विवेचक के माध्यम से हल यदि यह 0 के बराबर है। द्विघात समीकरण की जड़ें


हम विषय का अध्ययन करना जारी रखते हैं समीकरणों का हल". हम पहले ही रैखिक समीकरणों से परिचित हो चुके हैं और अब हम इससे परिचित होने जा रहे हैं द्विघातीय समीकरण.

सबसे पहले, हम विश्लेषण करेंगे कि द्विघात समीकरण क्या है, इसे कैसे लिखा जाता है सामान्य दृष्टि से, और संबंधित परिभाषाएं दें। उसके बाद, उदाहरणों का उपयोग करते हुए, हम विस्तार से विश्लेषण करेंगे कि अपूर्ण द्विघात समीकरणों को कैसे हल किया जाता है। इसके बाद, आइए पूर्ण समीकरणों को हल करने के लिए आगे बढ़ते हैं, जड़ों के लिए सूत्र प्राप्त करते हैं, द्विघात समीकरण के विवेचक से परिचित होते हैं, और विशिष्ट उदाहरणों के समाधान पर विचार करते हैं। अंत में, हम जड़ों और गुणांकों के बीच संबंध का पता लगाते हैं।

पृष्ठ नेविगेशन।

द्विघात समीकरण क्या है? उनके प्रकार

पहले आपको यह स्पष्ट रूप से समझने की आवश्यकता है कि द्विघात समीकरण क्या है। इसलिए, द्विघात समीकरण की परिभाषा के साथ-साथ उससे संबंधित परिभाषाओं के साथ द्विघात समीकरणों के बारे में बात करना शुरू करना तर्कसंगत है। उसके बाद, आप मुख्य प्रकारों पर विचार कर सकते हैं द्विघातीय समीकरण: कम और गैर-कम, साथ ही पूर्ण और अपूर्ण समीकरण।

द्विघात समीकरणों की परिभाषा और उदाहरण

परिभाषा।

द्विघात समीकरणफॉर्म का एक समीकरण है ए एक्स 2 +बी एक्स+सी=0, जहाँ x एक चर है, a , b और c कुछ संख्याएँ हैं, और a शून्य से भिन्न है।

आइए तुरंत कहें कि द्विघात समीकरणों को अक्सर दूसरी डिग्री के समीकरण कहा जाता है। ऐसा इसलिए है क्योंकि द्विघात समीकरण है बीजीय समीकरण दूसरी उपाधि।

ध्वनि की परिभाषा हमें द्विघात समीकरणों के उदाहरण देने की अनुमति देती है। तो 2 x 2 +6 x+1=0, 0.2 x 2 +2.5 x+0.03=0, आदि। द्विघात समीकरण हैं।

परिभाषा।

नंबर ए, बी और सी कहा जाता है द्विघात समीकरण के गुणांक a x 2 + b x + c \u003d 0, और गुणांक a को पहला, या वरिष्ठ, या x 2 पर गुणांक कहा जाता है, b दूसरा गुणांक है, या x पर गुणांक है, और c एक मुक्त सदस्य है।

उदाहरण के लिए, आइए 5 x 2 −2 x−3=0 के रूप का द्विघात समीकरण लें, यहां प्रमुख गुणांक 5 है, दूसरा गुणांक −2 है, और मुक्त पद −3 है। ध्यान दें कि जब गुणांक b और/या c ऋणात्मक हों, जैसा कि अभी दिए गए उदाहरण में है, तब संक्षिप्त रूप 5 x 2 −2 x−3=0 फॉर्म का द्विघात समीकरण लिखना, न कि 5 x 2 +(−2) x+(−3)=0 ।

यह ध्यान देने योग्य है कि जब गुणांक a और / या b 1 या -1 के बराबर होते हैं, तो वे आमतौर पर द्विघात समीकरण के संकेतन में स्पष्ट रूप से मौजूद नहीं होते हैं, जो कि इस तरह के अंकन की ख़ासियत के कारण होता है। उदाहरण के लिए, द्विघात समीकरण y 2 −y+3=0 में, प्रमुख गुणांक एक है, और y पर गुणांक -1 है।

कम और गैर कम द्विघात समीकरण

अग्रणी गुणांक के मूल्य के आधार पर, कम और गैर-कम द्विघात समीकरण प्रतिष्ठित हैं। आइए हम संबंधित परिभाषाएं दें।

परिभाषा।

एक द्विघात समीकरण जिसमें अग्रणी गुणांक 1 होता है, कहलाता है घटा हुआ द्विघात समीकरण. अन्यथा, द्विघात समीकरण है कम किया हुआ.

के अनुसार यह परिभाषा, द्विघात समीकरण x 2 −3 x+1=0 , x 2 −x−2/3=0, आदि। - घटाया गया, उनमें से प्रत्येक में पहला गुणांक एक के बराबर है। और 5 x 2 −x−1=0 , आदि। - अपरिष्कृत द्विघात समीकरण, उनके प्रमुख गुणांक 1 से भिन्न होते हैं।

किसी भी गैर-घटित द्विघात समीकरण से, इसके दोनों भागों को अग्रणी गुणांक से विभाजित करके, आप घटाए गए समीकरण पर जा सकते हैं। यह क्रिया एक समतुल्य परिवर्तन है, अर्थात, इस तरह से प्राप्त कम द्विघात समीकरण की जड़ें मूल गैर-घटित द्विघात समीकरण के समान हैं, या, इसकी तरह, कोई जड़ें नहीं हैं।

आइए एक उदाहरण लेते हैं कि कैसे एक असंबद्ध द्विघात समीकरण से एक कम किए गए समीकरण में संक्रमण किया जाता है।

उदाहरण।

समीकरण 3 x 2 +12 x−7=0 से, संगत घटाए गए द्विघात समीकरण पर जाएं।

समाधान।

हमारे लिए मूल समीकरण के दोनों भागों को प्रमुख गुणांक 3 से विभाजित करने के लिए पर्याप्त है, यह गैर-शून्य है, इसलिए हम यह क्रिया कर सकते हैं। हमारे पास (3 x 2 +12 x−7):3=0:3 है, जो समान है (3 x 2):3+(12 x):3−7:3=0 , और इसी तरह (3 x 2): :3) x 2 +(12:3) x−7:3=0 , कहां से । तो हमें घटा हुआ द्विघात समीकरण मिला, जो मूल समीकरण के बराबर है।

उत्तर:

पूर्ण और अपूर्ण द्विघात समीकरण

द्विघात समीकरण की परिभाषा में एक शर्त a≠0 है। समीकरण a x 2 +b x+c=0 के बिल्कुल वर्गाकार होने के लिए यह शर्त आवश्यक है, क्योंकि a=0 के साथ यह वास्तव में b x+c=0 रूप का एक रैखिक समीकरण बन जाता है।

