Формули за квадратними рівняннями. Як вирішувати квадратні рівняння

Протягом теми «Рішення рівнянь» матеріал цієї статті познайомить вас із квадратними рівняннями.

Розглянемо все докладно: суть і запис квадратного рівняння, поставимо супутні терміни, розберемо схему розв'язання неповних і повних рівнянь, Познайомимося з формулою коренів і дискримінантом, встановимо зв'язки між корінням і коефіцієнтами, і наведемо наочне рішення практичних прикладів.

Yandex.RTB R-A-339285-1

Квадратне рівняння, його види

Визначення 1

Квадратне рівняння– це рівняння, записане як a · x 2 + b · x + c = 0, де x- Змінна, a, b і c- Деякі числа, при цьому aнемає нуль.

Найчастіше квадратні рівняннятакож звуться рівнянь другого ступеня, оскільки по суті квадратне рівняння є алгебраїчне рівняннядругого ступеня.

Наведемо приклад для ілюстрації заданого визначення: 9 · x 2 + 16 · x + 2 = 0; 7, 5 · x 2 + 3, 1 · x + 0, 11 = 0 і т.п. - Це квадратні рівняння.

Визначення 2

Числа a, b і c– це коефіцієнти квадратного рівняння a · x 2 + b · x + c = 0, при цьому коефіцієнт aносить назву першого, або старшого, або коефіцієнта при x 2 b - другого коефіцієнта, або коефіцієнта при x, а cназивають вільним членом.

Наприклад, у квадратному рівнянні 6 · x 2 − 2 · x − 11 = 0старший коефіцієнт дорівнює 6 другий коефіцієнт є − 2 , а вільний член дорівнює − 11 . Звернемо увагу на той факт, що коли коефіцієнти bта/або c є негативними, то використовується коротка формазапису виду 6 · x 2 − 2 · x − 11 = 0, а не 6 · x 2 + (−2) · x + (− 11) = 0.

Уточнимо також такий аспект: якщо коефіцієнти aта/або bрівні 1 або − 1 , то явної участі в записі квадратного рівняння вони можуть не брати, що пояснюється особливостями запису вказаних числових коефіцієнтів. Наприклад, у квадратному рівнянні y 2 − y + 7 = 0старший коефіцієнт дорівнює 1 а другий коефіцієнт є − 1 .

Наведені та ненаведені квадратні рівняння

За значенням першого коефіцієнта квадратні рівняння поділяють на наведені та ненаведені.

Визначення 3

Наведене квадратне рівняння- Це квадратне рівняння, де старший коефіцієнт дорівнює 1. За інших значень старшого коефіцієнта квадратне рівняння є ненаведеним.

Наведемо приклади: квадратні рівняння x 2 − 4 · x + 3 = 0 , x 2 − x − 4 5 = 0 є наведеними, у кожному з яких старший коефіцієнт дорівнює 1 .

9 · x 2 − x − 2 = 0- ненаведене квадратне рівняння, де перший коефіцієнт відмінний від 1 .

Будь-яке ненаведене квадратне рівняння можна перетворити на наведене рівняння, якщо розділити обидві його частини на перший коефіцієнт (рівносильне перетворення). Перетворене рівняння матиме таке ж коріння, як і задане ненаведене рівняння або не мати коріння зовсім.

Розгляд конкретного прикладу дозволить нам продемонструвати виконання переходу від ненаведеного квадратного рівняння до наведеного.

Приклад 1

Задано рівняння 6 · x 2 + 18 · x − 7 = 0 . Необхідно перетворити вихідне рівняння на наведену форму.

Рішення

Згідно з зазначеною вище схемою розділимо обидві частини вихідного рівняння на старший коефіцієнт 6 . Тоді отримаємо: (6 · x 2 + 18 · x − 7): 3 = 0: 3, і це те саме, що: (6 · x 2) : 3 + (18 · x) : 3 − 7: 3 = 0і далі: (6: 6) · x 2 + (18: 6) · x − 7: 6 = 0 .Звідси: x 2 + 3 · x - 1 1 6 = 0. Таким чином, отримано рівняння, рівносильне заданому.

Відповідь: x 2 + 3 · x - 1 1 6 = 0.

Повні та неповні квадратні рівняння

Звернемося до визначення квадратного рівняння. У ньому ми уточнили, що a ≠ 0. Подібна умова необхідна, щоб рівняння a · x 2 + b · x + c = 0було саме квадратним, оскільки при a = 0воно по суті перетворюється на лінійне рівняння b · x + c = 0.

У разі, коли коефіцієнти bі cрівні нулю (що можливо, як окремо, і спільно), квадратне рівняння зветься неповного.

Визначення 4

Неповне квадратне рівняння– таке квадратне рівняння a · x 2 + b · x + c = 0де хоча б один із коефіцієнтів bі c(або обидва) дорівнює нулю.

Повне квадратне рівняння- Квадратне рівняння, в якому всі числові коефіцієнти не рівні нулю.

Поміркуємо, чому типу квадратних рівнянь дано саме такі назви.

При b = 0 квадратне рівняння набуде вигляду a · x 2 + 0 · x + c = 0, що те саме, що a · x 2 + c = 0. При c = 0квадратне рівняння записано як a · x 2 + b · x + 0 = 0, що рівносильно a · x 2 + b · x = 0. При b = 0і c = 0рівняння набуде вигляду a · x 2 = 0. Рівняння, які ми отримали, відмінні від повного квадратного рівняння тим, що в їх лівих частинах не міститься або доданку зі змінною x, або вільного члена, або обох одночасно. Власне, цей факт і поставив назву такого типу рівнянь – неповна.

Наприклад, x 2 + 3 · x + 4 = 0 і − 7 · x 2 − 2 · x + 1 , 3 = 0 – це повні квадратні рівняння; x 2 = 0, − 5 · x 2 = 0; 11 · x 2 + 2 = 0, − x 2 − 6 · x = 0 – неповні квадратні рівняння.

Розв'язання неповних квадратних рівнянь

Задане вище визначення дозволяє виділити такі види неповних квадратних рівнянь:

  • a · x 2 = 0, такому рівнянню відповідають коефіцієнти b = 0і c = 0;
  • a · x 2 + c = 0 при b = 0;
  • a · x 2 + b · x = 0 при c = 0.

Розглянемо послідовно розв'язання кожного виду неповного квадратного рівняння.

Розв'язання рівняння a x 2 = 0

Як було зазначено вище, такому рівнянню відповідають коефіцієнти bі c, що дорівнює нулю. Рівняння a · x 2 = 0можна перетворити на рівносильне йому рівняння x 2 = 0, яке ми отримаємо, поділивши обидві частини вихідного рівняння на число a, Не рівне нулю. Очевидний факт, що корінь рівняння x 2 = 0це нуль, оскільки 0 2 = 0 . Іншого коріння це рівняння не має, що можна пояснити властивостями ступеня: для будь-якого числа p ,не рівного нулю, вірна нерівність p 2 > 0, з чого випливає, що за p ≠ 0рівність p 2 = 0ніколи не буде досягнуто.

