння прямої з кутовим коефіцієнтом:

Будь-яка пряма, не рівна осі ОУ (Не =0), може бути записана в слід. вигляді:

k = tgα α – кут між прямою та позитивно спрямованою лінією ОХ

b – точка перетину прямої з віссю ОУ

Док-во:

Ах + Ву + С = 0

Ву = -Ах-С |:

Рівняння прямої за двома точками:


Питання №16

Кінцева межа функції у точці та при x→∞

Кінцева межа в точці х 0:

Число А називається межею функції y = f(x) при x→х 0 якщо для будь-якого Е > 0 існує б > 0 таке, що при х ≠x 0 , що задовольняє нерівності | х - х 0 |< б, выполняется условие |f(x) - A| < Е

Межа позначається: = A

Кінцева межа в точці +∞:

Число А називається межею функції y = f(x) при x → + ∞ , якщо будь-якого Е > 0 існує З > 0, таке що з x > C виконується нерівність |f(x) - A|< Е

Межа позначається: = A

Кінцева межа в точці -∞:

Число А називається межею функції y = f(x) при x→-∞,якщо для будь-якого Е< 0 существует С < 0 такое, что при х < -С выполняется неравенство |f(x) - A| < Е

Урок із серії «Геометричні алгоритми»

Здрастуйте, дорогий читачу!

Сьогодні ми почнемо вивчати алгоритми, пов'язані із геометрією. Справа в тому, що олімпіадних завдань з інформатики, пов'язаних з обчислювальною геометрією, досить багато і вирішення таких завдань часто спричиняє труднощі.

За кілька уроків ми розглянемо ряд елементарних підзавдань, куди спирається вирішення більшості завдань обчислювальної геометрії.

На цьому уроці ми складемо програму для знаходження рівняння прямої, що проходить через задані дві точки. Для вирішення геометричних завдань нам знадобляться деякі знання з обчислювальної геометрії. Частину уроку ми присвятимо знайомству з ними.

Відомості з обчислювальної геометрії

Обчислювальна геометрія – це розділ інформатики, що вивчає алгоритми розв'язання геометричних завдань.

Вихідними даними для таких завдань можуть бути безліч точок на площині, набір відрізків, багатокутник (заданий, наприклад, списком своїх вершин у порядку руху за годинниковою стрілкою) і т.п.

Результатом може бути або відповідь на якесь питання (типу належить чи точка відрізка, чи перетинаються два відрізки, …), або якийсь геометричний об'єкт (наприклад, найменший опуклий багатокутник, що з'єднує задані точки, площа багатокутника, тощо) .

Ми розглядатимемо завдання обчислювальної геометрії тільки на площині і тільки в декартовій системі координат.

Вектори та координати

Щоб застосовувати методи обчислювальної геометрії, необхідно геометричні образи перекласти мовою чисел. Вважатимемо, що у площині задана декартова система координат, у якій напрямок повороту проти годинникової стрілки називається позитивним.

Тепер геометричні об'єкти набувають аналітичного виразу. Так, щоб задати точку, досить зазначити її координати: пару чисел (x; y). Відрізок можна задати, вказавши координати його кінців, можна задати пряму, вказавши координати пари її точок.

Але основним інструментом у вирішенні завдань у нас будуть вектори. Нагадаю тому деякі відомості про них.

Відрізок АВ, у якого точку Авважають початком (точкою програми), а точку У– кінцем, називають вектором АВі позначають або , або жирною малою літерою, наприклад а .

Для позначення довжини вектора (тобто довжини відповідного відрізка) користуватимемося символом модуля (наприклад, ).

Довільний вектор матиме координати, рівні різниці відповідних координат його кінця та початку:

,

тут крапки Aі B мають координати відповідно.

Для обчислень ми будемо використовувати поняття орієнтованого кута, тобто кута, що враховує взаємне розташуваннявекторів.

Орієнтований кут між векторами a і b позитивний, якщо поворот від вектора a до вектору b відбувається в позитивному напрямку (проти годинникової стрілки) і негативний - в іншому випадку. Див рис.1а, рис.1б. Говорять також, що пара векторів a і b позитивно (негативно) орієнтована.

Таким чином, величина орієнтованого кута залежить від порядку перерахування векторів і може набувати значення в інтервалі .

Багато завдань обчислювальної геометрії використовують поняття векторного (косого чи псевдоскалярного) творів векторів.

Векторним твором векторів a і b називатимемо добуток довжин цих векторів на синус кута між ними:

.