गुणांक बी और सी के लिए, वे शून्य के बराबर हो सकते हैं, दोनों अलग-अलग और एक साथ। इन मामलों में, द्विघात समीकरण को अपूर्ण कहा जाता है।

परिभाषा।

द्विघात समीकरण a x 2 +b x+c=0 कहा जाता है अधूरा, यदि कम से कम एक गुणांक b , c शून्य के बराबर है।

इसकी बारी में

परिभाषा।

पूर्ण द्विघात समीकरणएक समीकरण है जिसमें सभी गुणांक शून्य से भिन्न होते हैं।

ये नाम संयोग से नहीं दिए गए हैं। यह निम्नलिखित चर्चा से स्पष्ट हो जाएगा।

यदि गुणांक b शून्य के बराबर है, तो द्विघात समीकरण a x 2 +0 x+c=0 रूप लेता है, और यह समीकरण a x 2 +c=0 के बराबर है। यदि c=0 , अर्थात द्विघात समीकरण का रूप a x 2 +b x+0=0 है, तो इसे a x 2 +b x=0 के रूप में फिर से लिखा जा सकता है। और b=0 और c=0 से हमें द्विघात समीकरण a·x 2 =0 मिलता है। परिणामी समीकरण पूर्ण द्विघात समीकरण से इस मायने में भिन्न होते हैं कि उनके बाएँ हाथ की भुजाओं में या तो चर x वाला कोई पद नहीं है, या एक मुक्त पद, या दोनों नहीं हैं। इसलिए उनके नाम - अपूर्ण द्विघात समीकरण।

तो समीकरण x 2 +x+1=0 और −2 x 2 −5 x+0,2=0 पूर्ण द्विघात समीकरणों के उदाहरण हैं, और x 2 =0, −2 x 2 =0, 5 x 2 +3 =0 , −x 2 −5 x=0 अपूर्ण द्विघात समीकरण हैं।

अपूर्ण द्विघात समीकरणों को हल करना

यह पिछले पैराग्राफ की जानकारी से इस प्रकार है कि वहाँ है तीन प्रकार के अपूर्ण द्विघात समीकरण:

  • a x 2 =0 , गुणांक b=0 और c=0 इसके अनुरूप हैं;
  • a x 2 +c=0 जब b=0 ;
  • और a x 2 +b x=0 जब c=0 ।

आइए हम इस क्रम में विश्लेषण करें कि इनमें से प्रत्येक प्रकार के अपूर्ण द्विघात समीकरणों को कैसे हल किया जाता है।

ए एक्स 2 \u003d 0

आइए अधूरे द्विघात समीकरणों को हल करके शुरू करें जिसमें गुणांक b और c शून्य के बराबर हैं, अर्थात, x 2 = 0 के रूप के समीकरणों के साथ। समीकरण a·x 2 =0 समीकरण x 2 =0 के समतुल्य है, जो मूल से इसके दोनों भागों को एक गैर-शून्य संख्या a से विभाजित करके प्राप्त किया जाता है। जाहिर है, समीकरण x 2 \u003d 0 की जड़ शून्य है, 0 2 \u003d 0 से। इस समीकरण का कोई अन्य मूल नहीं है, जिसे समझाया गया है, वास्तव में, किसी भी गैर-शून्य संख्या p के लिए, असमानता p 2 >0 होती है, जिसका अर्थ है कि p≠0 के लिए, समानता p 2 = 0 कभी हासिल नहीं होती है।

तो, अपूर्ण द्विघात समीकरण a x 2 \u003d 0 का एक मूल x \u003d 0 है।

उदाहरण के तौर पर, हम एक अपूर्ण द्विघात समीकरण −4·x 2 =0 का हल देते हैं। यह समीकरण x 2 \u003d 0 के बराबर है, इसका एकमात्र मूल x \u003d 0 है, इसलिए मूल समीकरण का एक मूल शून्य है।

इस मामले में एक संक्षिप्त समाधान निम्नानुसार जारी किया जा सकता है:
−4 x 2 \u003d 0,
एक्स 2 \u003d 0,
एक्स = 0।

ए एक्स 2 +सी = 0

अब विचार करें कि अपूर्ण द्विघात समीकरणों को कैसे हल किया जाता है, जिसमें गुणांक b शून्य के बराबर होता है, और c≠0, यानी a x 2 +c=0 के रूप के समीकरण। हम जानते हैं कि समीकरण के एक तरफ से विपरीत चिह्न के साथ एक पद का स्थानांतरण, साथ ही साथ एक गैर-शून्य संख्या द्वारा समीकरण के दोनों पक्षों का विभाजन, एक समान समीकरण देता है। इसलिए, अपूर्ण द्विघात समीकरण a x 2 +c=0 के निम्नलिखित समतुल्य परिवर्तन किए जा सकते हैं:

  • ग को ले जाएँ दाईं ओर, जो समीकरण a x 2 =−c देता है,
  • और इसके दोनों भागों को a से भाग देने पर हमें प्राप्त होता है।

परिणामी समीकरण हमें इसकी जड़ों के बारे में निष्कर्ष निकालने की अनुमति देता है। a और c के मानों के आधार पर, व्यंजक का मान ऋणात्मक हो सकता है (उदाहरण के लिए, यदि a=1 और c=2 , तो ) या धनात्मक, (उदाहरण के लिए, यदि a=−2 और c=6 , तब), यह शून्य के बराबर नहीं है, क्योंकि शर्त c≠0 के अनुसार। हम अलग से मामलों का विश्लेषण करेंगे और .

यदि , तो समीकरण का कोई मूल नहीं है। यह कथन इस तथ्य का अनुसरण करता है कि किसी भी संख्या का वर्ग एक गैर-ऋणात्मक संख्या होती है। इससे यह निष्कर्ष निकलता है कि जब , तब किसी संख्या p के लिए समता सत्य नहीं हो सकती।

यदि , तो समीकरण की जड़ों के साथ स्थिति अलग है। इस मामले में, अगर हम याद करते हैं, तो समीकरण की जड़ तुरंत स्पष्ट हो जाती है, यह संख्या है, क्योंकि। यह अनुमान लगाना आसान है कि संख्या भी समीकरण की जड़ है, वास्तव में,। इस समीकरण की कोई अन्य जड़ें नहीं हैं, जिन्हें दिखाया जा सकता है, उदाहरण के लिए, विरोधाभास द्वारा। हो जाए।