Визначення 5

Таким чином, для неповного квадратного рівняння a · x 2 = 0 існує єдиний корінь x = 0.

Приклад 2

Наприклад вирішимо неповне квадратне рівняння − 3 · x 2 = 0. Йому рівносильне рівняння x 2 = 0, його єдиним коренем є x = 0тоді і вихідне рівняння має єдиний корінь - нуль.

Коротко рішення оформляється так:

− 3 · x 2 = 0, x 2 = 0, x = 0.

Розв'язання рівняння a · x 2 + c = 0

На черзі - розв'язання неповних квадратних рівнянь, де b = 0 c ≠ 0 тобто рівнянь виду a · x 2 + c = 0. Перетворимо це рівняння, перенісши доданок з однієї частини рівняння на іншу, змінивши знак на протилежний і розділивши обидві частини рівняння на число, що не дорівнює нулю:

  • переносимо cв праву частинущо дає рівняння a · x 2 = − c;
  • ділимо обидві частини рівняння на a, Отримуємо в результаті x = - C a.

Наші перетворення є рівносильними, відповідно отримане рівняння також рівносильно вихідному, і цей факт дає можливість робити висновок про коріння рівняння. Від того, які значення aі cзалежить значення виразу - c a: воно може мати знак мінус (припустимо, якщо a = 1і c = 2тоді - c a = - 2 1 = - 2) або знак плюс (наприклад, якщо a = − 2і c = 6, то - c a = - 6 - 2 = 3); воно не дорівнює нулю, оскільки c ≠ 0. Докладніше зупинимося на ситуаціях, коли - c a< 0 и - c a > 0 .

У разі коли - c a< 0 , уравнение x 2 = - c a не будет иметь корней. Утверждая это, мы опираемся на то, что квадратом любого числа является число неотрицательное. Из сказанного следует, что при - c a < 0 ни для какого числа pрівність p 2 = - c a може бути вірним.

Все інакше, коли - c a > 0: згадаємо про квадратне коріння, і стане очевидним, що коренем рівняння x 2 = - c a буде число - c a , оскільки - c a 2 = - c a . Неважко зрозуміти, що число - - a - також корінь рівняння x 2 = - a: дійсно, - - a 2 = - c a .

Іншого коріння рівняння не матиме. Ми можемо це продемонструвати, використовуючи метод протилежного. Для початку поставимо позначення знайдених вище коренів як x 1і − x 1. Висловимо припущення, що рівняння x 2 = - a має також корінь x 2, який відрізняється від коріння x 1і − x 1. Ми знаємо, що, підставивши в рівняння замість xйого коріння, перетворимо рівняння на справедливу числову рівність.

Для x 1і − x 1запишемо: x 1 2 = - c a , а для x 2- x 2 2 = - C a. Спираючись на властивості числових рівностей, почленно віднімемо одну правильну рівність з іншої, що дасть нам: x 1 2 − x 2 2 = 0. Використовуємо властивості дій з числами, щоб переписати останню рівність як (x 1 − x 2) · (x 1 + x 2) = 0. Відомо, що добуток двох чисел є нуль тоді і лише тоді, коли хоча б одне із чисел є нулем. Зі сказаного випливає, що x 1 − x 2 = 0та/або x 1 + x 2 = 0, що те саме, x 2 = x 1та/або x 2 = − x 1. Виникла очевидна суперечність, адже спочатку було зумовлено, що корінь рівняння x 2відрізняється від x 1і − x 1. Так, ми довели, що рівняння не має іншого коріння, крім x = - c a і x = - c a .

Резюмуємо всі міркування вище.

Визначення 6

Неповне квадратне рівняння a · x 2 + c = 0рівносильне рівнянню x 2 = - c a , яке:

  • не матиме коріння при - c a< 0 ;
  • матиме два корені x = - c a та x = - - c a при - c a > 0 .

Наведемо приклади розв'язування рівнянь a · x 2 + c = 0.

Приклад 3

Задано квадратне рівняння 9 · x 2 + 7 = 0.Потрібно знайти його рішення.

Рішення

Перенесемо вільний член у праву частину рівняння, тоді рівняння набуде вигляду 9 · x 2 = − 7 .
Розділимо обидві частини отриманого рівняння на 9 прийдемо до x 2 = - 7 9 . У правій частині бачимо число зі знаком мінус, що означає: задане рівняння не має коріння. Тоді й вихідне неповне квадратне рівняння 9 · x 2 + 7 = 0не матиме коріння.

Відповідь:рівняння 9 · x 2 + 7 = 0не має коріння.

Приклад 4

Необхідно вирішити рівняння − x 2 + 36 = 0.

Рішення

Перенесемо 36 у праву частину: − x 2 = − 36.
Розділимо обидві частини на − 1 , отримаємо x 2 = 36. У правій частині - позитивне число, звідси можна дійти невтішного висновку, що x = 36 або x = -36.
Виймемо корінь і запишемо остаточний підсумок: неповне квадратне рівняння − x 2 + 36 = 0має два корені x = 6або x = − 6.

Відповідь: x = 6або x = − 6.

Розв'язання рівняння a x 2 + b x = 0

Розберемо третій вид неповних квадратних рівнянь, коли c = 0. Щоб знайти розв'язок неповного квадратного рівняння a · x 2 + b · x = 0, скористаємося методом розкладання на множники Розкладемо на множники багаточлен, що знаходиться в лівій частині рівняння, винісши за дужки загальний множник x. Цей крок дасть можливість перетворити вихідне неповне квадратне рівняння на рівносильне йому x · (a · x + b) = 0. А це рівняння, у свою чергу, рівносильне сукупності рівнянь x = 0і a · x + b = 0. Рівняння a · x + b = 0лінійне, і корінь його: x = − b a.

Визначення 7

Таким чином, неповне квадратне рівняння a · x 2 + b · x = 0матиме два корені x = 0і x = − b a.

Закріпимо матеріал прикладом.

Приклад 5

Необхідно знайти рішення рівняння 2 3 · x 2 - 2 2 7 · x = 0.

Рішення

Винесемо xза дужки та отримаємо рівняння x · 2 3 · x - 2 2 7 = 0 . Це рівняння рівносильне рівнянням x = 0та 2 3 · x - 2 2 7 = 0 . Тепер слід розв'язати отримане лінійне рівняння: 2 3 · x = 2 2 7 x = 2 2 7 2 3 .

Коротко рішення рівняння запишемо так:

2 3 · x 2 - 2 2 7 · x = 0 x · 2 3 · x - 2 2 7 = 0

x = 0 або 2 3 · x - 2 2 7 = 0

x = 0 або x = 3 3 7

Відповідь: x = 0, x = 3 3 7 .

