Властивості неправильної похилої піраміди. Геометричні фігури

Вирішуючи завдання C2 методом координат, багато учнів стикаються з однією проблемою. Вони не можуть розрахувати координати точок, що входять до формули скалярного твору. Найбільші труднощі викликають піраміди. І якщо точки основи вважаються більш-менш нормально, то вершини – справжнє пекло.

Сьогодні ми займемося правильною чотирикутною пірамідою. Є ще трикутна піраміда (вона ж - тетраедр). Це складніша конструкція, тому їй буде присвячений окремий урок.

Для початку згадаємо визначення:

Правильна піраміда - це така піраміда, у якої:

  1. В основі лежить правильний багатокутник: трикутник, квадрат і т.д.;
  2. Висота, проведена до основи, проходить через його центр.

Зокрема, підставою чотирикутної пірамідиє квадрат. Прямо як у Хеопса, тільки трохи менше.

Нижче наведені розрахунки для піраміди, у якої всі ребра дорівнюють 1. Якщо у вашому завданні це не так, викладки не змінюються - просто числа будуть іншими.

Вершини чотирикутної піраміди

Отже, нехай дана правильна чотирикутна піраміда SABCD, де S – вершина, основа ABCD – квадрат. Усі ребра дорівнюють 1. Потрібно ввести систему координат і знайти координати всіх точок. Маємо:

Вводимо систему координат з початком у точці A:

  1. Вісь OX спрямована паралельно ребру AB;
  2. Ось OY - паралельно AD. Оскільки ABCD - квадрат, AB ⊥ AD;
  3. Нарешті, вісь OZ направимо вгору, перпендикулярно площині ABCD.

Тепер рахуємо координати. Додаткова побудова: SH – висота, проведена до основи. Для зручності винесемо основу піраміди на окремий малюнок. Оскільки точки A, B, C і D лежать у площині OXY, їх координата z = 0. Маємо:

  1. A = (0; 0; 0) - збігається з початком координат;
  2. B = (1; 0; 0) - крок на 1 по осі OX від початку координат;
  3. C = (1; 1; 0) - крок на 1 по осі OX і на 1 по осі OY;
  4. D = (0; 1; 0) - крок тільки по осі OY.
  5. H = (0,5; 0,5; 0) – центр квадрата, середина відрізка AC .

Залишилося знайти координати точки S. Зауважимо, що координати x та y точок S та H збігаються, оскільки вони лежать на прямій, паралельній осі OZ . Залишилося знайти координату z для точки S.

Розглянемо трикутники ASH і ABH:

  1. AS = AB = 1 за умовою;
  2. Кут AHS = AHB = 90°, оскільки SH – висота, а AH ⊥ HB як діагоналі квадрата;
  3. Сторона AH – загальна.

Отже, прямокутні трикутники ASH та ABH рівніпо одному катету та гіпотенузі. Значить, SH = BH = 0,5 · BD. Але BD – діагональ квадрата зі стороною 1. Тому маємо:

Разом координати точки S:

На закінчення випишемо координати всіх вершин правильної прямокутної піраміди:


Що робити, коли ребра різні

А якщо бічні ребра піраміди не рівні ребрам основи? У цьому випадку розглянемо трикутник AHS:


Трикутник AHS - прямокутний, Причому гіпотенуза AS - це одночасно і бічне ребро вихідної піраміди SABCD. Катет AH легко вважається: AH = 0,5 · AC. катет SH, що залишився, знайдемо за теоремою Піфагора. Це буде координата z для точки S .

Завдання. Дано правильну чотирикутну піраміду SABCD , в основі якої лежить квадрат зі стороною 1. Бокове ребро BS = 3. Знайдіть координати точки S .

Координати x та y цієї точки ми вже знаємо: x = y = 0,5. Це випливає з двох фактів:

  1. Проекція точки S на площину OXY - це точка H;
  2. Одночасно точка H - центр квадрата ABCD, всі сторони якого 1.