Векторний добуток векторів у координатах:

Вираз праворуч – визначник другого порядку:

На відміну від визначення, яке дається в аналітичній геометрії, це скаляр.

Знак векторного твору визначає положення векторів один щодо одного:

a і b позитивно орієнтована.

Якщо величина, то пара векторів a і b негативно орієнтована.

Векторний добуток ненульових векторів дорівнює нулю тоді і тільки тоді, коли вони колінеарні ( ). Це означає, що вони лежать на одній прямій або паралельних прямих.

Розглянемо кілька найпростіших завдань, необхідні під час вирішення складніших.

Визначимо рівняння прямої за координатами двох точок.

Рівняння прямої, що проходить через дві різні точки, Задані своїми координатами.

Нехай на прямій задані дві точки, що не збігаються: з координатами (x1; y1) і з координатами (x2; y2). Відповідно вектор з початком у точці та кінцем у точці має координати (x2-x1, y2-y1). Якщо P(x, y) – довільна точка нашої прямої, то координати вектора рівні (x-x1, y – y1).

За допомогою векторного твору умову колінеарності векторів можна записати так:

Тобто. (x-x1)(y2-y1)-(y-y1)(x2-x1)=0

(y2-y1)x + (x1-x2)y + x1(y1-y2) + y1(x2-x1) = 0

Останнє рівняння перепишемо так:

ax + by + c = 0, (1)

c = x1(y1-y2) + y1(x2-x1)

Отже, пряму можна встановити рівнянням виду (1).

Завдання 1. Задано координати двох точок. Знайти її уявлення як ax + by + c = 0.

На цьому уроці ми познайомились із деякими відомостями з обчислювальної геометрії. Вирішили завдання щодо знаходження рівняння лінії за координатами двох точок.

На наступному уроці складемо програму знаходження точки перетину двох ліній, заданих своїми рівняннями.

Рівняння пряме, що проходить через дану точкуу цьому напрямку. Рівняння прямої, що проходить через дві дані точки. Кут між двома прямими. Умова паралельності та перпендикулярності двох прямих. Визначення точки перетину двох прямих

1. Рівняння прямої, що проходить через цю точку A(x 1 , y 1) у цьому напрямку, що визначається кутовим коефіцієнтом k,

y - y 1 = k(x - x 1). (1)

Це рівняння визначає пучок прямих, що проходять через точку A(x 1 , y 1), яка називається центром пучка.

2. Рівняння прямої, що проходить через дві точки: A(x 1 , y 1) та B(x 2 , y 2), записується так:

Кутовий коефіцієнт прямий, що проходить через дві дані точки, визначається за формулою

3. Кутом між прямими Aі Bназивається кут, на який треба повернути першу пряму Aнавколо точки перетину цих прямих проти руху годинникової стрілки до збігу її з другою прямою B. Якщо дві прямі задані рівняннями з кутовим коефіцієнтом

y = k 1 x + B 1 ,

Ця стаття розкриває отримання рівняння прямої, що проходить через дві задані точки прямокутної системі координат, розташованої на площині. Виведемо рівняння прямої, що проходить через дві задані точки у прямокутній системі координат. Наочно покажемо і вирішимо кілька прикладів щодо пройденого матеріалу.

Yandex.RTB R-A-339285-1

Перед отриманням рівняння прямої, що проходить через дві задані точки, необхідно звернути увагу на деякі факти. Існує аксіома, яка говорить про те, що через дві точки, що не збігаються, на площині можливо провести пряму і тільки одну. Інакше висловлюючись, дві задані точки площини визначаються прямою лінією, що проходить через ці точки.

Якщо площина задана прямокутною системою координат Оху, то будь-яка зображена в ньому пряма буде відповідати рівнянню прямої на площині. Також є зв'язок з напрямним вектором прямої. Цих даних достатньо для того, щоб зробити складання рівняння прямої, що проходить через дві задані точки.

Розглянемо на прикладі розв'язання такого завдання. Необхідно скласти рівняння прямої a , що проходить через дві точки M 1 (x 1 , y 1) і M 2 (x 2 , y 2) , що знаходяться в декартовій системі координат.

У канонічному рівнянні прямої на площині, що має вигляд x - x 1 a x = y - y 1 a y , визначається прямокутна система координат О х у з прямою, яка перетинається з нею в точці з координатами M 1 (x 1 , y 1) з напрямним вектором a → = (a x , a y).