आइए समीकरण के उचित स्वर वाले मूलों को x 1 और −x 1 के रूप में निरूपित करें। मान लीजिए कि समीकरण का एक और मूल x 2 है जो संकेतित मूल x 1 और −x 1 से भिन्न है। यह ज्ञात है कि इसकी जड़ों के x के बजाय समीकरण में प्रतिस्थापन समीकरण को एक वास्तविक संख्यात्मक समानता में बदल देता है। x 1 और −x 1 के लिए हमारे पास है, और x 2 के लिए हमारे पास है। संख्यात्मक समानता के गुण हमें वास्तविक संख्यात्मक समानता का पद-दर-अवधि घटाव करने की अनुमति देते हैं, इसलिए समानता के संगत भागों को घटाने पर x 1 2 - x 2 2 = 0 प्राप्त होता है। संख्याओं के साथ संक्रियाओं के गुण हमें परिणामी समानता को (x 1 - x 2)·(x 1 + x 2)=0 के रूप में फिर से लिखने की अनुमति देते हैं। हम जानते हैं कि दो संख्याओं का गुणनफल शून्य के बराबर होता है यदि और केवल यदि उनमें से कम से कम एक शून्य के बराबर हो। इसलिए, यह प्राप्त समानता का अनुसरण करता है कि x 1 −x 2 =0 और/या x 1 +x 2 =0 , जो समान है, x 2 =x 1 और/या x 2 = −x 1 । इसलिए हम एक विरोधाभास पर आ गए हैं, क्योंकि शुरुआत में हमने कहा था कि समीकरण x 2 का मूल x 1 और −x 1 से भिन्न है। इससे सिद्ध होता है कि समीकरण का और के अलावा और कोई मूल नहीं है।

आइए इस पैराग्राफ में जानकारी को संक्षेप में प्रस्तुत करें। अपूर्ण द्विघात समीकरण a x 2 +c=0 समीकरण के समतुल्य है, जो

  • कोई जड़ नहीं है अगर ,
  • दो जड़ें हैं और यदि .

a·x 2 +c=0 रूप के अपूर्ण द्विघात समीकरणों को हल करने के उदाहरणों पर विचार करें।

आइए द्विघात समीकरण 9 x 2 +7=0 से शुरू करें। मुक्त पद को समीकरण के दाईं ओर स्थानांतरित करने के बाद, यह 9·x 2 =−7 का रूप ले लेगा। परिणामी समीकरण के दोनों पक्षों को 9 से भाग देने पर हम प्राप्त करते हैं। चूँकि दायीं ओर एक ऋणात्मक संख्या प्राप्त होती है, इस समीकरण का कोई मूल नहीं है, इसलिए मूल अपूर्ण द्विघात समीकरण 9 x 2 +7=0 का कोई मूल नहीं है।

आइए एक और अपूर्ण द्विघात समीकरण −x 2 +9=0 हल करें। हम नौ को दाईं ओर स्थानांतरित करते हैं: -x 2 \u003d -9। अब हम दोनों भागों को -1 से विभाजित करते हैं, हमें x 2 =9 प्राप्त होता है। दाईं ओर एक धनात्मक संख्या है, जिससे हम यह निष्कर्ष निकालते हैं कि या । अंतिम उत्तर लिखने के बाद: अपूर्ण द्विघात समीकरण −x 2 +9=0 के दो मूल x=3 या x=−3 हैं।

ए एक्स 2 +बी एक्स=0

यह c=0 के लिए अंतिम प्रकार के अपूर्ण द्विघात समीकरणों के समाधान से निपटने के लिए बनी हुई है। फॉर्म के अपूर्ण द्विघात समीकरण a x 2 +b x=0 आपको हल करने की अनुमति देता है गुणनखंडन विधि. जाहिर है, हम समीकरण के बाईं ओर स्थित हो सकते हैं, जिसके लिए यह सामान्य कारक x को कोष्ठक से बाहर निकालने के लिए पर्याप्त है। यह हमें मूल अपूर्ण द्विघात समीकरण से x·(a·x+b)=0 रूप के समतुल्य समीकरण में जाने की अनुमति देता है। और यह समीकरण दो समीकरणों x=0 और a x+b=0 के समुच्चय के समतुल्य है, जिनमें से अंतिम रैखिक है और इसका मूल x=−b/a है।

तो, अपूर्ण द्विघात समीकरण a x 2 +b x=0 के दो मूल x=0 और x=−b/a हैं।

सामग्री को समेकित करने के लिए, हम एक विशिष्ट उदाहरण के समाधान का विश्लेषण करेंगे।

उदाहरण।

प्रश्न हल करें।

समाधान।

हम कोष्ठक में से x निकालते हैं, यह समीकरण देता है। यह दो समीकरणों x=0 और के बराबर है। हम प्राप्त हल करते हैं रेखीय समीकरण: , और मिश्रित संख्या को . से विभाजित करना सामान्य अंश, हम देखतें है । इसलिए, मूल समीकरण के मूल x=0 और हैं।

आवश्यक अभ्यास प्राप्त करने के बाद, ऐसे समीकरणों के हल संक्षेप में लिखे जा सकते हैं:

उत्तर:

एक्स = 0,।

विभेदक, द्विघात समीकरण की जड़ों का सूत्र

द्विघात समीकरणों को हल करने के लिए, एक मूल सूत्र है। आइए लिखते हैं द्विघात समीकरण की जड़ों का सूत्र: , कहाँ पे डी=बी 2 −4 ए सी- तथाकथित द्विघात समीकरण का विभेदक. नोटेशन का अनिवार्य रूप से मतलब है कि .

यह जानना उपयोगी है कि मूल सूत्र कैसे प्राप्त किया गया था, और इसे द्विघात समीकरणों की जड़ों को खोजने में कैसे लागू किया जाता है। आइए इससे निपटें।

द्विघात समीकरण के मूलों के सूत्र की व्युत्पत्ति

आइए द्विघात समीकरण a·x 2 +b·x+c=0 को हल करें। आइए कुछ समकक्ष परिवर्तन करें:

  • हम इस समीकरण के दोनों भागों को एक गैर-शून्य संख्या a से विभाजित कर सकते हैं, परिणामस्वरूप हमें घटा हुआ द्विघात समीकरण मिलता है।
  • अब एक पूर्ण वर्ग चुनेंइसके बाईं ओर: . उसके बाद, समीकरण रूप लेगा।
  • इस स्तर पर, हमारे पास विपरीत चिन्ह के साथ अंतिम दो पदों को दाईं ओर स्थानांतरित करना संभव है।
  • और दायीं ओर के व्यंजक को भी रूपांतरित करते हैं: .