Залишилося знайти координату точки S. Розглянемо трикутник AHS. Він прямокутний, причому гіпотенуза AS = BS = 3, катет AH – половина діагоналі. Для подальших обчислень нам знадобиться його довжина:

Теорема Піфагора для трикутника AHS: AH2 + SH2 = AS2. Маємо:

Отже, координати точки S :


Визначення. Бічна грань- Це трикутник, у якого один кут лежить у вершині піраміди, а протилежна йому сторона збігається зі стороною основи (багатокутника).

Визначення. Бічні ребра- це спільні сторони бічних граней. У піраміди стільки ребер, скільки кутів у багатокутника.

Визначення. Висота піраміди- Це перпендикуляр, опущений з вершини на основу піраміди.

Визначення. Апофема- Це перпендикуляр бічної грані піраміди, опущений з вершини піраміди до сторони основи.

Визначення. Діагональний переріз- це переріз піраміди площиною, що проходить через вершину піраміди та діагональ основи.

Визначення. Правильна піраміда- це піраміда, в якій основою є правильний багатокутник, а висота опускається до центру основи.


Об'єм та площа поверхні піраміди

Формули. Об'єм пірамідичерез площу основи та висоту:


Властивості піраміди

Якщо всі бічні ребра рівні, навколо основи піраміди можна описати коло, а центр основи збігається з центром кола. Також перпендикуляр, опущений із вершини, проходить через центр основи (кола).

Якщо бічні ребра рівні, всі вони нахилені до площині підстави під однаковими кутами.

Бічні ребра рівні тоді, коли вони утворюють із площиною основи рівні кути або якщо навколо основи піраміди можна описати коло.

Якщо бічні грані нахилені до площини основи під одним кутом, то в основу піраміди можна вписати коло, а вершина піраміди проектується до її центру.

Якщо бічні грані нахилені до поверхні підстави під одним кутом, то апофеми бічних граней рівні.


Властивості правильної піраміди

1. Вершина піраміди рівновіддалена від усіх кутів основи.

2. Усі бічні ребра рівні.

3. Усі бічні ребра нахилені під однаковими кутами до основи.

4. Апофеми всіх бічних граней рівні.

5. Площі всіх бічних граней рівні.

6. Усі грані мають однакові двогранні (плоські) кути.

7. Навколо піраміди можна описати сферу. Центром описаної сфери буде точка перетину перпендикулярів, що проходять через середину ребер.

8. До піраміди можна вписати сферу. Центром вписаної сфери буде точка перетину бісектрис, що виходять із кута між ребром і основою.

9. Якщо центр вписаної сфери збігається з центром описаної сфери, то сума плоских кутів при вершині дорівнює π або навпаки один кут дорівнює π/n , де n - це кількість кутів в основі піраміди.


Зв'язок піраміди зі сферою

Навколо піраміди можна описати сферу тоді, коли в основі піраміди лежить багатогранник навколо якого можна описати коло (необхідне і достатня умова). Центром сфери буде точка перетину площин, що проходять перпендикулярно через середини бічних ребер піраміди.

Навколо будь-якої трикутної або правильної пірамідиЗавжди можна описати сферу.

У піраміду можна вписати сферу, якщо бісекторні площини внутрішніх двогранних кутів піраміди перетинаються в одній точці (необхідна та достатня умова). Ця точка буде осередком сфери.


Зв'язок піраміди з конусом

Конус називається вписаним у піраміду, якщо їх вершини збігаються, а основа конуса вписана в основу піраміди.

Конус можна вписати до піраміди, якщо апофеми піраміди рівні між собою.

Конус називається описаним навколо піраміди, якщо їх вершини збігаються, а основа конуса описана навколо основи піраміди.

Конус можна описати навколо піраміди, якщо всі бічні ребра піраміди рівні між собою.


Зв'язок піраміди з циліндром

Піраміда називається вписаною в циліндр, якщо вершина піраміди лежить на одній основі циліндра, а основа піраміди вписана в іншу основу циліндра.

Циліндр можна описати навколо піраміди, якщо навколо основи піраміди можна описати коло.


Визначення. Усічена піраміда (пірамідальна призма)- це багатогранник, який знаходиться між основою піраміди та площиною перерізу, паралельною основі. Таким чином піраміда має більшу основу і меншу основу, яка подібна до більшої. Бічні грані є трапецією.

