Відносний показник заломлення середовища таблиці. Абсолютний показник заломлення

Заломлення або рефракція - це явище, при якому відбувається зміна спрямованості променя світла, або інших хвиль, коли вони переходять кордон, що розділяє два середовища, як прозорі (пропускають ці хвилі), так і всередині середовища, в якому безперервно змінюються властивості.

З явищем заломлення ми стикаємося досить часто й сприймаємо звичайним явищем: можемо побачити, що паличка, що у прозорому склянці з пофарбованої рідиною, «переломлена» у місці поділу повітря та води (рис. 1). При заломленні та відображенні світла під час дощу ми радіємо, побачивши веселку (рис. 2).

Показник заломлення - важлива характеристика речовини, пов'язана з її фізико-хімічними властивостями. Він залежить від значень температур, і навіть від довжини світлових хвиль, у яких проводиться визначення. За даними контролю якості у розчині на показник заломлення впливає концентрація розчиненої у ньому речовини, і навіть природа розчинника. Зокрема, на показник заломлення кров'яної сироватки впливає кількість білка, що міститься в ній. Це відбувається через те, що за різної швидкості поширення світлових променів у середовищах, що мають різну щільність, їх напрямок змінюється у місці розділу двох середовищ. Якщо ми розділимо світлову швидкістьу вакуумі на світлову швидкість у досліджуваній речовині, вийде абсолютний показник заломлення (індекс рефракції). Практично визначається показник заломлення відносний (n ), що є відношенням світлової швидкості в повітрі до світлової швидкості в досліджуваній речовині.

Кількісно показник заломлення визначають, використовуючи спеціальний прилад рефрактометр.

Рефрактометрія - один із найлегших методів фізичного аналізу і може застосовуватися в лабораторіях контролю якості при виробництві хімічної, харчової, біологічно активних добавок до їжі, косметичної та інших видів продукції з мінімальними витратами часу та кількості досліджуваних проб.

Конструкція рефрактометра полягає в тому, що промені світла повністю відбиваються, коли переходять через межу двох середовищ (одне їх – це призма зі скла, інша – досліджуваний розчин) (рис. 3).

Рис. 3. Схема рефрактометра

Від джерела (1) світловий промінь падає на дзеркальну поверхню (2), потім, відбиваючись, переходить у верхню призму освітлювальну (3), потім у нижню вимірювальну призму (4), яка виготовлена ​​зі скла, що володіє великим показником заломлення. Між призмами (3) та (4) за допомогою капіляра наносять 1–2 крапельки проби. Щоб не завдати призмі механічних пошкоджень, необхідно не торкатися капіляром поверхні.

В окулярі (9) бачать поле з перехрещеними лініями, щоб встановити межу розділу. Переміщуючи окуляр, точку перетину полів потрібно поєднати з межею розділу (рис. 4). Площина призми (4) відіграє роль межі розділу, на поверхні якої заломлюється світловий промінь. Так як промені розсіюються, межа світла і тіні виходить розпливчастою, райдужною. Це усувається компенсатором дисперсії (5). Потім промінь пропускається об'єктивом (6) та призмою (7). На пластині (8) є візирні штрихи (дві прямі лінії, пересічені хрестоподібно), а також шкала з показниками заломлення, яка спостерігається в окуляр (9). Нею і відраховується показник заломлення.

Лінія розділу меж полів буде відповідати куту внутрішнього повного відображення, що залежить від показника заломлення проби.

Рефрактометрія застосовується з метою встановлення чистоти та справжності речовини. Цей метод застосовується також, щоб при контролі якості визначити концентрацію речовин у розчинах, яку обчислюють за градуювальним графіком (графік, що показує залежність показника заломлення проби від її концентрації).

У компанії «КорольовФарм» показник заломлення визначається згідно із затвердженою нормативною документацією при вхідному контролі сировини, в екстрактах власного виробництва, а також при випуску готової продукції. Визначення проводиться кваліфікованими співробітниками акредитованої фізико-хімічної лабораторії за допомогою рефрактометра ІРФ – 454 Б2М.