Дискримінант, формула коренів квадратного рівняння

Для знаходження розв'язання квадратних рівнянь існує формула коренів:

Визначення 8

x = - b ± D 2 · a де D = b 2 − 4 · a · c- Так званий дискримінант квадратного рівняння.

Запис x = - b ± D 2 · a по суті означає, що x 1 = - b + D 2 · a x 2 = - b - D 2 · a .

Не зайвим буде розуміти, як було виведено зазначену формулу і як її застосовувати.

Висновок формули коріння квадратного рівняння

Нехай перед нами стоїть завдання розв'язати квадратне рівняння a · x 2 + b · x + c = 0. Здійснимо ряд рівносильних перетворень:

  • розділимо обидві частини рівняння на число a, Відмінне від нуля, отримаємо наведене квадратне рівняння: x 2 + b a · x + c a = 0;
  • виділимо повний квадрат в лівій частині рівняння, що вийшло:
    x 2 + b a · x + c a = x 2 + 2 · b 2 · a · x + b 2 · a 2 - b 2 · a 2 + c a = = x + b 2 · a 2 - b 2 · a 2 + c a
    Після цього рівняння набуде вигляду: x + b 2 · a 2 - b 2 · a 2 + c a = 0;
  • тепер можна зробити перенесення двох останніх доданків у праву частину, змінивши знак на протилежний, після чого отримуємо: x + b 2 · a 2 = b 2 · a 2 - c a ;
  • нарешті, перетворимо вираз, записаний у правій частині останньої рівності:
    b 2 · a 2 - c a = b 2 4 · a 2 - c a = b 2 4 · a 2 - 4 · a · c 4 · a 2 = b 2 - 4 · a · c 4 · a 2 .

Таким чином, ми дійшли рівняння x + b 2 · a 2 = b 2 - 4 · a · c 4 · a 2 , рівносильному вихідному рівнянню a · x 2 + b · x + c = 0.

Вирішення подібних рівнянь ми розбирали в попередніх пунктах (вирішення неповних квадратних рівнянь). Вже отриманий досвід дає можливість зробити висновок щодо коренів рівняння x + b 2 · a 2 = b 2 - 4 · a · c 4 · a 2:

  • при b 2 - 4 · a · c 4 · a 2< 0 уравнение не имеет действительных решений;
  • при b 2 - 4 · a · c 4 · a 2 = 0 рівняння має вигляд x + b 2 · a 2 = 0 тоді x + b 2 · a = 0 .

Звідси очевидний єдиний корінь x = - b 2 · a;

  • при b 2 - 4 · a · c 4 · a 2 > 0 вірним буде: x + b 2 · a = b 2 - 4 · a · c 4 · a 2 або x = b 2 · a - b 2 - 4 · a · c 4 · a 2 , що те саме, що x + - b 2 · a = b 2 - 4 · a · c 4 · a 2 або x = - b 2 · a - b 2 - 4 · a · c 4 · a 2, тобто. рівняння має два корені.

Можливо зробити висновок, що наявність або відсутність коренів рівняння x + b 2 · a 2 = b 2 - 4 · a · c 4 · a 2 (а значить і вихідного рівняння) залежить від знака виразу b 2 - 4 · a · c 4 · a 2, записаного у правій частині. А знак цього виразу задається знаком чисельника, (знаменник 4 · a 2завжди буде позитивним), тобто, знаком виразу b 2 − 4 · a · c. Цьому виразу b 2 − 4 · a · cдано назву - дискримінант квадратного рівняння і визначена як його позначення літера D. Тут можна записати суть дискримінанта - за його значенням і знаком роблять висновок, чи буде квадратне рівняння мати дійсне коріння, і, якщо буде, то яка кількість коренів - один або два.

Повернемося до рівняння x + b 2 · a 2 = b 2 - 4 · a · c 4 · a 2 . Перепишемо його, використовуючи позначення дискримінанта: x + b 2 · a 2 = D 4 · a 2 .

Знову сформулюємо висновки:

Визначення 9

  • при D< 0 рівняння не має дійсних коренів;
  • при D = 0рівняння має єдиний корінь x = - b 2 · a;
  • при D > 0рівняння має два корені: x = - b 2 · a + D 4 · a 2 або x = - b 2 · a - D 4 · a 2 . Це коріння на основі властивості радикалів можна записати у вигляді: x = - b 2 · a + D 2 · a або - b 2 · a - D 2 · a . А коли розкриємо модулі і приведемо дроби до спільного знаменника, отримаємо: x = - b + D 2 · a , x = - b - D 2 · a .

Так, результатом наших міркувань стало виведення формули коріння квадратного рівняння:

x = - b + D 2 · a , x = - b - D 2 · a , дискримінант Dобчислюється за формулою D = b 2 − 4 · a · c.

Дані формули дають можливість при дискримінанті більше нуля визначити обидва дійсні корені. Коли дискримінант дорівнює нулю, застосування обох формул дасть той самий корінь, як єдине рішенняквадратного рівняння. У випадку, коли дискримінант негативний, спробувавши використати формулу кореня квадратного рівняння, ми зіткнемося з необхідністю отримати квадратний коріньз негативного числа, що виведе нас за межі дійсних чисел. При негативному дискримінанті у квадратного рівняння не буде дійсних коренів, але можлива пара комплексно пов'язаних коренів, що визначаються тими самими отриманими нами формулами коренів.

Алгоритм розв'язання квадратних рівнянь за формулами коренів

Вирішити квадратне рівняння можливо, відразу задіюючи формулу коренів, але в основному так роблять при необхідності знайти комплексне коріння.

У більшості випадків зазвичай мається на увазі пошук не комплексних, а дійсних коренів квадратного рівняння. Тоді оптимально перед тим, як використовувати формули коренів квадратного рівняння, спочатку визначити дискримінант і переконатися, що він не є негативним (інакше зробимо висновок, що у рівняння немає дійсних коренів), а потім приступити до обчислення значення коренів.

Міркування вище дають можливість сформулювати алгоритм розв'язання квадратного рівняння.

Визначення 10

Щоб розв'язати квадратне рівняння a · x 2 + b · x + c = 0, необхідно:

  • за формулою D = b 2 − 4 · a · cвизначити значення дискримінанта;
  • при D< 0 сделать вывод об отсутствии у квадратного уравнения действительных корней;
  • при D = 0 знайти єдиний корінь рівняння за формулою x = - b 2 · a;
  • при D > 0 визначити два дійсних кореня квадратного рівняння за формулою x = - b ± D 2 · a.

Зазначимо, що коли дискримінант є нуль, можна використовувати формулу x = - b ± D 2 · a , вона дасть той же результат, що і формула x = - b 2 · a .

Розглянемо приклади.