Визначення. Трикутна піраміда (чотиригранник)- це піраміда в якій три грані та основа є довільними трикутниками.

У чотиригранник чотири грані та чотири вершини та шість ребер, де будь-які два ребра не мають спільних вершин але не стикаються.

Кожна вершина складається з трьох граней та ребер, які утворюють тригранний кут.

Відрізок, що з'єднує вершину чотиригранника із центром протилежної грані називається медіаною чотиригранника(GM).

Бімедіаноюназивається відрізок, що з'єднує середини протилежних ребер, які не стикаються (KL).

Усі бімедіани та медіани чотиригранника перетинаються в одній точці (S). При цьому бімедіани діляться навпіл, а медіани щодо 3:1, починаючи з вершини.

Визначення. Похила піраміда- це піраміда в якій одне з ребер утворює тупий кут (β) з основою.

Визначення. Прямокутна піраміда- це піраміда в якій одна з бічних граней перпендикулярна до основи.

Визначення. Гострокутна піраміда- це піраміда в якій апофема більше половини довжини сторони основи.

Визначення. Тупокутна піраміда- це піраміда в якій апофема менше половини довжини сторони основи.

Визначення. Правильний тетраедр- чотиригранник, у якого всі чотири грані - рівносторонні трикутники. Він є одним із п'яти правильних багатокутників. У правильного тетраедра всі двогранні кути (між гранями) та тригранні кути (при вершині) рівні.

Визначення. Прямокутний тетраедрназивається чотиригранник у якого прямий кут між трьома ребрами при вершині (ребра перпендикулярні). Три грані утворюють прямокутний трикутний куті грані є прямокутними трикутникамиа основа довільним трикутником. Апофема будь-якої межі дорівнює половині боку основи, яку падає апофема.

Визначення. Рівногранний тетраедрназивається чотиригранник у якого бічні грані рівні між собою, а основа - правильний трикутник. У такого тетраедра грані це рівнобедрені трикутники.

Визначення. Ортоцентричний тетраедрназивається чотиригранник, у якого всі висоти (перпендикуляри), що опущені з вершини до протилежної грані, перетинаються в одній точці.

Визначення. Зіркова піраміданазивається багатогранник, у якого основою є зірка.

Визначення. Біпіраміда- багатогранник, що складається із двох різних пірамід (також можуть бути зрізані піраміди), що мають загальну основу, а вершини лежать по різні боки від площини основи.

Поняття піраміди

Визначення 1

Геометрична фігура, утворена багатокутником і точкою, що не лежить у площині, що містить цей багатокутник, з'єднана з усіма вершинами багатокутника називається пірамідою (рис. 1).

Багатокутник, з якого складена піраміда, називається основою піраміди, що отримуються при з'єднанні з точкою трикутники - бічними гранями піраміди, сторони трикутників - сторонами піраміди, а загальна для всіх трикутників точка - вершиною піраміди.

Види пірамід

Залежно від кількості кутів у основі піраміди її можна назвати трикутною, чотирикутною тощо (рис. 2).

Малюнок 2.

Ще один вид пірамід - правильна піраміда.

Введемо та доведемо властивість правильної піраміди.

Теорема 1

Усі бічні грані правильної піраміди є рівнобедреними трикутниками, які рівні між собою.

Доведення.

Розглянемо правильну $n-$вугільну піраміду з вершиною $S$ заввишки $h=SO$. Опишемо навколо основи коло (рис. 4).

Малюнок 4.

Розглянемо трикутник $SOA$. За теоремою Піфагора, отримаємо

Очевидно, що так визначатиметься будь-яке бічне ребро. Отже, всі бічні ребра рівні між собою, тобто всі бічні грані – рівнобедрені трикутники. Доведемо, що вони між собою рівні. Оскільки основа - правильний багатокутник, то основи всіх бічних граней рівні між собою. Отже, всі бічні грані дорівнюють за III ознакою рівності трикутників.

Теорему доведено.

Введемо тепер таке визначення, пов'язане з поняттям правильної піраміди.