Якщо за результатами вхідного контролю сировини показник заломлення відповідає необхідним вимогам, відділом контролю якості оформляється Акт про невідповідність, виходячи з якого дана партія сировини повертається постачальнику.

Методика визначення

1. Перед початком вимірювань перевіряється чистота поверхонь призм, що стикаються між собою.

2. Перевірка точки нуля. На поверхню призми вимірювальної наносимо 2÷3 краплі дистильованої води, обережно закриваємо призмою освітлювальної. Відкриваємо освітлювальне віконце і, застосовуючи дзеркало, встановлюємо світлове джерело найбільш інтенсивно. Обертаючи гвинти окуляра, отримуємо в його полі зору чітке, різке розмежування темного та світлого полів. Обертаємо гвинт і наводимо лінію тіні і світла так, щоб вона збіглася з точкою, в якій перетинаються лінії у верхньому вікні окуляра. На вертикальній лінії в нижньому вікні окуляра бачимо потрібний результат – показник заломлення дистильованої води при 20 ° С (1,333). Якщо показання інші, встановлюємо гвинтом показник заломлення значення 1,333, і за допомогою ключа (зняти гвинт регулювальний) наводимо межу тіні і світла до місця точки перетину ліній.

3. Визначаємо коефіцієнт заломлення. Піднімаємо камеру призми освітлювальним і папером фільтрувальним або марлевою серветкою знімаємо воду. Далі наносимо 1-2 краплі випробуваного розчину на поверхню вимірювальної призми і закриваємо камеру. Обертаємо гвинти до моменту, поки межі тіні і світла не збігатимуться з точкою перетину ліній. На вертикальній лінії в нижньому вікні окуляра бачимо потрібний результат - показник заломлення досліджуваної проби. Проводимо підрахунок коефіцієнта заломлення за шкалою в нижньому вікні окуляра.

4. Використовуючи градуювальний графік, встановлюємо взаємозв'язок між концентрацією розчину та показником заломлення. Щоб побудувати графік, необхідно приготувати стандартні розчини кількох концентрацій, використовуючи препарати хімічно. чистих речовин, виміряти їх показники заломлення та відкласти отримані значення на осі ординат, на осі абсцис відкласти відповідні концентрації розчинів. Необхідно вибирати інтервали концентрацій, при яких між концентрацією та показником заломлення спостерігається лінійна залежність. Вимірюємо показник заломлення досліджуваної проби та за допомогою графіка визначаємо його концентрацію.

Області застосування рефрактометрії.

Пристрій та принцип дії рефрактометра ІРФ-22.

Поняття показника заломлення.

План

Рефрактометрія. Характеристика та сутність методу.

Для ідентифікації речовин і перевірки їх чистоти використовують поки-

залом заломлення.

Показник заломлення речовини- величина, що дорівнює відношенню фазових швидкостей світла (електромагнітних хвиль) у вакуумі та видному середовищі.

Показник заломлення залежить від властивостей речовини та довжини хвилі

електромагнітного випромінювання Відношення синуса кута падіння щодо

нормалі, проведеної до площини заломлення (α) променя до синуса кута пре-

ломлення (β) при переході променя з середовища A в середовище B називається відносним показником заломлення для цієї пари середовищ.

Величина n є відносний показник заломлення середовища

по відношенню до середовища А, а

Відносний показник заломлення середовища А стосовно

Показник заломлення променя, що падає на середу з безповітряно-

го простору, називається його абсолютним показником заломлення або

просто показником заломлення цього середовища (таблиця 1).

Таблиця 1 - Показники заломлення різних середовищ

Рідина має показник заломлення в інтервалі 1.2-1,9. Тверді

речовини 13-40. Деякі мінерали не мають точного значенняпоказа-

ля заломлення. Його величина знаходиться в деякій "вилці" і визначає-

ся присутністю домішок у кристалічній структурі, що визначає колір

кристала.