Приклади розв'язання квадратних рівнянь

Наведемо рішення прикладів при різних значенняхдискримінанту.

Приклад 6

Необхідно знайти коріння рівняння x 2 + 2 · x − 6 = 0.

Рішення

Запишемо числові коефіцієнти квадратного рівняння: a = 1, b = 2 і c = − 6. Далі діємо алгоритмом, тобто. приступимо до обчислення дискримінанта, для чого підставимо коефіцієнти a, b і cу формулу дискримінанта: D = b 2 − 4 · a · c = 2 2 − 4 · 1 · (− 6) = 4 + 24 = 28 .

Отже, ми отримали D > 0 , а це означає, що вихідне рівняння матиме два дійсні корені.
Для їхнього знаходження використовуємо формулу кореня x = - b ± D 2 · a і, підставивши відповідні значення, отримаємо: x = - 2 ± 28 2 · 1 . Спростимо отриманий вираз, винісши множник за знак кореня з наступним скороченням дробу:

x = - 2 ± 2 · 7 2

x = - 2 + 2 · 7 2 або x = - 2 - 2 · 7 2

x = - 1 + 7 або x = - 1 - 7

Відповідь: x = - 1 + 7, x = - 1 - 7 .

Приклад 7

Необхідно розв'язати квадратне рівняння − 4 · x 2 + 28 · x − 49 = 0.

Рішення

Визначимо дискримінант: D = 28 2 − 4 · (− 4) · (− 49) = 784 − 784 = 0. При такому значенні дискримінанта вихідне рівняння матиме лише один корінь, який визначається за формулою x = - b 2 · a .

x = - 28 2 · (- 4) x = 3 , 5

Відповідь: x = 3, 5.

Приклад 8

Необхідно вирішити рівняння 5 · y 2 + 6 · y + 2 = 0

Рішення

Числові коефіцієнти цього рівняння будуть: a = 5 b = 6 і c = 2 . Використовуємо ці значення для знаходження дискримінанта: D = b 2 − 4 · a · c = 6 2 − 4 · 5 · 2 = 36 − 40 = − 4 . Обчислений дискримінант негативний, таким чином, вихідне квадратне рівняння не має дійсних коренів.

У разі, коли стоїть завдання вказати комплексне коріння, застосуємо формулу коренів, виконуючи дії з комплексними числами:

x = - 6 ± - 4 2 · 5

x = - 6 + 2 · i 10 або x = - 6 - 2 · i 10

x = - 3 5 + 1 5 · i або x = - 3 5 - 1 5 · i.

Відповідь:дійсне коріння відсутнє; комплексні коріння наступні: - 3 5 + 1 5 · i, - 3 5 - 1 5 · i.

У шкільній програмістандартно немає вимоги шукати комплексне коріння, тому, якщо в ході рішення дискримінант визначений як негативний, відразу записується відповідь, що дійсних коренів немає.

Формула коренів для парних других коефіцієнтів

Формула коренів x = - b ± D 2 · a (D = b 2 − 4 · a · c) дає можливість отримати ще одну формулу, більш компактну, що дозволяє знаходити розв'язки квадратних рівнянь з парним коефіцієнтом при x (або з коефіцієнтом виду 2 · n, наприклад, 2 · 3 або 14 · ln 5 = 2 · 7 · ln 5). Покажемо, як виводиться ця формула.

Нехай перед нами стоїть завдання знайти розв'язок квадратного рівняння a · x 2 + 2 · n · x + c = 0 . Діємо за алгоритмом: визначаємо дискримінант D = (2 · n) 2 - 4 · a · c = 4 · n 2 - 4 · a · c = 4 · (n 2 - a · c), а потім використовуємо формулу коренів:

x = - 2 · n ± D 2 · a , x = - 2 · n ± 4 · n 2 - a · c 2 · a , x = - 2 · n ± 2 n 2 - a · c 2 · a , x = - n ± n 2 - a · c a.

Нехай вираз n 2 − a · c буде позначено як D 1 (іноді його позначають D "). Тоді формула коренів квадратного рівняння, що розглядається, з другим коефіцієнтом 2 · n набуде вигляду:

x = - n ± D 1 a , де D 1 = n 2 − a · c.

Легко побачити, що D = 4 · D 1 або D 1 = D 4 . Інакше висловлюючись, D 1 – це чверть дискримінанта. Очевидно, що знак D 1 такий самий, як знак D , а значить знак D 1 може служити індикатором наявності або відсутності коренів квадратного рівняння.

Визначення 11

Таким чином, щоб знайти розв'язок квадратного рівняння з другим коефіцієнтом 2 · n необхідно:

  • знайти D 1 = n 2 − a · c;
  • при D 1< 0 сделать вывод, что действительных корней нет;
  • при D 1 = 0 визначити єдиний корінь рівняння за формулою x = - n a;
  • при D 1 > 0 визначити два дійсних кореня за формулою x = - n ± D 1 a.

Приклад 9

Необхідно розв'язати квадратне рівняння 5 · x 2 − 6 · x − 32 = 0 .

Рішення

Другий коефіцієнт заданого рівняння можемо уявити як 2 · (− 3) . Тоді перепишемо задане квадратне рівняння як 5 · x 2 + 2 · (− 3) · x − 32 = 0 де a = 5 , n = − 3 і c = − 32 .

Обчислимо четверту частину дискримінанта: D 1 = n 2 − a · c = (− 3) 2 − 5 · (− 32) = 9 + 160 = 169 . Отримане значення позитивно, це означає, що рівняння має два дійсні корені. Визначимо їх за відповідною формулою коренів:

x = - n ± D 1 a , x = - - 3 ± 169 5 , x = 3 ± 13 5 ,

x = 3 + 13 5 або x = 3 - 13 5

x = 3 1 5 або x = - 2

Можливо було б зробити обчислення і за звичайною формулою коренів квадратного рівняння, але в такому разі рішення було б більш громіздким.

Відповідь: x = 3 1 5 або x = -2.

Спрощення виду квадратних рівнянь

Іноді є можливість оптимізувати вид вихідного рівняння, що дозволить спростити процес обчислення коренів.

Наприклад, квадратне рівняння 12 · x 2 − 4 · x − 7 = 0 явно зручніше для розв'язання, ніж 1200 · x 2 − 400 · x − 700 = 0 .

Найчастіше спрощення виду квадратного рівняння виробляється процесами множення чи розподілу його обох елементів на деяке число. Наприклад, ми показали спрощену запис рівняння 1200 · x 2 − 400 · x − 700 = 0 , отриману розподілом обох його частин на 100 .