Необхідно скласти канонічне рівняння прямої a, яка пройде через дві точки з координатами M 1 (x 1, y 1) і M 2 (x 2, y 2).

Пряма а має напрямний вектор M 1 M 2 → з координатами (x 2 - x 1 , y 2 - y 1), оскільки перетинає точки М 1 і М 2 . Ми отримали необхідні дані для того, щоб перетворити канонічне рівняння з координатами напрямного вектора M 1 M 2 → = (x 2 - x 1 , y 2 - y 1) і координатами точках, що лежать на них, M 1 (x 1 , y 1) і M 2 (x 2, y 2). Отримаємо рівняння виду x - x 1 x 2 - x 1 = y - y 1 y 2 - y 1 або x - x 2 x 2 - x 1 = y - y 2 y 2 - y 1 .

Розглянемо малюнок, наведений нижче.

Наслідуючи обчислення, запишемо параметричні рівняння прямої на площині, яке проходить через дві точки з координатами M 1 (x 1 , y 1) і M 2 (x 2 , y 2) . Отримаємо рівняння виду x = x 1 + (x 2 - x 1) · λ y = y 1 + (y 2 - y 1) · λ або x = x 2 + (x 2 - x 1) · λ y = y 2 + (y 2 - y 1) · λ.

Розглянемо докладніше на вирішенні кількох прикладів.

Приклад 1

Записати рівняння прямої, що проходить через 2 задані точки з координатами M 1 - 5 2 3 M 2 1 - 1 6 .

Рішення

Канонічним рівнянням для прямої, що перетинається у двох точках з координатами x 1 , y 1 і x 2 , y 2 набуває вигляду x - x 1 x 2 - x 1 = y - y 1 y 2 - y 1 . За умовою завдання маємо, що x 1 = - 5 , y 1 = 2 3 x 2 = 1 , y 2 = - 1 6 . Необхідно підставити числові значення рівняння x - x 1 x 2 - x 1 = y - y 1 y 2 - y 1 . Звідси отримаємо, що канонічне рівняння набуде вигляду x - (- 5) 1 - (- 5) = y - 2 3 - 1 6 - 2 3 ⇔ x + 5 6 = y - 2 3 - 5 6 .

Відповідь: x + 5 6 = y – 2 3 – 5 6 .

При необхідності розв'язання задачі з іншим видом рівняння, то для початку можна перейти до канонічного, тому що з нього простіше дійти будь-якого іншого.

Приклад 2

Скласти загальне рівняння прямої, яка проходить через точки з координатами M 1 (1 , 1) і M 2 (4 , 2) у системі координат О х у.

Рішення

Для початку необхідно записати канонічний рівняння заданої прямої, яка проходить через задані дві точки. Отримаємо рівняння виду x - 1 4 - 1 = y - 1 2 - 1 ⇔ x - 1 3 = y - 1 1 .

Наведемо канонічне рівняння до виду, тоді отримаємо:

x - 1 3 = y - 1 1 ⇔ 1 · x - 1 = 3 · y - 1 ⇔ x - 3 y + 2 = 0

Відповідь: x - 3 y + 2 = 0.

Приклади таких завдань були розглянуті в шкільних підручникахпід час уроків алгебри. Шкільні завданнявідрізнялися тим, що відомим було рівняння прямої з кутовим коефіцієнтом, що має вигляд y = k x + b. Якщо необхідно знайти значення кутового коефіцієнта k та числа b, при яких рівняння y = k x + b визначає лінію в системі О х у, яка проходить через точки M 1 (x 1 , y 1) та M 2 (x 2 , y 2) де x 1 ≠ x 2 . Коли x1 = x2 , Тоді кутовий коефіцієнт набуває значення нескінченності, а пряма М 1 М 2 визначена загальним неповним рівняннямвиду x - x 1 = 0 .

Тому що точки М 1і М 2знаходяться на прямій, тоді їх координати задовольняють рівняння y 1 = k x 1 + b і y 2 = k x 2 + b. Слід вирішити систему рівнянь y 1 = k x 1 + b y 2 = k x 2 + b щодо k і b.

Для цього знайдемо k = y 2 - y 1 x 2 - x 1 b = y 1 - y 2 - y 1 x 2 - x 1 · x 1 або k = y 2 - y 1 x 2 - x 1 b = y 2 - y 2 - y 1 x 2 - x 1 · x 2 .