Ідентифікація мінералу за кольором скрутна. Так, мінерал корунд існує у вигляді рубіну, сапфіру, лейкосапфіру, відрізняючись по

показнику заломлення та кольору. Червоні корунди називаються рубінами

(Домішка хрому), сині безбарвні, блакитні, рожеві, жовті, зелені,

фіолетові - сапфірами (домішки кобальту, титану та ін). Світлозабарвлений-

ні сапфіри або безбарвний корунд носить назву лейкосапфір (широко

застосовується в оптиці як світлофільтр). Показник заломлення цих кри-

сталлів лежить в діапазоні 1,757-1,778 і є підставою для ідентифікації.

Малюнок 3.1 – Рубін Малюнок 3.2 – Сапфір синій

Органічні та неорганічні рідини також мають характерні значення показників заломлення, які характеризують їх як хімічні властивості.

ські сполуки та якість їх синтезу (таблиця 2):

Таблиця 2 – Показники заломлення деяких рідин при 20 °C

4.2. Рефрактометрія: поняття, принцип.

Метод дослідження речовин, заснований на визначенні показника



(коефіцієнта) заломлення (рефракції) називається рефрактометрією (від

лат. refractus - заломлений і грецьк. metreo – вимірюю). Рефрактометрія

(Рефрактометричний метод) застосовується для ідентифікації хімічних

сполук, кількісного та структурного аналізу, визначення фізико-

хімічних властивостей речовин. Принцип рефрактометрії, реалізований

у рефрактометрах Аббе, пояснюється малюнком 1.

Рисунок 1 - Принцип рефрактометрії

Призменный блок Аббе і двох прямокутних призм: висвітли-

ної та вимірювальної, складених гіпотенузними гранями. Освітлювач-

ная призма має шорстку (матову) гіпотенузну грань і призна-

чена для освітлення зразка рідини, що міститься між призмами.

Розсіяне світло проходить плоскопаралельний шар досліджуваної рідини і, переломлюючись у рідині, падає на вимірювальну призму. Вимірювальна призма виконана з оптично щільного скла (важкий флінт) та має показник заломлення більше 1,7. Тому рефрактометр Аббе вимірює величини n менші, ніж 1,7. Збільшення діапазону вимірювання показника заломлення може бути досягнуто шляхом заміни вимірювальної призми.

Досліджуваний зразок наливають на гіпотенузну грань вимірювальної призми і притискають освітлювальною призмою. При цьому між призмами залишається зазор 0,1-0,2 мм, в якому знаходиться зразок, і через

який проходить заломлюючись світло. Для вимірювання показника заломлення

використовують повне явище внутрішнього відображення. Воно полягає в

наступному.

Якщо на межу розділу двох середовищ падають промені 1, 2, 3, то залежно-

сти від кута падіння при спостереженні за ними в середовищі заломлення буде на-

дотримуватися наявність переходу областей різного освітлення. Воно пов'язане

з падінням деякої частини світла на межу заломлення під кутом близько-

ким до 90° по відношенню до нормалі (промінь 3). (Малюнок 2).

Рисунок 2 – Зображення заломлюваних променів

Ця частина променів не відбивається і тому утворює світлішу об-

ласть при заломленні. Промені з меншими кутами відчувають і відображення

та заломлення. Тому утворюється область меншої освітленості. В об'єм-

ективі видно граничну лінію повного внутрішнього відображення, положення

якої залежить від заломлюючих властивостей зразка.

Усунення явища дисперсії (фарбування межі розділу двох областей освітленості в кольори веселки через використання в рефрактометрах Аббе складного білого світла) досягається використанням двох призм Амічі в компенсаторі, які вмонтовані в зорову трубу. Одночасно в об'єктив проектується шкала (Малюнок 3). Для аналізу достатньо 0,05мл рідини.

Малюнок 3 - Вид на окуляр рефрактометра. (Права шкала відображає

концентрацію вимірюваного компонента в промілі)

Крім аналізу однокомпонентних зразків, широко аналізуються.

двокомпонентні системи (водні розчини, розчини речовин у якому

або розчиннику). В ідеальних двокомпонентних системах (утворювальних-

ся без зміни обсягу і поляризуемості компонентів) залежність поки-

зателя заломлення від складу близька до лінійної, якщо склад виражений у

об'ємних частках (відсотках)

де: n, n1 ,n2 - показники заломлення суміші та компонентів,

V1 та V2 – об'ємні частки компонентів (V1 + V2 = 1).