Таке перетворення можливе, коли коефіцієнти квадратного рівняння не є взаємно простими числами. Тоді зазвичай здійснюють розподіл обох частин рівняння на найбільший спільний дільникабсолютних величин його коефіцієнтів

Як приклад використовуємо квадратне рівняння 12 · x 2 - 42 · x + 48 = 0. Визначимо НОД абсолютних величин його коефіцієнтів: НОД (12 , 42 , 48) = НОД (НОД (12 , 42) , 48) = НОД (6 , 48) = 6 . Зробимо поділ обох частин вихідного квадратного рівняння на 6 і отримаємо рівносильне йому квадратне рівняння 2 x 2 − 7 x + 8 = 0 .

Множенням обох частин квадратного рівняння зазвичай позбавляються дробових коефіцієнтів. У цьому множать найменше загальне кратне знаменників його коефіцієнтів. Наприклад, якщо кожну частину квадратного рівняння 1 6 · x 2 + 2 3 · x - 3 = 0 перемножити з НОК (6 , 3 , 1) = 6 , воно стане записано в більш простому вигляді x 2 + 4 · x − 18 = 0.

Насамкінець зазначимо, що майже завжди позбавляються мінуса при першому коефіцієнті квадратного рівняння, змінюючи знаки кожного члена рівняння, що досягається шляхом множення (або поділу) обох частин на − 1 . Наприклад, від квадратного рівняння − 2 · x 2 − 3 · x + 7 = 0 можна перейти до спрощеної його версії 2 · x 2 + 3 · x − 7 = 0 .

Зв'язок між корінням та коефіцієнтами

Вже відома нам формула коренів квадратних рівнянь x = - b ± D 2 · a виражає коріння рівняння через його числові коефіцієнти. Спираючись на цю формулу, ми маємо можливість задати інші залежності між корінням та коефіцієнтами.

Найбільш відомими та застосовними є формули теореми Вієта:

x 1 + x 2 = - a і x 2 = c a .

Зокрема, для наведеного квадратного рівняння сума коренів є другий коефіцієнт із протилежним знаком, а добуток коренів дорівнює вільному члену. Наприклад, у вигляді квадратного рівняння 3 · x 2 − 7 · x + 22 = 0 можна відразу визначити, що його коренів дорівнює 7 3 , а добуток коренів - 22 3 .

Також можна знайти ряд інших зв'язків між корінням та коефіцієнтами квадратного рівняння. Наприклад, сума квадратів коренів квадратного рівняння може бути виражена через коефіцієнти:

x 1 2 + x 2 2 = (x 1 + x 2) 2 - 2 · x 1 · x 2 = - b a 2 - 2 · c a = b 2 a 2 - 2 · c a = b 2 - 2 · a · c a 2 .

Якщо ви помітили помилку в тексті, будь ласка, виділіть її та натисніть Ctrl+Enter

Деякі завдання математики вимагають вміння обчислювати значення кореня квадратного. До таких завдань належить вирішення рівнянь другого порядку. У цій статті наведемо ефективний методобчислення квадратних коренів та використовуємо його при роботі з формулами коренів квадратного рівняння.

Що таке квадратний корінь?

У математиці цьому поняттю відповідає символ √. Історичні дані кажуть, що він почав використовуватися вперше приблизно у першій половині XVI століття у Німеччині (перша німецька праця з алгебри Крістофа Рудольфа). Вчені вважають, що цей символ є трансформованою латинською літерою r (radix означає "корінь" латиною).

Корінь із якогось числа дорівнює такому значенню, квадрат якого відповідає підкореному виразу. На мові математики це визначення виглядатиме так: x = y, якщо y 2 = x.

Корінь із позитивного числа (x > 0) є також числом позитивним (y > 0), проте якщо беруть корінь із негативного числа (x< 0), то его результатом уже будет комплексне число, Що включає уявну одиницю i.

Наведемо два простих приклади:

√9 = 3, оскільки 32 = 9; √(-9) = 3i, оскільки i 2 = -1.

Ітераційна формула Герона для знаходження значень коріння квадратного

Наведені вище приклади є дуже простими, і обчислення коренів у них не становить жодних труднощів. Складнощі починають з'являтися вже при знаходженні значень кореня для будь-якого значення, яке не може бути представлене у вигляді квадрата натурального числанаприклад, √10, √11, √12, √13, не кажучи вже про те, що на практиці необхідно знаходити коріння для нецілих чисел: наприклад √(12,15), √(8,5) тощо.

У всіх вищезгаданих випадках слід застосовувати спеціальний метод обчислення квадратного кореня. В даний час таких методів відомо кілька: наприклад, розкладання в ряд Тейлора, поділ стовпчиком і деякі інші. З усіх відомих методів, мабуть, найбільш простим та ефективним є використання ітераційної формули Герона, яка також відома як вавилонський спосіб визначення квадратного коріння (існують свідчення, що давні вавилоняни застосовували її у своїх практичних обчисленнях).

Нехай необхідно визначити значення x. Формула знаходження квадратного кореня має такий вигляд:

a n+1 = 1/2(a n +x/a n), де lim n->∞ (a n) => x.

Розшифруємо цей математичний запис. Для обчислення √x слід взяти деяке число a 0 (воно може бути довільним, проте для швидкого отримання результату слід вибирати його таким, щоб (a 0) 2 було максимально близько до x. Потім підставити його у вказану формулу обчислення квадратного кореня і отримати нове число a 1 , яке вже буде ближчим до шуканого значення, після чого необхідно вже a 1 підставити у вираз і отримати a 2. Цю процедуру слід повторювати до отримання необхідної точності.

Приклад застосування ітераційної формули Герона

Описаний вище алгоритм отримання кореня квадратного з деякого заданого числа для багатьох може звучати досить складно і заплутано, насправді ж все набагато простіше, оскільки ця формула сходиться дуже швидко (особливо якщо вибрано вдале число a 0).

Наведемо простий приклад: необхідно обчислити √11. Виберемо a 0 = 3, тому що 3 2 = 9, що ближче до 11, ніж 4 2 = 16. Підставляючи у формулу, отримаємо:

a 1 = 1/2 (3 + 11/3) = 3,333333;

a 2 = 1/2 (3,33333 + 11/3,33333) = 3,316668;

a 3 = 1/2 (3,316668 + 11/3,316668) = 3,31662.

Далі немає сенсу продовжувати обчислення, оскільки ми отримали, що a 2 і a 3 починають відрізнятись лише у 5-му знаку після коми. Таким чином, достатньо було застосувати лише 2 рази формулу, щоб обчислити √11 з точністю до 0,0001.

В даний час широко використовуються калькулятори та комп'ютери для обчислення коренів, проте зазначену формулу корисно запам'ятати, щоб мати можливість вручну обчислювати їх точне значення.

Рівняння другого порядку

Розуміння того, що таке квадратний корінь, і вміння його обчислювати використовується при вирішенні квадратних рівнянь. Цими рівняннями називають рівності з однією невідомою, загальний виглядяких наведено на малюнку нижче.

Тут c, b і a є деякі числа, причому a не повинно дорівнювати нулю, а значення c і b можуть бути абсолютно довільними, в тому числі і рівними нулю.