नतीजतन, हम समीकरण पर पहुंचते हैं, जो मूल द्विघात समीकरण a·x 2 +b·x+c=0 के बराबर है।

जब हमने विश्लेषण किया तो हम पिछले पैराग्राफ में समान रूप में समीकरणों को पहले ही हल कर चुके हैं। यह हमें समीकरण की जड़ों के बारे में निम्नलिखित निष्कर्ष निकालने की अनुमति देता है:

  • यदि , तो समीकरण का कोई वास्तविक हल नहीं है;
  • यदि , तो समीकरण का वह रूप है , इसलिए , जिससे उसका एकमात्र मूल दिखाई देता है;
  • यदि , तो या , जो या के समान है, अर्थात समीकरण के दो मूल हैं।

इस प्रकार, समीकरण के मूलों की उपस्थिति या अनुपस्थिति, और इसलिए मूल द्विघात समीकरण, दायीं ओर के व्यंजक के चिन्ह पर निर्भर करता है। बदले में, इस व्यंजक का चिह्न अंश के चिह्न से निर्धारित होता है, क्योंकि हर 4 a 2 हमेशा धनात्मक होता है, अर्थात व्यंजक b 2 −4 a c का चिह्न। यह व्यंजक b 2 −4 a c कहलाता है द्विघात समीकरण का विभेदकऔर पत्र के साथ चिह्नित डी. यहां से, विवेचक का सार स्पष्ट है - इसके मूल्य और चिन्ह से, यह निष्कर्ष निकाला जाता है कि क्या द्विघात समीकरण की वास्तविक जड़ें हैं, और यदि हां, तो उनकी संख्या क्या है - एक या दो।

हम समीकरण पर लौटते हैं, इसे विवेचक के संकेतन का उपयोग करके फिर से लिखते हैं:। और हम निष्कर्ष निकालते हैं:

  • अगर डी<0 , то это уравнение не имеет действительных корней;
  • यदि D=0, तो इस समीकरण का एक ही मूल है;
  • अंत में, यदि D>0, तो समीकरण के दो मूल हैं या, जिसे या के रूप में फिर से लिखा जा सकता है, और भिन्नों को एक सामान्य हर में विस्तारित और कम करने के बाद, हम प्राप्त करते हैं।

इसलिए हमने द्विघात समीकरण की जड़ों के लिए सूत्र निकाले, वे ऐसे दिखते हैं, जहां विभेदक D की गणना सूत्र D=b 2 −4 a c द्वारा की जाती है।

उनकी मदद से, एक सकारात्मक विवेचक के साथ, आप द्विघात समीकरण के दोनों वास्तविक मूलों की गणना कर सकते हैं। जब विभेदक शून्य के बराबर होता है, तो दोनों सूत्र समान मूल मान देते हैं एकमात्र समाधानद्विघात समीकरण। और एक ऋणात्मक विभेदक के साथ, द्विघात समीकरण की जड़ों के लिए सूत्र का उपयोग करने का प्रयास करते समय, हमें एक ऋणात्मक संख्या से वर्गमूल निकालने का सामना करना पड़ता है, जो हमें आगे ले जाता है और स्कूल के पाठ्यक्रम. एक नकारात्मक विवेचक के साथ, द्विघात समीकरण की कोई वास्तविक जड़ें नहीं होती हैं, लेकिन एक जोड़ी होती है जटिल सन्युग्मजड़ें, जिन्हें हमने प्राप्त किए गए मूल सूत्रों का उपयोग करके पाया जा सकता है।

मूल सूत्रों का उपयोग करके द्विघात समीकरणों को हल करने के लिए एल्गोरिदम

व्यवहार में, द्विघात समीकरण को हल करते समय, आप तुरंत मूल सूत्र का उपयोग कर सकते हैं, जिसके साथ उनके मूल्यों की गणना की जा सकती है। लेकिन यह जटिल जड़ों को खोजने के बारे में अधिक है।

हालाँकि, एक स्कूल बीजगणित पाठ्यक्रम में, हम आमतौर पर जटिल के बारे में नहीं, बल्कि द्विघात समीकरण की वास्तविक जड़ों के बारे में बात करते हैं। इस मामले में, द्विघात समीकरण की जड़ों के लिए सूत्रों का उपयोग करने से पहले पहले विवेचक को खोजने की सलाह दी जाती है, सुनिश्चित करें कि यह गैर-ऋणात्मक है (अन्यथा, हम यह निष्कर्ष निकाल सकते हैं कि समीकरण की कोई वास्तविक जड़ें नहीं हैं), और उसके बाद जड़ों के मूल्यों की गणना करें।

उपरोक्त तर्क हमें लिखने की अनुमति देता है द्विघात समीकरण को हल करने के लिए एल्गोरिथ्म. द्विघात समीकरण a x 2 + b x + c \u003d 0 को हल करने के लिए, आपको चाहिए:

  • विभेदक सूत्र D=b 2 −4 a c का उपयोग करके इसके मान की गणना करें;
  • यह निष्कर्ष निकालें कि यदि विभेदक ऋणात्मक है तो द्विघात समीकरण का कोई वास्तविक मूल नहीं है;
  • सूत्र का उपयोग करके समीकरण के एकमात्र मूल की गणना करें यदि D=0 ;
  • यदि विभेदक धनात्मक है, तो मूल सूत्र का उपयोग करके द्विघात समीकरण के दो वास्तविक मूल ज्ञात कीजिए।

यहां हम केवल यह नोट करते हैं कि यदि विवेचक शून्य के बराबर है, तो सूत्र का भी उपयोग किया जा सकता है, यह वही मान देगा जो .

आप द्विघात समीकरणों को हल करने के लिए एल्गोरिथ्म को लागू करने के उदाहरणों पर आगे बढ़ सकते हैं।

द्विघात समीकरणों को हल करने के उदाहरण

सकारात्मक, नकारात्मक और शून्य विवेचक वाले तीन द्विघात समीकरणों के समाधान पर विचार करें। उनके हल से निपटने के बाद, सादृश्य द्वारा किसी अन्य द्विघात समीकरण को हल करना संभव होगा। चलो शुरू करो।

उदाहरण।

समीकरण x 2 +2 x−6=0 के मूल ज्ञात कीजिए।

समाधान।

इस मामले में, हमारे पास द्विघात समीकरण के निम्नलिखित गुणांक हैं: a=1 , b=2 और c=−6 । एल्गोरिथ्म के अनुसार, आपको पहले विवेचक की गणना करने की आवश्यकता है, इसके लिए हम संकेतित a, b और c को विवेचक सूत्र में प्रतिस्थापित करते हैं, हमारे पास है डी=बी 2 −4 ए सी=2 2 −4 1 (−6)=4+24=28. चूँकि 28>0, अर्थात् विवेचक शून्य से बड़ा है, द्विघात समीकरण के दो वास्तविक मूल हैं। आइए उन्हें जड़ों के सूत्र द्वारा खोजें, हमें मिलता है, यहाँ हम करके प्राप्त किए गए व्यंजकों को सरल बना सकते हैं जड़ के चिन्ह को बाहर निकालनाइसके बाद अंश में कमी:

उत्तर:

आइए अगले विशिष्ट उदाहरण पर चलते हैं।

उदाहरण।

द्विघात समीकरण −4 x 2 +28 x−49=0 को हल करें।

समाधान।

हम विवेचक को ढूंढकर शुरू करते हैं: डी=28 2 −4 (−4) (−49)=784−784=0. इसलिए, इस द्विघात समीकरण का एक ही मूल है, जिसे हम पाते हैं, अर्थात्,

उत्तर:

एक्स = 3.5।

यह नकारात्मक विवेचक के साथ द्विघात समीकरणों के समाधान पर विचार करने के लिए बनी हुई है।

उदाहरण।

समीकरण 5 y 2 +6 y+2=0 हल कीजिए।

समाधान।

द्विघात समीकरण के गुणांक यहां दिए गए हैं: a=5 , b=6 और c=2 । इन मूल्यों को विवेचक सूत्र में प्रतिस्थापित करते हुए, हमारे पास है डी=बी 2 −4 ए सी=6 2 −4 5 2=36−40=−4. विवेचक ऋणात्मक है, इसलिए इस द्विघात समीकरण का कोई वास्तविक मूल नहीं है।

यदि आपको जटिल जड़ों को निर्दिष्ट करने की आवश्यकता है, तो हम द्विघात समीकरण की जड़ों के लिए प्रसिद्ध सूत्र का उपयोग करते हैं, और प्रदर्शन करते हैं के साथ कार्रवाई जटिल आंकड़े :

उत्तर:

कोई वास्तविक जड़ें नहीं हैं, जटिल जड़ें हैं: .

एक बार फिर, हम ध्यान दें कि यदि द्विघात समीकरण का विभेदक ऋणात्मक है, तो स्कूल आमतौर पर तुरंत उत्तर लिख देता है, जिसमें वे इंगित करते हैं कि कोई वास्तविक जड़ें नहीं हैं, और उन्हें जटिल जड़ें नहीं मिलती हैं।

दूसरे गुणांक के लिए मूल सूत्र

द्विघात समीकरण की जड़ों के लिए सूत्र, जहां D=b 2 −4 a c आपको एक अधिक कॉम्पैक्ट सूत्र प्राप्त करने की अनुमति देता है जो आपको x पर एक सम गुणांक के साथ द्विघात समीकरणों को हल करने की अनुमति देता है (या केवल एक गुणांक के साथ जो 2 n जैसा दिखता है) , उदाहरण के लिए, या 14 ln5=2 7 ln5 )। चलो उसे बाहर निकालते हैं।

मान लीजिए कि हमें a x 2 +2 n x + c=0 रूप के द्विघात समीकरण को हल करने की आवश्यकता है। आइए हम ज्ञात सूत्र का उपयोग करके इसकी जड़ें खोजें। ऐसा करने के लिए, हम विवेचक की गणना करते हैं D=(2 n) 2 −4 a c=4 n 2 −4 a c=4 (n 2 −a c), और फिर हम मूल सूत्र का उपयोग करते हैं:

व्यंजक n 2 -a c को D 1 के रूप में निरूपित करें (कभी-कभी इसे D " के रूप में दर्शाया जाता है)। फिर दूसरे गुणांक 2 n के साथ माना द्विघात समीकरण की जड़ों के लिए सूत्र रूप लेता है , जहां डी 1 =एन 2 -ए सी।

यह देखना आसान है कि D=4·D 1 , या D 1 =D/4 । दूसरे शब्दों में, डी 1 विवेचक का चौथा भाग है। यह स्पष्ट है कि D 1 का चिन्ह D के चिन्ह के समान है। अर्थात्, चिह्न D 1 भी द्विघात समीकरण के मूलों की उपस्थिति या अनुपस्थिति का सूचक है।

तो, दूसरे गुणांक 2 n के साथ द्विघात समीकरण को हल करने के लिए, आपको चाहिए

  • D 1 =n 2 −a·c परिकलित करें;
  • अगर डी 1<0 , то сделать вывод, что действительных корней нет;
  • यदि डी 1 = 0, तो सूत्र का उपयोग करके समीकरण की एकमात्र जड़ की गणना करें;
  • यदि D 1 >0, तो सूत्र का प्रयोग कर दो वास्तविक मूल ज्ञात कीजिए।

इस अनुच्छेद में प्राप्त मूल सूत्र का उपयोग करके उदाहरण के समाधान पर विचार करें।

उदाहरण।

द्विघात समीकरण 5 x 2 −6 x−32=0 को हल करें।

समाधान।

इस समीकरण के दूसरे गुणांक को 2·(−3) के रूप में दर्शाया जा सकता है। यानी, आप मूल द्विघात समीकरण को 5 x 2 +2 (−3) x−32=0 के रूप में फिर से लिख सकते हैं, यहां a=5 , n=−3 और c=−32 , और इसके चौथे भाग की गणना कर सकते हैं विभेदक: डी 1 =n 2 −a c=(−3) 2 −5 (−32)=9+160=169. चूँकि इसका मान धनात्मक है, समीकरण के दो वास्तविक मूल हैं। हम उन्हें संबंधित मूल सूत्र का उपयोग करके पाते हैं:

ध्यान दें कि द्विघात समीकरण की जड़ों के लिए सामान्य सूत्र का उपयोग करना संभव था, लेकिन इस मामले में, अधिक कम्प्यूटेशनल कार्य करना होगा।

उत्तर:

द्विघात समीकरणों के रूप का सरलीकरण

कभी-कभी, सूत्रों का उपयोग करके द्विघात समीकरण की जड़ों की गणना शुरू करने से पहले, यह प्रश्न पूछने में कोई दिक्कत नहीं होती है: "क्या इस समीकरण के रूप को सरल बनाना संभव है"? सहमत हैं कि गणना के संदर्भ में द्विघात समीकरण 11 x 2 −4 x −6=0 को 1100 x 2 −400 x−600=0 से हल करना आसान होगा।

आमतौर पर, द्विघात समीकरण के रूप का एक सरलीकरण इसके दोनों पक्षों को किसी संख्या से गुणा या विभाजित करके प्राप्त किया जाता है। उदाहरण के लिए, पिछले पैराग्राफ में, हम दोनों पक्षों को 100 से विभाजित करके समीकरण 1100 x 2 −400 x −600=0 का सरलीकरण प्राप्त करने में सफल रहे।

द्विघात समीकरणों के साथ एक समान परिवर्तन किया जाता है, जिसके गुणांक नहीं होते हैं। इस मामले में, समीकरण के दोनों भागों को आमतौर पर इसके गुणांकों के निरपेक्ष मूल्यों से विभाजित किया जाता है। उदाहरण के लिए, आइए द्विघात समीकरण 12 x 2 −42 x+48=0 लेते हैं। इसके गुणांकों के निरपेक्ष मान: gcd(12, 42, 48)= gcd(gcd(12, 42), 48)= gcd(6, 48)=6 । मूल द्विघात समीकरण के दोनों भागों को 6 से विभाजित करने पर, हम समतुल्य द्विघात समीकरण 2 x 2 −7 x+8=0 पर पहुंचते हैं।