Вплив температури на показник заломлення визначається двома

факторами: зміною кількості частинок рідини в одиниці об'єму та за-

висимістю поляризуемості молекул від температури. Другий фактор стано-

виться суттєвим лише за дуже велику зміну температури.

Температурний коефіцієнт показника заломлення пропорційний температурному коефіцієнту густини. Оскільки всі рідини при нагріванні розширюються, їх показники заломлення зменшуються при підвищенні температури. Температурний коефіцієнт залежить від величини температури рідини, але у невеликих температурних інтервалах може вважатися незмінним. З цієї причини більша частина рефрактометрів не має термостатування, проте в деяких конструкціях передбачено

водяне термостатування.

Лінійна екстраполяція показника заломлення за зміни температури допустима на невеликі різниці температур (10 – 20°С).

Точне визначення показника заломлення в широких температурних інтервалах здійснюється за емпіричними формулами:

nt=n0+at+bt2+…

Для рефрактометрії розчинів у широких діапазонах концентрацій

користуються таблицями чи емпіричними формулами. Залежність показу-

теля заломлення водних розчинів деяких речовин від концентрації

близька до лінійної і дозволяє визначати концентрації даних речовин у

воді в широких діапазонах концентрацій (рисунок 4) за допомогою рефракції

метрів.

Рисунок 4 - Показник заломлення деяких водних розчинів

Зазвичай n рідких і твердих тіл рефрактометрами визначають з точ-

ністю до 0,0001. Найбільш поширені рефрактометри Аббе (рисунок 5) із призмінними блоками та компенсаторами дисперсії, що дозволяють визначати nD у "білому" світлі за шкалою або цифровим індикатором.

Малюнок 5 - Рефрактометр Аббе (ІРФ-454; ІРФ-22)

ДО ЛЕКЦІЇ №24

«ІНСТРУМЕНТАЛЬНІ МЕТОДИ АНАЛІЗУ»

РЕФРАКТОМЕТРІЯ.

Література:

1. В.Д. Пономарьов «Аналітична хімія» 1983 246-251

2. А.А. Іщенко «Аналітична хімія» 2004 стор 181-184

РЕФРАКТОМЕТРІЯ.

Рефрактометрія є одним із найпростіших фізичних методіваналізу з витратою мінімальної кількості аналізованої речовини та проводиться за дуже короткий час.

Рефрактометрія- метод, заснований на явище заломлення чи рефракції, тобто. зміні напряму поширення світла при переході з одного середовища до іншого.

Заломлення, як і поглинання світла, є наслідком взаємодії його з середовищем. Слово рефрактометрія означає вимір заломлення світла, яке оцінюється за величиною показника заломлення.

Розмір показника заломлення nзалежить

1) від складу речовин та систем,

2) від того, у якій концентрації і які молекули зустрічає світловий промінь своєму шляху, т.к. під впливом світла молекули різних речовин поляризуються по-різному. Саме на цій залежності й ґрунтується рефрактометричний метод.

Метод цей має цілу низку переваг, у результаті він знайшов широке застосування як і хімічних дослідженнях, і при контролі технологічних процесів.

1) Вимірювання показники заломлення є дуже простим процесом, який здійснюється точно і за мінімальних витрат часу і кількості речовини.

2) Зазвичай рефрактометри забезпечують точність до 10% при визначенні показника заломлення світла та вмісту аналізованої речовини

Метод рефрактометрії застосовують контролю автентичності і чистоти, ідентифікації індивідуальних речовин, визначення будови органічних і неорганічних сполук щодо розчинів. Рефрактометрія знаходить застосування визначення складу двокомпонентних розчинів і потрійних систем.

Фізичні основи методу

ПОКАЗНИК ЗАЛОМЛЕННЯ.

Відхилення світлового променя від початкового напряму при переході його з одного середовища до іншого тим більше, ніж більше різницяу швидкостях поширення світла у двох



даних середовищах.