Будь-які значення ікса, що задовольняють вказаній на малюнку рівність, називаються його корінням (слід не плутати це поняття з квадратним коренем √). Оскільки аналізоване рівняння має 2-й порядок (x 2), то коріння йому може бути більше, ніж дві числа. Розглянемо далі у статті, як знаходити це коріння.

Знаходження коріння квадратного рівняння (формула)

Цей спосіб розв'язання типу рівностей також називається універсальним, або методом через дискримінант. Його можна використовувати для будь-яких квадратних рівнянь. Формула дискримінанта і коріння квадратного рівняння має такий вигляд:

З неї видно, що коріння залежить від значення кожного з трьох коефіцієнтів рівняння. Більше того, обчислення x 1 відрізняється від розрахунку x 2 лише знаком перед коренем квадратним. Підкорене вираз, що дорівнює b 2 - 4ac, є чим іншим, як дискримінантом аналізованої рівності. Дискримінант у формулі коренів квадратного рівняння відіграє важливу роль, оскільки визначає число і тип рішень. Так, якщо він дорівнює нулю, то рішення буде всього одне, якщо він позитивний, то рівняння має два дійсні коріння, нарешті, негативний дискримінант призводить до двох комплексних коренів x 1 і x 2 .

Теорема Вієта або деякі властивості коренів рівнянь другого порядку

Наприкінці XVI століття один із основоположників сучасної алгебри француз вивчаючи рівняння другого порядку, зміг отримати властивості його коріння. Математично їх можна записати так:

x 1 + x 2 = -b/a та x 1 * x 2 = c/a.

Обидві рівності легко може отримати кожен, для цього необхідно лише виконати відповідні математичні операції з корінням, отриманим через формулу з дискримінантом.

Сукупність цих двох виразів можна по праву назвати другою формулою коренів квадратного рівняння, що дає можливість вгадувати його рішення, не використовуючи у своїй дискримінант. Тут слід зазначити, що хоча обидва вирази справедливі завжди, застосовувати їх для вирішення рівняння зручно тільки в тому випадку, якщо воно може бути розкладене на множники.

Завдання на закріплення здобутих знань

Вирішимо математичне завдання, в якій продемонструємо всі прийоми, які обговорюються у статті. Умови завдання такі: необхідно знайти два числа, котрим твір дорівнює -13, а сума становить 4.

Ця умова відразу нагадує про теорему Вієта, застосовуючи формули суми квадратного коріння та їх твори, записуємо:

x 1 + x 2 = -b/a = 4;

x 1 * x 2 = c/a = -13.

Якщо припустити, що a = 1, тоді b = -4 та c = -13. Ці коефіцієнти дозволяють скласти рівняння другого порядку:

x 2 – 4x – 13 = 0.

Скористаємося формулою з дискримінантом, отримаємо наступне коріння:

x 1,2 = (4±√D)/2, D = 16 - 4 * 1 * (-13) = 68.

Тобто завдання звелося до знаходження числа √68. Зауважимо, що 68 = 4 * 17, тоді, використовуючи властивість квадратного кореня, отримаємо: √68 = 2√17.

Тепер скористаємося розглянутою формулою квадратного кореня: a 0 = 4 тоді:

a 1 = 1/2 (4 + 17/4) = 4,125;

a 2 = 1/2 (4,125 + 17/4,125) = 4,1231.

У обчисленні a 3 немає необхідності, оскільки знайдені значення відрізняються лише на 0,02. Таким чином, √68 = 8,246. Підставляючи його у формулу для x 1,2 отримаємо:

x 1 = (4 + 8,246) / 2 = 6,123 і x 2 = (4 - 8,246) / 2 = -2,123.

Як бачимо, сума знайдених чисел дійсно дорівнює 4, якщо ж знайти їх добуток, то він дорівнює -12,999, що задовольняє умові завдання з точністю до 0,001.

Просто. За формулами та точними нескладними правилами. На першому етапі

треба задане рівнянняпривести до стандартного вигляду, тобто. до вигляду:

Якщо рівняння вам дано вже у такому вигляді – перший етап робити не потрібно. Найголовніше - правильно

визначити всі коефіцієнти, а, bі c.

Формула для знаходження коріння квадратного рівняння.

Вираз під знаком кореня називається дискримінант . Як бачимо, для знаходження ікса, ми

використовуємо тільки a, b і с. Тобто. коефіцієнти з квадратного рівняння. Просто акуратно підставляємо

значення a, b і су цю формулу і рахуємо. Підставляємо зі своїмизнаками!

Наприклад, у рівнянні:

а =1; b = 3; c = -4.

Підставляємо значення та записуємо:

Приклад практично вирішено:

Це відповідь.

Найпоширеніші помилки - плутанина зі знаками значень a, bі з. Точніше, з підстановкою

негативних значеньу формулу для обчислення коренів. Тут рятує докладний запис формули

із конкретними числами. Якщо є проблеми з обчисленнями, то й робіть!

Припустимо, треба такий приклад вирішити:

Тут a = -6; b = -5; c = -1

Розписуємо все докладно, уважно, нічого не втрачаючи з усіма знаками та дужками:

Часто квадратні рівняння виглядають трохи інакше. Наприклад, ось так:

А тепер прийміть до уваги практичні прийоми, які різко знижують кількість помилок.

Прийом перший. Не лінуйтесь перед розв'язанням квадратного рівнянняпривести його до стандартного вигляду.

Що це означає?

Припустимо, після будь-яких перетворень ви отримали таке рівняння:

Не кидайтеся писати формулу коріння! Майже напевно, ви переплутаєте коефіцієнти a, b та с.

Побудуйте приклад правильно. Спочатку ікс у квадраті, потім без квадрата, потім вільний член. Ось так:

Позбудьтеся мінусу. Як? Потрібно помножити все рівняння на -1. Отримаємо:

А ось тепер можна сміливо записувати формулу для коріння, рахувати дискримінант і дорішувати приклад.

Дорішайте самостійно. У вас має вийти коріння 2 і -1.

Прийом другий.Перевіряйте коріння! за теоремі Вієта.

Аби вирішити наведених квадратних рівнянь, тобто. якщо коефіцієнт

x 2 +bx+c=0,

тодіx 1 x 2 = c

x 1 +x 2 =−b

Для повного квадратного рівняння, в якому a≠1:

x 2 +bx+c=0,

ділимо все рівняння на а:

де x 1і x 2 – коріння рівняння.

Прийом третій. Якщо у вашому рівнянні є дробові коефіцієнти, - позбавтеся дробів! Домножте

рівняння загальний знаменник.

Висновок. Практичні поради:

1. Перед рішенням наводимо квадратне рівняння до стандартного вигляду, вибудовуємо його правильно.

2. Якщо перед іксом у квадраті стоїть негативний коефіцієнт, ліквідуємо його множенням всього

рівняння на -1.