З такими значеннями k і b рівняння прямої, що проходить через задані дві точки, набуває наступного вигляду y = y 2 - y 1 x 2 - x 1 · x + y 2 - y 2 - y 1 x 2 - x 1 · x 1 або y = y 2 - y 1 x 2 - x 1 · x + y 2 - y 2 - y 1 x 2 - x 1 · x 2 .

Запам'ятати відразу таку величезну кількість формул не вдасться. Для цього необхідно частішати кількість повторень у розв'язках задач.

Приклад 3

Записати рівняння прямої з кутовим коефіцієнтом, що проходить через точки з координатами M 2 (2 1) і y = k x + b .

Рішення

Для вирішення задачі застосовуємо формулу з кутовим коефіцієнтом, що має вигляд y = k x + b. Коефіцієнти k і b повинні набувати такого значення, щоб дане рівняння відповідало прямий, що проходить через дві точки з координатами M 1 (- 7 , - 5) і M 2 (2 , 1) .

Крапки М 1і М 2розташовуються на прямій, тоді їх координати повинні звертати рівняння y = k x + b правильну рівність. Звідси отримуємо, що - 5 = k · (- 7) + b та 1 = k · 2 + b . Об'єднаємо рівняння в систему - 5 = k · - 7 + b 1 = k · 2 + b і розв'яжемо.

При підстановці отримуємо, що

5 = k · - 7 + b 1 = k · 2 + b ⇔ b = - 5 + 7 k 2 k + b = 1 ⇔ b = - 5 + 7 k 2 k - 5 + 7 k = 1 ⇔ ⇔ b = - 5 + 7 k k = 2 3 ⇔ b = - 5 + 7 · 2 3 k = 2 3 ⇔ b = - 1 3 k = 2 3

Тепер значення k = 2 3 і b = - 1 3 піддаються підстановці рівняння y = k x + b. Отримуємо, що шуканим рівнянням, що проходить через задані точки, буде рівняння, що має вигляд y = 23x - 13.

Такий спосіб вирішення визначає витрати великої кількості часу. Існує спосіб, у якому завдання вирішується буквально на дві дії.

Запишемо канонічне рівняння прямої, що проходить через M 2 (2 , 1) і M 1 (- 7 , - 5) , що має вигляд x - (- 7) 2 - (- 7) = y - (- 5) 1 - (- 5) ⇔ x + 7 9 = y + 5 6 .

Тепер переходимо до рівняння у кутовому коефіцієнті. Отримуємо, що: x + 7 9 = y + 5 6 ⇔ 6 · (x + 7) = 9 · (y + 5) ⇔ y = 2 3 x - 1 3 .

Відповідь: y = 2 3 x - 1 3 .

Якщо в тривимірному просторі є прямокутна система координат О х у z з двома заданими незбігаючими точками з координатами M 1 (x 1 , y 1 , z 1) і M 2 (x 2 , y 2 , z 2) , що проходить через них пряма M 1 M 2 необхідно отримати рівняння цієї прямої.

Маємо, що канонічні рівняннявиду x - x 1 a x = y - y 1 a y = z - z 1 a z та параметричні види x = x 1 + a x · λ y = y 1 + a y · λ z = z 1 + a z · λ здатні задати лінію в системі координат О х у z , що проходить через точки, що мають координати (x 1 , y 1 , z 1) з напрямним вектором a → = (a x , a y , a z) .

Пряма M 1 M 2 має напрямний вектор виду M 1 M 2 → = (x 2 - x 1 , y 2 - y 1 , z 2 - z 1) , де пряма проходить через точку M 1 (x 1 , y 1 , z 1) та M 2 (x 2 , y 2 , z 2) , звідси канонічне рівняння може бути виду x - x 1 x 2 - x 1 = y - y 1 y 2 - y 1 = z - z 1 z 2 - z 1 або x - x 2 x 2 - x 1 = y - y 2 y 2 - y 1 = z - z 2 z 2 - z 1 , у свою чергу параметричні x = x 1 + (x 2 - x 1) · λ y = y 1 + (y 2 - y 1) · λ z = z 1 + (z 2 - z 1) · λ або x = x 2 + (x 2 - x 1) · λ y = y 2 + (y 2 - y 1) · λ z = z 2 + (z 2 - z 1) · λ .

Розглянемо малюнок, на якому зображені 2 задані точки у просторі та рівняння прямої.

Приклад 4

Написати рівняння прямої, визначеної у прямокутній системі координат О х у z тривимірного простору, що проходить через задані дві точки з координатами M 1 (2 , - 3 , 0) та M 2 (1 , - 3 , - 5) .