Розглянемо заломлення світлового променя на межі будь-яких двох прозорих середовищ I та II (див. рис.). Умовимося, що середовище II має більшу заломлюючу здатність і, отже, n 1і n 2- Показує заломлення відповідних середовищ. Якщо середовище I - це вакуум і повітря, то відношення sin кута падіння світлового променя до sin кута заломлення дасть величину відносного показника заломлення n отн. Розмір n отн. може бути так само визначено як відношення показників заломлення середовищ, що розглядаються.

n отн. = ----- = ---

Розмір показника заломлення залежить від

1) природи речовин

Природу речовини у разі визначає ступінь деформируемости його молекул під впливом світла - ступінь поляризуемости. Чим інтенсивніша поляризуемість, тим сильніше заломлення світла.

2)довжини хвилі падаючого світла

Вимірювання показника заломлення проводиться за довжини хвилі світла 589,3 нм (лінія D спектру натрію).

Залежність показника заломлення від довжини світлової хвилі називається дисперсією. Чим менше довжинахвилі, тим значніше заломлення. Тому промені різних довжин хвиль переломлюються по-різному.

3)температури , При якій проводиться вимір. Обов'язковою умовоювизначення показника заломлення є дотримання температурного режиму. Зазвичай, визначення виконується при 20±0,3 0 С.

У разі підвищення температури величина показника заломлення зменшується, при зниженні - збільшується.

Поправку на вплив температури розраховують за такою формулою:

n t =n 20 + (20-t) · 0,0002, де

n t –Бувай задавачем заломлення при даній температурі,

n 20 -показник заломлення при 20 0 С

Вплив температури на значення показників заломлення газів та рідких тіл пов'язаний з величинами їх коефіцієнтів об'ємного розширення. Об'єм всіх газів і рідких тіл при нагріванні збільшується, щільність зменшується і, отже, зменшується показник

Показник заломлення, виміряний при 20 0 С та довжині хвилі світла 589,3 нм, позначається індексом n D 20

Залежність показника заломлення гомогенної двокомпонентної системи від її стану встановлюється експериментально шляхом визначення показника заломлення для ряду стандартних систем (наприклад, розчинів), вміст компонентів у яких відомий.

4) концентрації речовини у розчині.

Для багатьох водних розчинів речовин показники заломлення при різних концентраціях та температурах надійно виміряні, і в цих випадках можна користуватися довідковими рефрактометричними таблицями. Практика показує, що при вмісті розчиненої речовини, що не перевищує 10-20%, поряд з графічним методому багатьох випадках можна користуватися лінійним рівняннямтипу:

n=n про +FC,

n-показник заломлення розчину,

- показник заломлення чистого розчинника,

C- Концентрація розчиненої речовини, %

F-емпіричний коефіцієнт, величина якого знайдена

шляхом визначення коефіцієнтів заломлення розчинів відомої концентрації.

РЕФРАКТОМЕТРИ.

Рефрактометрами називають прилади, що служать вимірювання величини показника заломлення. Існує 2 види цих приладів: рефрактометр типу Аббе та типу Пульфріха. І в тих і в ін. Виміри засновані на визначенні величини граничного кута заломлення. На практиці застосовуються рефрактометри різних систем: лабораторний-РЛ, універсальний РЛУ та ін.

Показник заломлення дистильованої води n 0 =1,33299, практично цей показник приймає як відлікового як n 0 =1,333.

Принцип роботи на рефрактометрах ґрунтується на визначенні показника заломлення методом граничного кута (кут повного відображення світла).

Ручний рефрактометр

Рефрактометр Аббе

Заломлення називають деяке абстрактне число, яке характеризує заломлюючу здатність будь-якого прозорого середовища. Позначати її заведено n. Розрізняють абсолютний показник заломлення та коефіцієнт відносний.

Перший розраховується за однією з двох формул:

n = sin α / sin β = const (де sin α - синус кута падіння, а sin β - синус променя світла, що входить у розглянуте середовище з порожнечі)

n = c / υ λ (де - швидкість світла в порожнечі, υ λ - швидкість світла в досліджуваному середовищі).

Тут розрахунок показує, скільки разів світло змінює швидкість свого поширення в момент переходу з вакууму в прозоре середовище. Таким чином, визначається показник заломлення (абсолютний). Для того щоб дізнатися про відносний, використовують формулу:

Тобто при цьому розглядаються абсолютні показники заломлення речовин різної густини, наприклад повітря та скла.