3. Якщо коефіцієнти дробові - ліквідуємо дроби множенням всього рівняння на відповідний

множник.

4. Якщо ікс у квадраті - чистий, коефіцієнт при ньому дорівнює одиниці, рішення можна легко перевірити по

Сподіваюся, вивчивши цю статтю, ви навчитеся знаходити коріння повного квадратного рівняння.

За допомогою дискримінанта вирішуються лише повні квадратні рівняння, для вирішення неповних квадратних рівнянь використовують інші методи, які ви знайдете у статті "Рішення неповних квадратних рівнянь".

Які квадратні рівняння називаються повними? Це рівняння виду ах 2 + b x + c = 0, Де коефіцієнти a, b і з не дорівнюють нулю. Отже, щоб розв'язати повне квадратне рівняння, треба обчислити дискримінант D.

D = b 2 - 4ас.

Залежно від того, яке значення має дискримінант, ми й запишемо відповідь.

Якщо дискримінант є негативним числом (D< 0),то корней нет.

Якщо ж дискримінант дорівнює нулю, то x = (-b)/2a. Коли дискримінант позитивне число (D > 0),

тоді х 1 = (-b - √D) / 2a, і х 2 = (-b + √D) / 2a.

Наприклад. Вирішити рівняння х 2- 4х + 4 = 0.

D = 4 2 - 4 · 4 = 0

x = (- (-4)) / 2 = 2

Відповідь: 2.

Розв'язати рівняння 2 х 2 + x + 3 = 0.

D = 1 2 - 4 · 2 · 3 = - 23

Відповідь: коріння немає.

Розв'язати рівняння 2 х 2 + 5х - 7 = 0.

D = 5 2 - 4 · 2 · (-7) = 81

х 1 = (-5 - √81) / (2 · 2) = (-5 - 9) / 4 = - 3,5

х 2 = (-5 + √81) / (2 · 2) = (-5 + 9) / 4 = 1

Відповідь: - 3,5; 1.

Отже представимо розв'язок повних квадратних рівнянь схемою на рисунку1.

За цими формулами можна вирішувати будь-яке повне квадратне рівняння. Потрібно лише уважно стежити за тим, щоб рівняння було записано багаточленом стандартного вигляду

а х 2 + bx + c,інакше можна припуститися помилки. Наприклад, у записі рівняння х + 3 + 2х 2 = 0 помилково можна вирішити, що

а = 1, b = 3 та с = 2. Тоді

D = 3 2 - 4 · 1 · 2 = 1 і тоді рівняння має два корені. А це не так. (Дивись рішення прикладу 2 вище).

Тому, якщо рівняння записано не багаточленом стандартного виду, спочатку повне квадратне рівняння треба записати багаточленом стандартного виду (на першому місці має стояти одночлен з найбільшим показникомступеня, тобто а х 2 , потім з меншим bx, а потім вільний член с.

При вирішенні наведеного квадратного рівняння і квадратного рівняння з парним коефіцієнтом при другому доданку можна використовувати інші формули. Давайте познайомимося з цими формулами. Якщо у повному квадратному рівнянні при другому доданку коефіцієнт буде парним (b = 2k), можна вирішувати рівняння за формулами наведеними на схемі малюнка 2.

Повне квадратне рівняння називається наведеним, якщо коефіцієнт при х 2 дорівнює одиниці і рівняння набуде вигляду х 2 + px + q = 0. Таке рівняння може бути дано на вирішення, або виходить розподілом всіх коефіцієнтів рівняння коефіцієнт а, що стоїть при х 2 .

На малюнку 3 наведено схему рішення наведених квадратних
рівнянь. Розглянемо з прикладу застосування розглянутих у цій статті формул.

приклад. Вирішити рівняння

3х 2 + 6х - 6 = 0.

Давайте розв'яжемо це рівняння застосовуючи формули наведені на схемі малюнка 1.

D = 6 2 - 4 · 3 · (- 6) = 36 + 72 = 108

√D = √108 = √(36 · 3) = 6√3

х 1 = (-6 - 6√3)/(2 · 3) = (6 (-1- √(3)))/6 = –1 – √3

х 2 = (-6 + 6√3)/(2 · 3) = (6 (-1+ √(3)))/6 = –1 + √3

Відповідь: –1 – √3; -1 + √3

Можна зауважити, що коефіцієнт при х у цьому рівнянні парне число, тобто b = 6 або b = 2k, звідки k = 3. Тоді спробуємо вирішити рівняння за формулами, наведеними на схемі малюнка D 1 = 3 2 – 3 · (– 6 ) = 9 + 18 = 27

√(D 1) = √27 = √(9 · 3) = 3√3

х 1 = (-3 - 3√3)/3 = (3 (-1 - √(3)))/3 = – 1 – √3

х 2 = (-3 + 3√3)/3 = (3 (-1 + √(3)))/3 = – 1 + √3

Відповідь: –1 – √3; -1 + √3. Помітивши, що всі коефіцієнти у цьому квадратному рівнянні діляться на 3 і виконавши розподіл, отримаємо наведене квадратне рівняння x 2 + 2х – 2 = 0 Розв'яжемо це рівняння, використовуючи формули для наведеного квадратного рівняння
рівняння рисунок 3.

D 2 = 2 2 - 4 · (- 2) = 4 + 8 = 12

√(D 2) = √12 = √(4 · 3) = 2√3

х 1 = (-2 - 2√3)/2 = (2 (-1 - √(3)))/2 = – 1 – √3

х 2 = (-2 + 2√3)/2 = (2 (-1+ √(3)))/2 = – 1 + √3

Відповідь: –1 – √3; -1 + √3.

Як бачимо, при вирішенні цього рівняння за різними формулами ми отримали одну й ту саму відповідь. Тому добре засвоївши формули, наведені на схемі малюнка 1, ви завжди зможете вирішити будь-яке повне квадратне рівняння.

blog.сайт, при повному або частковому копіюванні матеріалу посилання на першоджерело обов'язкове.

Квадратні рівняння вивчають у 8 класі, тож нічого складного тут немає. Вміння вирішувати їх необхідно.

Квадратне рівняння - це рівняння виду ax 2 + bx + c = 0, де коефіцієнти a, b і c - довільні числа, причому a ≠ 0.

Перш ніж вивчати конкретні методи розв'язання, зауважимо, що всі квадратні рівняння можна умовно поділити на три класи:

  1. Не мають коріння;
  2. Мають рівно один корінь;
  3. Мають два різні корені.

У цьому полягає важлива відмінність квадратних рівнянь від лінійних, де корінь завжди існує і єдний. Як визначити, скільки коренів має рівняння? Для цього існує чудова річ. дискримінант.

Дискримінант

Нехай дано квадратне рівняння ax 2 + bx + c = 0. Тоді дискримінант це просто число D = b 2 − 4ac .