Визначення 3

Апофемою правильної піраміди називається висота її бічної грані.

Очевидно, що за теоремою всі апофеми рівні між собою.

Теорема 2

Площа бічної поверхні правильної піраміди визначається як добуток напівпериметра основи апофему.

Доведення.

Позначимо сторону основи $n-$вугільної піраміди через $a$, а апофему через $d$. Отже, площа бічної грані дорівнює

Так як, за теоремою 1, всі бічні сторони рівні, то

Теорему доведено.

Ще один вид піраміди - усічена піраміда.

Визначення 4

Якщо через звичайну піраміду провести площину, паралельну до її основи, то постать, утворена між цією площиною та площиною основи називається усіченою пірамідою (рис. 5).

Рисунок 5. Усічена піраміда

Боковими гранями усіченої піраміди є трапеції.

Теорема 3

Площа бічної поверхні правильної зрізаної піраміди визначається як добуток суми напівпериметрів підстав на апофему.

Доведення.

Позначимо сторони основ $n-$вугільної піраміди через $a\ і \ b$ відповідно, а апофему через $d$. Отже, площа бічної грані дорівнює

Оскільки всі бічні сторони рівні, то

Теорему доведено.

Приклад завдання

Приклад 1

Знайти площу бічної поверхні зрізаної трикутної піраміди, якщо вона отримана з правильної піраміди зі стороною основи 4 і апофемою 5 шляхом відсікання площиною, що проходить через середню лінію бічних граней.

Рішення.

По теоремі про середню лінію отримаємо, що верхня основаусіченої піраміди дорівнює $4\cdot \frac(1)(2)=2$, а апофема дорівнює $5\cdot \frac(1)(2)=2,5 $.

Тоді, за теоремою 3, отримаємо

піраміда. Усічена піраміда

Пірамідоюназивається багатогранник, одна з граней якого багатокутник ( основа ), а всі інші грані – трикутники із загальною вершиною ( бічні грані ) (рис. 15). Піраміда називається правильною якщо її основою є правильний багатокутник і вершина піраміди проектується в центр основи (рис. 16). Трикутна піраміда, у якої всі ребра рівні, називається тетраедром .



Боковим ребромпіраміди називається сторона бічної грані, що не належить основи Висотою піраміди називається відстань від її вершини до площини основи. Усі бічні ребра правильної піраміди рівні між собою, всі бічні грані – рівні рівнобедрені трикутники. Висота бічної грані правильної піраміди, проведена з вершини, називається апофемою . Діагональним перетином називається переріз піраміди площиною, що проходить через два бічні ребра, що не належать одній грані.

Площею бічної поверхніпіраміди називається сума площ усіх бічних граней. Площею повної поверхні називається сума площ усіх бічних граней та підстави.

Теореми

1. Якщо у піраміді всі бічні ребра рівнонахилені до площини основи, то вершина піраміди проектується в центр кола описаного біля основи.

2. Якщо в піраміді всі бічні ребра мають рівні довжини, то вершина піраміди проектується в центр кола описаного біля основи.

3. Якщо в піраміді всі грані рівнонахилені до площини основи, то вершина піраміди проектується в центр кола, вписаного в основу.

Для обчислення обсягу довільної піраміди вірна формула:

де V- Об `єм;

S осн– площа основи;

H- Висота піраміди.

Для правильної піраміди вірні формули:

де p– периметр основи;

h а- Апофема;

H- Висота;

S повний

S бік

S осн– площа основи;

V- Об'єм правильної піраміди.

Усіченою пірамідоюназивається частина піраміди, укладена між основою та січною площиною, паралельною основі піраміди (рис. 17). Правильною усіченою пірамідою називається частина правильної піраміди, укладена між основою та січною площиною, паралельною основі піраміди.

Підставизрізаної піраміди – подібні багатокутники. Бічні грані - Трапеції. Висотою усіченої піраміди називається відстань між її основами. Діагоналлю усіченої піраміди називається відрізок, що з'єднує її вершини, що не лежать в одній грані. Діагональним перетином називається переріз усіченої піраміди площиною, що проходить через два бічні ребра, що не належать одній грані.