और द्विघात समीकरण के दोनों भागों का गुणन आमतौर पर भिन्नात्मक गुणांक से छुटकारा पाने के लिए किया जाता है। इस मामले में, गुणन इसके गुणांकों के हर पर किया जाता है। उदाहरण के लिए, यदि द्विघात समीकरण के दोनों भागों को LCM(6, 3, 1)=6 से गुणा किया जाता है, तो यह एक सरल रूप x 2 +4 x−18=0 ले लेगा।

इस अनुच्छेद के निष्कर्ष में, हम ध्यान दें कि लगभग हमेशा सभी पदों के संकेतों को बदलकर द्विघात समीकरण के प्रमुख गुणांक पर ऋण से छुटकारा मिलता है, जो दोनों भागों को -1 से गुणा (या विभाजित) करने के अनुरूप होता है। उदाहरण के लिए, आमतौर पर द्विघात समीकरण −2·x 2 −3·x+7=0 से समाधान 2·x 2 +3·x−7=0 पर जाएं।

द्विघात समीकरण के मूलों और गुणांकों के बीच संबंध

द्विघात समीकरण के मूलों का सूत्र समीकरण के मूलों को उसके गुणांकों के रूप में व्यक्त करता है। मूलों के सूत्र के आधार पर, आप मूलों और गुणांकों के बीच अन्य संबंध प्राप्त कर सकते हैं।

प्रपत्र के Vieta प्रमेय से सबसे प्रसिद्ध और लागू सूत्र और . विशेष रूप से, दिए गए द्विघात समीकरण के लिए, मूलों का योग विपरीत चिह्न वाले दूसरे गुणांक के बराबर होता है, और मूलों का गुणनफल मुक्त पद होता है। उदाहरण के लिए, द्विघात समीकरण 3 x 2 −7 x+22=0 के रूप में, हम तुरंत कह सकते हैं कि इसके मूलों का योग 7/3 है, और मूलों का गुणनफल 22/3 है।

पहले से लिखे गए सूत्रों का उपयोग करके, आप द्विघात समीकरण के मूलों और गुणांकों के बीच कई अन्य संबंध प्राप्त कर सकते हैं। उदाहरण के लिए, आप किसी द्विघात समीकरण के मूलों के वर्गों के योग को उसके गुणांकों के रूप में व्यक्त कर सकते हैं: .

ग्रंथ सूची।

  • बीजगणित:पाठयपुस्तक 8 कोशिकाओं के लिए। सामान्य शिक्षा संस्थान / [यू. एन। मकारिचेव, एन। जी। मिंड्युक, के। आई। नेशकोव, एस। बी। सुवोरोवा]; ईडी। एस ए तेल्याकोवस्की। - 16वां संस्करण। - एम।: शिक्षा, 2008। - 271 पी। : बीमार। - आईएसबीएन 978-5-09-019243-9।
  • मोर्दकोविच ए. जी.बीजगणित। 8 वीं कक्षा। दोपहर 2 बजे भाग 1। शैक्षणिक संस्थानों के छात्रों के लिए एक पाठ्यपुस्तक / ए। जी। मोर्दकोविच। - 11 वां संस्करण।, मिटा दिया गया। - एम .: मेनमोज़िना, 2009. - 215 पी .: बीमार। आईएसबीएन 978-5-346-01155-2।

कई कारणों से यह विषय पहली बार में कठिन लग सकता है सरल सूत्र. द्विघात समीकरणों में न केवल लंबी प्रविष्टियाँ होती हैं, बल्कि विवेचक के माध्यम से जड़ें भी पाई जाती हैं। कुल तीन नए सूत्र हैं। याद रखना बहुत आसान नहीं है। यह ऐसे समीकरणों के बारंबार हल के बाद ही संभव है। तब सारे सूत्र अपने आप याद आ जाएंगे।

द्विघात समीकरण का सामान्य दृश्य

यहां उनका स्पष्ट संकेतन प्रस्तावित है, जब सबसे बड़ी डिग्री पहले लिखी जाती है, और फिर - अवरोही क्रम में। अक्सर ऐसी स्थितियां होती हैं जब शर्तें अलग हो जाती हैं। फिर समीकरण को चर की डिग्री के अवरोही क्रम में फिर से लिखना बेहतर होता है।

आइए नोटेशन का परिचय दें। उन्हें नीचे दी गई तालिका में प्रस्तुत किया गया है।

यदि हम इन संकेतन को स्वीकार करते हैं, तो सभी द्विघात समीकरण निम्न संकेतन में कम हो जाते हैं।

इसके अलावा, गुणांक a 0. मान लें कि इस सूत्र को नंबर एक द्वारा दर्शाया गया है।

जब समीकरण दिया जाता है, तो यह स्पष्ट नहीं होता है कि उत्तर में कितने मूल होंगे। क्योंकि तीन विकल्पों में से एक हमेशा संभव है:

  • समाधान की दो जड़ें होंगी;
  • उत्तर एक नंबर होगा;
  • समीकरण की कोई जड़ नहीं है।

और जब निर्णय अंत तक नहीं लाया जाता है, तो यह समझना मुश्किल है कि किसी विशेष मामले में कौन सा विकल्प बाहर हो जाएगा।

द्विघात समीकरणों के अभिलेखों के प्रकार

कार्यों में अलग-अलग प्रविष्टियां हो सकती हैं। वे हमेशा द्विघात समीकरण के सामान्य सूत्र की तरह नहीं दिखेंगे। कभी-कभी इसमें कुछ शर्तों की कमी होगी। ऊपर क्या लिखा था पूरा समीकरण. इसमें दूसरा या तीसरा टर्म हटा दें तो कुछ और मिलता है। इन अभिलेखों को द्विघात समीकरण भी कहा जाता है, केवल अपूर्ण।

इसके अलावा, केवल वे शब्द जिनके लिए गुणांक "बी" और "सी" गायब हो सकते हैं। संख्या "ए" किसी भी परिस्थिति में शून्य के बराबर नहीं हो सकती। क्योंकि इस स्थिति में सूत्र एक रेखीय समीकरण में बदल जाता है। समीकरणों के अधूरे रूप के सूत्र इस प्रकार होंगे:

तो, केवल दो प्रकार हैं, पूर्ण के अलावा, अपूर्ण द्विघात समीकरण भी हैं। बता दें कि पहला फॉर्मूला नंबर दो और दूसरा नंबर तीन है।

विभेदक और उसके मूल्य पर जड़ों की संख्या की निर्भरता

समीकरण की जड़ों की गणना करने के लिए यह संख्या ज्ञात होनी चाहिए। इसकी गणना हमेशा की जा सकती है, चाहे द्विघात समीकरण का सूत्र कोई भी हो। विवेचक की गणना करने के लिए, आपको नीचे लिखी गई समानता का उपयोग करना होगा, जिसकी संख्या चार होगी।

गुणांकों के मानों को इस सूत्र में प्रतिस्थापित करने के बाद, आप संख्याएँ प्राप्त कर सकते हैं विभिन्न संकेत. यदि उत्तर हाँ है, तो समीकरण का उत्तर दो भिन्न मूल होंगे। एक ऋणात्मक संख्या के साथ, द्विघात समीकरण के मूल अनुपस्थित रहेंगे। यदि यह शून्य के बराबर है, तो उत्तर एक होगा।

पूर्ण द्विघात समीकरण को कैसे हल किया जाता है?