Цю формулу треба знати напам'ять. Звідки вона береться - зараз не має значення. Важливо інше: за знаком дискримінанта можна визначити, скільки коренів має квадратне рівняння. А саме:

  1. Якщо D< 0, корней нет;
  2. Якщо D = 0, є рівно один корінь;
  3. Якщо D > 0, коріння буде два.

Зверніть увагу: дискримінант вказує на кількість коренів, а зовсім не на їхні знаки, як чомусь багато хто вважає. Погляньте на приклади - і самі все зрозумієте:

Завдання. Скільки коренів мають квадратні рівняння:

  1. x 2 − 8x + 12 = 0;
  2. 5x2+3x+7=0;
  3. x 2 - 6x + 9 = 0.

Випишемо коефіцієнти для першого рівняння та знайдемо дискримінант:
a = 1, b = -8, c = 12;
D = (−8) 2 − 4 · 1 · 12 = 64 − 48 = 16

Отже, дискримінант позитивний, тому рівняння має два різні корені. Аналогічно розбираємо друге рівняння:
a = 5; b = 3; c = 7;
D = 3 2 − 4 · 5 · 7 = 9 − 140 = −131.

Дискримінант негативний, коріння немає. Залишилося останнє рівняння:
a = 1; b = -6; c = 9;
D = (−6) 2 − 4 · 1 · 9 = 36 − 36 = 0.

Дискримінант дорівнює нулю – корінь буде один.

Зверніть увагу, що для кожного рівняння було виписано коефіцієнти. Так, це довго, так, це нудно — зате ви не переплутаєте коефіцієнти і не припуститеся дурних помилок. Вибирайте самі: швидкість чи якість.

До речі, якщо "набити руку", через деякий час вже не потрібно виписувати всі коефіцієнти. Такі операції ви виконуватимете в голові. Більшість людей починають так робити десь після 50-70 вирішених рівнянь — загалом, не так і багато.

Коріння квадратного рівняння

Тепер перейдемо власне до рішення. Якщо дискримінант D > 0, коріння можна знайти за формулами:

Основна формула коренів квадратного рівняння

Коли D = 0, можна використовувати будь-яку з цих формул — вийде те саме число, яке і буде відповіддю. Нарешті, якщо D< 0, корней нет — ничего считать не надо.

  1. x 2 − 2x − 3 = 0;
  2. 15 − 2x − x 2 = 0;
  3. x2+12x+36=0.

Перше рівняння:
x 2 − 2x − 3 = 0 ⇒ a = 1; b = -2; c = -3;
D = (−2) 2 − 4 · 1 · (−3) = 16.

D > 0 ⇒ рівняння має два корені. Знайдемо їх:

Друге рівняння:
15 − 2x − x 2 = 0 ⇒ a = −1; b = -2; c = 15;
D = (−2) 2 − 4 · (−1) · 15 = 64.

D > 0 ⇒ рівняння знову має два корені. Знайдемо їх

\[\begin(align) & ((x)_(1))=\frac(2+\sqrt(64))(2\cdot \left(-1 \right))=-5; \\ ((x)_(2))=\frac(2-\sqrt(64))(2\cdot \left(-1 \right))=3. \\ \end(align)\]

Нарешті, третє рівняння:
x 2 + 12x + 36 = 0 ⇒ a = 1; b = 12; c = 36;
D = 12 2 − 4 · 1 · 36 = 0.

D = 0 ⇒ рівняння має один корінь. Можна використати будь-яку формулу. Наприклад, першу:

Як бачимо з прикладів, все дуже просто. Якщо знати формули та вміти рахувати, проблем не буде. Найчастіше помилки виникають при підстановці формулу негативних коефіцієнтів. Тут знову ж таки допоможе прийом, описаний вище: дивіться на формулу буквально, розписуйте кожен крок — і дуже скоро позбавтеся помилок.

Неповні квадратні рівняння

Буває, що квадратне рівняння дещо відрізняється від того, що дано у визначенні. Наприклад:

  1. x 2 + 9x = 0;
  2. x 2 - 16 = 0.

Неважко помітити, що у цих рівняннях відсутнє одне із доданків. Такі квадратні рівняння вирішуються навіть легше, ніж стандартні: у них навіть не потрібно вважати дискримінант. Отже, введемо нове поняття:

Рівняння ax 2 + bx + c = 0 називається неповним квадратним рівнянням, якщо b = 0 чи c = 0, тобто. коефіцієнт при змінній x чи вільний елемент дорівнює нулю.

Вочевидь, можливий дуже важкий випадок, коли обидва цих коефіцієнта дорівнюють нулю: b = c = 0. І тут рівняння набуває вигляду ax 2 = 0. Вочевидь, таке рівняння має єдиний корінь: x = 0.

Розглянемо решту випадків. Нехай b = 0, тоді отримаємо неповне квадратне рівняння виду ax 2 + c = 0. Дещо перетворимо його:

Оскільки арифметичний квадратний корінь існує тільки з невід'ємного числа, остання рівність має сенс виключно за (−c /a ) ≥ 0. Висновок:

  1. Якщо у неповному квадратному рівнянні виду ax 2 + c = 0 виконано нерівність (−c /a ) ≥ 0, коріння буде два. Формула дана вище;
  2. Якщо ж (−c /a)< 0, корней нет.

Як бачите, дискримінант не був потрібний — у неповних квадратних рівняннях взагалі немає складних обчислень. Насправді навіть необов'язково пам'ятати нерівність (−c /a ) ≥ 0. Достатньо виразити величину x 2 і подивитися, що стоїть з іншого боку знаку рівності. Якщо там позитивне число — коріння буде два. Якщо негативне — коріння взагалі не буде.

Тепер розберемося з рівняннями виду ax 2 + bx = 0, у яких вільний елемент дорівнює нулю. Тут усе просто: коріння завжди буде два. Достатньо розкласти багаточлен на множники:

Винесення загального множника за дужку

Добуток дорівнює нулю, коли хоча б один із множників дорівнює нулю. Звідси є коріння. На закінчення розберемо кілька таких рівнянь:

Завдання. Розв'язати квадратні рівняння:

  1. x 2 − 7x = 0;
  2. 5x 2 + 30 = 0;
  3. 4x 2 − 9 = 0.

x 2 − 7x = 0 ⇒ x · (x − 7) = 0 ⇒ x 1 = 0; x 2 = −(−7)/1 = 7.

5x 2 + 30 = 0 ⇒ 5x 2 = −30 ⇒ x 2 = −6. Коріння немає, т.к. квадрат не може дорівнювати негативному числу.

4x 2 − 9 = 0 ⇒ 4x 2 = 9 ⇒ x 2 = 9/4 ⇒ x 1 = 3/2 = 1,5; x 2 = -1,5.

Поділіться з друзями або збережіть для себе:

Завантаження...