Якщо говорити загалом, то абсолютні коефіцієнти будь-яких тіл, чи то газоподібних, рідких чи твердих, завжди більші за 1. В основному їх значення коливаються від 1 до 2. Вище 2 ця величина може бути тільки у виняткових випадках. Значення цього параметра для деяких середовищ:

Ця величина у застосуванні до найтвердішої природної речовини на планеті, алмазу, становить 2,42. Дуже часто при проведенні наукових пошуків тощо потрібно знати показник заломлення води. Цей параметр складає 1,334.

Оскільки довжина хвилі – показник, зрозуміло, непостійний, до літери n приписується індекс. Його значення і допомагає зрозуміти, до якої хвилі спектра цей коефіцієнт відноситься. При розгляді однієї й тієї ж речовини, але зі збільшенням довжини світлової хвилі, показник заломлення буде зменшуватися. Цією обставиною і викликане розкладання світла на спектр під час проходження через лінзу, призму тощо.

За величиною коефіцієнта заломлення можна визначити, наприклад, скільки однієї речовини розчинено в іншому. Це буває корисним, припустимо, у пивоварінні або коли необхідно дізнатися концентрацію цукру, фруктів чи ягід у соку. Цей показник важливий і щодо якості нафтопродуктів, і у ювелірній справіколи потрібно довести справжність каменю і т.д.

Без використання будь-якої речовини шкала, видима в окулярі приладу, повністю пофарбована в блакитний колір. Якщо капнути на призму звичайної дистильованої води, при правильному калібруванні інструменту межа синього та білого кольорів проходитиме строго за нульовою позначкою. При дослідженні іншої речовини вона зміститься за шкалою відповідно до того, який показник заломлення йому властивий.

В курсі фізики 8 класу ви познайомилися з явищем спотворення світла. Тепер ви знаєте, що світло є електромагнітні хвилі певного діапазону частот. Спираючись на знання про природу світла, ви зможете зрозуміти фізичну причину заломлення та пояснити багато інших пов'язаних з ним світлових явищ.

Рис. 141. Переходячи з одного середовища в інше, промінь заломлюється, тобто змінює напрямок поширення

Відповідно до закону заломлення світла (рис. 141):

  • промені падаючий, заломлений і перпендикуляр, проведений до межі розділу двох середовищ у точці падіння променя, лежать в одній площині; відношення синуса кута падіння до синуса кута заломлення є постійна величина для даних двох середовищ

де n 21 - відносний показник заломлення другого середовища щодо першої.

Якщо промінь переходить у якесь середовище з вакууму, то

де n – абсолютний показник заломлення (або просто показник заломлення) другого середовища. І тут першою «середовищем» є вакуум, абсолютний показник якого прийнято за одиницю.

Закон заломлення світла був відкритий досвідченим шляхом голландським ученим Віллебордом Снелліусом в 1621 р. Закон був сформульований в трактаті з оптики, який знайшли в паперах вченого після його смерті.

Після відкриття Снелліуса декількома вченими була висунута гіпотеза про те, що заломлення світла обумовлено зміною його швидкості при переході через кордон двох середовищ. Справедливість цієї гіпотези була підтверджена теоретичними доказами, виконаними незалежно один від одного французьким математиком П'єром Ферма (1662) і голландським фізиком Християном Гюйгенсом (1690). Різними шляхами вони дійшли одного і того ж результату, довівши, що

  • відношення синуса кута падіння до синуса кута заломлення є величина постійна для даних двох середовищ, що дорівнює відношенню швидкостей світла в цих середовищах:

З рівняння (3) випливає, що якщо кут заломлення β менше кута падіння а, то світло даної частоти у другому середовищі поширюється повільніше, ніж у першій, тобто V 2

Взаємозв'язок величин, що входять до рівняння (3), послужила вагомою основою появи ще одного формулювання визначення відносного показника заломлення:

  • відносним показником заломлення другого середовища щодо першої називається фізична величина, що дорівнює відношенню швидкостей світла в цих середовищах:

n 21 = v 1 / v 2 (4)