दरअसल, इस मुद्दे पर विचार शुरू हो चुका है। क्योंकि पहले आपको विवेचक को खोजने की जरूरत है। यह स्पष्ट करने के बाद कि द्विघात समीकरण की जड़ें हैं, और उनकी संख्या ज्ञात है, आपको चर के लिए सूत्रों का उपयोग करने की आवश्यकता है। यदि दो जड़ें हैं, तो आपको ऐसा सूत्र लागू करने की आवश्यकता है।

चूंकि इसमें "±" चिन्ह है, इसलिए दो मान होंगे। वर्गमूल चिह्न के नीचे का व्यंजक विवेचक है। इसलिए, सूत्र को एक अलग तरीके से फिर से लिखा जा सकता है।

सूत्र पाँच। एक ही रिकॉर्ड से यह देखा जा सकता है कि यदि विवेचक शून्य है, तो दोनों मूल समान मान लेंगे।

यदि द्विघात समीकरणों का हल अभी तक नहीं निकाला गया है, तो विवेचक और परिवर्तनशील सूत्रों को लागू करने से पहले सभी गुणांकों के मूल्यों को लिख लेना बेहतर है। बाद में यह क्षण कठिनाइयों का कारण नहीं बनेगा। लेकिन शुरुआत में ही भ्रम होता है।

एक अपूर्ण द्विघात समीकरण को कैसे हल किया जाता है?

यहां सब कुछ बहुत आसान है। यहां तक ​​कि अतिरिक्त सूत्रों की भी आवश्यकता नहीं है। और आपको उन लोगों की आवश्यकता नहीं होगी जो पहले से ही विवेचक और अज्ञात के लिए लिखे जा चुके हैं।

पहले विचार करें अधूरा समीकरणदूसरे नंबर पर। इस समानता में, अज्ञात मान को कोष्ठक से बाहर निकालना और रैखिक समीकरण को हल करना माना जाता है, जो कोष्ठक में रहेगा। उत्तर की दो जड़ें होंगी। पहला अनिवार्य रूप से शून्य के बराबर है, क्योंकि एक कारक है जिसमें स्वयं चर शामिल है। दूसरा एक रैखिक समीकरण को हल करके प्राप्त किया जाता है।

नंबर तीन पर अधूरा समीकरण समीकरण के बाईं ओर से संख्या को दाईं ओर स्थानांतरित करके हल किया जाता है। फिर आपको अज्ञात के सामने गुणांक से विभाजित करने की आवश्यकता है। यह केवल वर्गमूल निकालने के लिए रहता है और इसे दो बार विपरीत संकेतों के साथ लिखना न भूलें।

निम्नलिखित कुछ क्रियाएं हैं जो आपको द्विघात समीकरणों में बदलने वाली सभी प्रकार की समानताएं हल करने का तरीका सीखने में मदद करती हैं। वे असावधानी के कारण होने वाली गलतियों से बचने में छात्र की मदद करेंगे। ये कमियां हैं वजह खराब अंकव्यापक विषय "चतुर्भुज समीकरण (ग्रेड 8)" का अध्ययन करते समय। इसके बाद, इन क्रियाओं को लगातार करने की आवश्यकता नहीं होगी। क्योंकि एक स्थिर आदत होगी।

  • सबसे पहले आपको समीकरण को मानक रूप में लिखना होगा। यही है, पहला पद जिसमें चर की सबसे बड़ी डिग्री है, और फिर - बिना डिग्री और अंतिम - केवल एक संख्या।
  • यदि गुणांक "ए" से पहले एक माइनस दिखाई देता है, तो यह शुरुआती के लिए द्विघात समीकरणों का अध्ययन करने के लिए काम को जटिल कर सकता है। इससे छुटकारा पाना ही बेहतर है। इस प्रयोजन के लिए, सभी समानता को "-1" से गुणा किया जाना चाहिए। इसका मतलब यह है कि सभी शब्द संकेत को विपरीत में बदल देंगे।
  • उसी तरह, अंशों से छुटकारा पाने की सिफारिश की जाती है। बस समीकरण को उपयुक्त कारक से गुणा करें ताकि हर रद्द हो जाए।

उदाहरण

निम्नलिखित द्विघात समीकरणों को हल करना आवश्यक है:

एक्स 2 - 7x \u003d 0;

15 - 2x - x 2 \u003d 0;

एक्स 2 + 8 + 3x = 0;

12x + x 2 + 36 = 0;

(x+1) 2 + x + 1 = (x+1)(x+2)।

पहला समीकरण: x 2 - 7x \u003d 0. यह अधूरा है, इसलिए इसे सूत्र संख्या दो के लिए वर्णित के अनुसार हल किया जाता है।

ब्रैकेटिंग के बाद, यह पता चला: x (x - 7) \u003d 0।

पहला रूट मान लेता है: x 1 \u003d 0. दूसरा रैखिक समीकरण से मिलेगा: x - 7 \u003d 0. यह देखना आसान है कि x 2 \u003d 7.

दूसरा समीकरण: 5x2 + 30 = 0. फिर से अधूरा। केवल इसे तीसरे सूत्र के लिए वर्णित के रूप में हल किया गया है।

समीकरण के दाईं ओर 30 स्थानांतरित करने के बाद: 5x 2 = 30. अब आपको 5 से विभाजित करने की आवश्यकता है। यह पता चला है: x 2 = 6. उत्तर संख्याएँ होंगी: x 1 = 6, x 2 = - 6.