Для усіченої піраміди справедливі формули:

(4)

де S 1 , S 2 – площі верхнього та нижньої основ;

S повний- Площа повної поверхні;

S бік- Площа бічної поверхні;

H- Висота;

V- Об'єм зрізаної піраміди.

Для правильної усіченої піраміди вірна формула:

де p 1 , p 2 – периметри основ;

h а- Апофема правильної усіченої піраміди.

приклад 1.У правильній трикутної пірамідидвогранний кут при підставі дорівнює 60 º. Знайти тангенс кута нахилу бокового ребра до площини основи.

Рішення.Зробимо рисунок (рис. 18).


Піраміда правильна, отже, в основі рівносторонній трикутникі всі бічні грані рівні рівнобедрені трикутники. Двогранний кут при основі - це кут нахилу бічної грані піраміди до площини основи. Лінійним кутом буде кут aміж двома перпендикулярами: і. Вершина піраміди проектується в центрі трикутника (центр описаного кола та вписаного кола в трикутник АВС). Кут нахилу бокового ребра (наприклад SB) – це кут між самим ребром та його проекцією на площину основи. Для ребра SBцим кутом буде кут SBD. Щоб знайти тангенс необхідно знати катети SOі OB. Нехай довжина відрізка BDдорівнює 3 а. Крапкою Провідрізок BDділиться на частини: і З знаходимо SO: З знаходимо:

Відповідь:

приклад 2.Знайти об'єм правильної зрізаної чотирикутної піраміди, якщо діагоналі її основ дорівнюють см і см, а висота 4 см.

Рішення.Для знаходження об'єму зрізаної піраміди скористаємося формулою (4). Щоб знайти площі основ необхідно знайти сторони квадратів-підстав, знаючи їх діагоналі. Сторони підстав рівні відповідно 2 см і 8 см. Значить площі підстав і Підставивши всі дані у формулу, обчислимо обсяг усіченої піраміди:

Відповідь: 112 см 3 .

приклад 3.Знайти площу бічної грані правильної трикутної усіченої піраміди, сторони основ якої дорівнюють 10 см і 4 см, а висота піраміди 2 см.

Рішення.Зробимо рисунок (рис. 19).


Бічна грань цієї піраміди є рівнобокою трапецією. Для обчислення площі трапеції необхідно знати основи та висоту. Підстави дано за умовою, залишається невідомою лише висота. Її знайдемо з де А 1 Еперпендикуляр з точки А 1 на площину нижньої основи, A 1 D- Перпендикуляр з А 1 на АС. А 1 Е= 2 см, оскільки це висота піраміди. Для знаходження DEзробимо додатково малюнок, у якому зобразимо вид зверху (рис. 20). Крапка Про– проекція центрів верхньої та нижньої основ. оскільки (див. рис. 20) і з іншого боку ОК– радіус вписаної в коло та ОМ- Радіус вписаної в колі:

MK = DE.

За теоремою Піфагора з

Площа бічної грані:


Відповідь:

приклад 4.В основі піраміди лежить рівнобока трапеція, основа якої аі b (a> b). Кожна бічна грань утворює з площиною основи піраміди кут рівний j. Знайти площу повної поверхні піраміди.

Рішення.Зробимо рисунок (рис. 21). Площа повної поверхні піраміди SABCDдорівнює сумі площ та площі трапеції ABCD.

Скористаємося твердженням, що й усі грані піраміди рівнонахилені до площині основи, то вершина проектується у центр вписаної основу окружности. Крапка Про- Проекція вершини Sна основу піраміди. Трикутник SODє ортогональною проекцією трикутника CSDна площину основи. За теоремою про площу ортогональної проекції плоскої фігури отримаємо:


Аналогічно і означає Таким чином, завдання звелося до знаходження площі трапеції. АВСD. Зобразимо трапецію ABCDокремо (рис.22). Крапка Про- Центр вписаної в трапецію кола.


Так як в трапецію можна вписати коло, то або З по теоремі Піфагора маємо

Поділіться з друзями або збережіть для себе:

Завантаження...