Нехай промінь світла переходить із вакууму в якесь середовище. Замінивши в рівнянні (4) v1 швидкість світла у вакуумі з, а v 2 швидкість світла в середовищі v, отримаємо рівняння (5), що є визначенням абсолютного показника заломлення:

  • абсолютним показником заломлення середовища називається фізична величина, що дорівнює відношенню швидкості світла у вакуумі до швидкості світла в даному середовищі:

Відповідно до рівнянь (4) і (5), n 21 показує, скільки разів змінюється швидкість світла при його переході з одного середовища в інше, a n - при переході з вакууму в середу. У цьому полягає фізичний зміст показників заломлення.

Значення абсолютного показника заломлення будь-якої речовини більше одиниці (у цьому переконують дані, що містяться в таблицях фізичних довідників). Тоді, згідно з рівнянням (5), c/v > 1 і > v, тобто швидкість світла в будь-якій речовині менше швидкості світла у вакуумі.

Не наводячи строгих обгрунтувань (вони складні і громіздкі), відзначимо, що причиною зменшення швидкості світла при переході з вакууму в речовину є взаємодія світлової хвилі з атомами і молекулами речовини. Чим більша оптична щільність речовини, тим сильніша ця взаємодія, тим менша швидкість світла і тим більший показник заломлення. Таким чином, швидкість світла в середовищі та абсолютний показник заломлення визначаються властивостями цього середовища.

За числовими значеннями показників заломлення речовин можна порівнювати їх оптичні густини. Наприклад, показники заломлення різних сортів скла лежать у межах від 1,470 до 2,040, а показник заломлення води дорівнює 1,333. Значить, скло - середовище оптично щільніше, ніж вода.

Звернемося до рисунка 142, за допомогою якого можна пояснити, чому на межі двох середовищ зі зміною швидкості змінюється напрямок поширення світлової хвилі.

Рис. 142. При переході світлових хвиль з повітря у воду швидкість світла зменшується, фронт хвилі, а разом з ним та її швидкість змінюють напрямок

На малюнку зображено світлова хвиля, що переходить з повітря у воду і падаюча на межу розділу цих середовищ під кутом а. У повітрі світло поширюється зі швидкістю v 1 , а воді - з меншою швидкістю v 2 .

Першою до кордону доходить точка хвилі. За проміжок часу Δt точка В, переміщаючись у повітрі з колишньою швидкістю v 1 досягне точки В". За той же час точка А, переміщаючись у воді з меншою швидкістю v 2 , пройде меншу відстань, досягнувши тільки точки А". При цьому так званий фронт хвилі А "В" у воді виявиться повернутим на деякий кут по відношенню до фронту хвилі АВ в повітрі. А вектор швидкості (який завжди перпендикулярний до фронту хвилі і збігається з напрямом її розповсюдження) повертається, наближаючись до прямої ГО", перпендикулярної до межі розділу середовищ. При цьому кут заломлення β виявляється меншим за кут падіння α. Так відбувається заломлення світла.

З малюнка видно також, що при переході в інше середовище і поворот хвильового фронту змінюється і довжина хвилі: при переході в оптично більш щільне середовище зменшується швидкість, довжина хвилі теж зменшується (λ 2< λ 1). Это согласуется и с известной вам формулой λ = V/v, из которой следует, что при неизменной частоте v (которая не зависит от плотности среды и поэтому не меняется при переходе луча из одной среды в другую) уменьшение скорости распространения волны сопровождается пропорциональным уменьшением длины волны.

Запитання

  1. Яка з двох речовин оптично більш щільна?
  2. Як визначаються показники заломлення через швидкість світла серед?
  3. Де світло поширюється із найбільшою швидкістю?
  4. Яка фізична причина зменшення швидкості світла при його переході з вакууму в середу або з середовища з меншою оптичною щільністю в середу з більшою?
  5. Чим визначаються (тобто від чого залежать) абсолютний показник заломлення середовища та швидкість світла в ньому?
  6. Розкажіть, що ілюструє рисунок 142.

Вправа

Поділіться з друзями або збережіть для себе:

Завантаження...