Рішення

Потрібно знайти канонічне рівняння. Оскільки йдеться про тривимірний простір, значить при проходженні прямої через задані точки, шукане канонічне рівняння набуде вигляду x - x 1 x 2 - x 1 = y - y 1 y 2 - y 1 = z - z 1 z 2 - z 1 .

За умовою маємо, що x1 = 2, y1 = -3, z1 = 0, x2 = 1, y2 = -3, z2 = -5. Звідси випливає, що необхідні рівняння запишуться таким чином:

x - 2 1 - 2 = y - (- 3) - 3 - (- 3) = z - 0 - 5 - 0 ⇔ x - 2 - 1 = y + 3 0 = z - 5

Відповідь: x – 2 – 1 = y + 3 0 = z – 5 .

Якщо ви помітили помилку в тексті, будь ласка, виділіть її та натисніть Ctrl+Enter

Канонічними рівняннями прямої в просторі називаються рівняння, що визначають пряму, що проходить через задану точку колінеарно напрямного вектору.

Нехай дана точка і напрямний вектор. Довільна точка лежить на прямій lтільки в тому випадку, якщо вектори та колінеарні, тобто для них виконується умова:

.

Наведені вище рівняння є канонічні рівняння прямої.

Числа m , nі pє проекціями напрямного вектора координатні осі. Оскільки вектор ненульовий, то всі числа m , nі pне можуть одночасно дорівнювати нулю. Але один або два з них можуть виявитися рівними нулю. В аналітичній геометрії допускається, наприклад, такий запис:

,

яка означає, що векторні проекції на осі Ойі Ozрівні нулю. Тому і вектор , і пряма, задана канонічними рівняннями, перпендикулярні до осей. Ойі Oz, Т. е. площині yOz .

приклад 1.Скласти рівняння прямої у просторі, перпендикулярній площині і проходить через точку перетину цієї площини з віссю Oz .

Рішення. Знайдемо точку перетину цієї площини з віссю Oz. Так як будь-яка точка, що лежить на осі Ozмає координати , то, вважаючи в заданому рівнянніплощині x = y = 0 , отримаємо 4 z- 8 = 0 або z= 2. Отже, точка перетину даної площини з віссю Ozмає координати (0; 0; 2). Оскільки пряма перпендикулярна площині, вона паралельна вектору її нормалі . Тому напрямним вектором прямий може бути вектор нормалі заданої поверхні.

Тепер запишемо шукані рівняння прямої, що проходить через точку A= (0; 0; 2) у напрямку вектора:

Рівняння прямої, що проходить через дві дані точки

Пряма може бути задана двома точками, що на ній лежать і У цьому випадку напрямним вектором прямий може бути вектор . Тоді канонічні рівняння прямий набудуть вигляду

.

Наведені вище рівняння визначають пряму, що проходить через дві задані точки.

приклад 2.Скласти рівняння прямої у просторі, що проходить через точки і .

Рішення. Запишемо шукані рівняння прямої у вигляді, наведеному вище в теоретичній довідці:

.

Оскільки , то пряма перпендикулярна осі Ой .

Пряма як лінія перетину площин

Пряма у просторі може бути визначена як лінія перетину двох непаралельних площин і, тобто як безліч точок, що задовольняють системі двох лінійних рівнянь

Рівняння системи називаються також загальними рівняннями прямої у просторі.

приклад 3.Скласти канонічні рівняння прямої у просторі, заданій загальними рівняннями

Рішення. Щоб написати канонічні рівняння прямої або, що те саме, рівняння прямої, що проходить через дві дані точки, потрібно знайти координати будь-яких двох точок прямої. Ними можуть служити точки перетину прямої з якимись двома координатними площинами, наприклад yOzі xOz .

Точка перетину пряма з площиною yOzмає абсцису x= 0. Тому, вважаючи в цій системі рівнянь x= 0 отримаємо систему з двома змінними:

Її рішення y = 2 , z= 6 разом з x= 0 визначає точку A(0; 2; 6) шуканої прямої. Вважаючи потім у заданій системі рівнянь y= 0 отримаємо систему

Її рішення x = -2 , z= 0 разом з y= 0 визначає точку B(-2; 0; 0) перетину прямої з площиною xOz .

Тепер запишемо рівняння прямої, що проходить через крапки A(0; 2; 6) та B (-2; 0; 0) :

,

або після поділу знаменників на -2:

,

Поділіться з друзями або збережіть для себе:

Завантаження...