तीसरा समीकरण: 15 - 2x - x 2 \u003d 0। यहाँ और नीचे, द्विघात समीकरणों का समाधान उन्हें एक मानक रूप में फिर से लिखकर शुरू होगा: - x 2 - 2x + 15 \u003d 0. अब दूसरे का उपयोग करने का समय है उपयोगी सलाहऔर सब कुछ माइनस एक से गुणा करें। यह x 2 + 2x - 15 \u003d 0 निकलता है। चौथे सूत्र के अनुसार, आपको विवेचक की गणना करने की आवश्यकता है: D \u003d 2 2 - 4 * (- 15) \u003d 4 + 60 \u003d 64। यह एक है सकारात्मक संख्या। ऊपर जो कहा गया था, उससे यह पता चलता है कि समीकरण की दो जड़ें हैं। उन्हें पांचवें सूत्र के अनुसार गणना करने की आवश्यकता है। इसके अनुसार, यह पता चला है कि x \u003d (-2 ± 64) / 2 \u003d (-2 ± 8) / 2. फिर x 1 \u003d 3, x 2 \u003d - 5।

चौथा समीकरण x 2 + 8 + 3x \u003d 0 इस में परिवर्तित हो गया है: x 2 + 3x + 8 \u003d 0. इसका विवेचक इस मान के बराबर है: -23। चूंकि यह संख्या ऋणात्मक है, इस कार्य का उत्तर निम्नलिखित प्रविष्टि होगी: "कोई जड़ें नहीं हैं।"

पाँचवाँ समीकरण 12x + x 2 + 36 = 0 को इस प्रकार फिर से लिखा जाना चाहिए: x 2 + 12x + 36 = 0। विवेचक के लिए सूत्र लागू करने के बाद, संख्या शून्य प्राप्त होती है। इसका मतलब है कि इसकी एक जड़ होगी, जिसका नाम है: x \u003d -12 / (2 * 1) \u003d -6।

छठे समीकरण (x + 1) 2 + x + 1 = (x + 1) (x + 2) को रूपांतरण की आवश्यकता होती है, जिसमें यह तथ्य शामिल होता है कि आपको कोष्ठक खोलने से पहले समान पदों को लाने की आवश्यकता है। पहले वाले के स्थान पर ऐसा व्यंजक होगा: x 2 + 2x + 1. समानता के बाद, यह प्रविष्टि दिखाई देगी: x 2 + 3x + 2. समान पदों की गणना के बाद, समीकरण का रूप लेगा: x 2 - x \u003d 0. यह अधूरा हो गया है। इसके समान पहले से ही थोड़ा अधिक माना गया है। इसका मूल अंक 0 और 1 होगा।

चलो साथ काम करते हैं द्विघातीय समीकरण. ये बहुत लोकप्रिय समीकरण हैं! अपने सबसे सामान्य रूप में, द्विघात समीकरण इस तरह दिखता है:

उदाहरण के लिए:

यहां एक =1; बी = 3; सी = -4

यहां एक =2; बी = -0,5; सी = 2,2

यहां एक =-3; बी = 6; सी = -18

खैर, आप विचार समझ गए...

द्विघात समीकरणों को कैसे हल करें?यदि आपके पास इस रूप में द्विघात समीकरण है, तो सब कुछ सरल है। हम याद रखते हैं जादुई शब्द विभेदक . हाई स्कूल के एक दुर्लभ छात्र ने यह शब्द नहीं सुना है! वाक्यांश "विवेककर्ता के माध्यम से निर्णय लें" आश्वस्त और आश्वस्त करने वाला है। क्योंकि विवेचक से तरकीबों का इंतजार करने की जरूरत नहीं है! यह उपयोग करने में आसान और परेशानी मुक्त है। तो, द्विघात समीकरण की जड़ों को खोजने का सूत्र इस तरह दिखता है:

मूल चिह्न के नीचे का व्यंजक वही है विभेदक. जैसा कि आप देख सकते हैं, x ज्ञात करने के लिए हम उपयोग करते हैं केवल ए, बी और सी. वे। द्विघात समीकरण से गुणांक। बस मूल्यों को ध्यान से बदलें ए, बी और सीइस सूत्र में और विचार करें। स्थानापन्न अपने संकेतों के साथ! उदाहरण के लिए, पहले समीकरण के लिए एक =1; बी = 3; सी= -4। यहाँ हम लिखते हैं:

उदाहरण लगभग हल हो गया:

बस इतना ही।

इस सूत्र का उपयोग करते समय कौन से मामले संभव हैं? केवल तीन मामले हैं।

1. विवेचक सकारात्मक है। इसका मतलब है कि आप इससे जड़ निकाल सकते हैं। जड़ को अच्छी तरह से निकाला गया है या बुरी तरह से यह एक और सवाल है। यह महत्वपूर्ण है कि सिद्धांत रूप में क्या निकाला जाता है। तब आपके द्विघात समीकरण के दो मूल हैं। दो अलग समाधान।

2. विवेचक शून्य है। तो आपके पास एक ही उपाय है। कड़ाई से बोलते हुए, यह एक जड़ नहीं है, बल्कि दो समान. लेकिन यह असमानताओं में एक भूमिका निभाता है, जहां हम इस मुद्दे का अधिक विस्तार से अध्ययन करेंगे।

3. विवेचक ऋणात्मक है। ऋणात्मक संख्या से वर्गमूलनहीं निकाला जाता है। अच्छी तरह से ठीक है। इसका मतलब है कि कोई समाधान नहीं हैं।

सब कुछ बहुत सरल है। और आपको क्या लगता है, आप गलत नहीं हो सकते? अच्छा, हाँ, कैसे...
सबसे आम गलतियाँ मूल्यों के संकेतों के साथ भ्रम हैं ए, बी और सी. या बल्कि, उनके संकेतों के साथ नहीं (भ्रमित होने के लिए कहां है?), लेकिन प्रतिस्थापन के साथ नकारात्मक मानजड़ों की गणना के सूत्र में। यहां, विशिष्ट संख्याओं के साथ सूत्र का विस्तृत रिकॉर्ड सहेजा जाता है। यदि गणना में कोई समस्या है, तो इसे करो!



मान लीजिए कि हमें निम्नलिखित उदाहरण को हल करने की आवश्यकता है:

यहां ए = -6; बी = -5; सी = -1

मान लीजिए कि आप जानते हैं कि आपको शायद ही पहली बार उत्तर मिलते हैं।

खैर, आलसी मत बनो। एक अतिरिक्त लाइन लिखने में 30 सेकंड का समय लगेगा और त्रुटियों की संख्या तेजी से गिरेगा. इसलिए हम सभी कोष्ठकों और चिह्नों के साथ विस्तार से लिखते हैं:

इतनी सावधानी से पेंट करना अविश्वसनीय रूप से कठिन लगता है। लेकिन लगता ही है। इसे अजमाएं। अच्छा, या चुनें। कौन सा बेहतर है, तेज, या सही? इसके अलावा, मैं तुम्हें खुश कर दूंगा। थोड़ी देर बाद, सब कुछ इतनी सावधानी से पेंट करने की आवश्यकता नहीं होगी। यह सिर्फ सही निकलेगा। खासकर यदि आप व्यावहारिक तकनीकों को लागू करते हैं, जिनका वर्णन नीचे किया गया है। Minuses के एक समूह के साथ यह बुरा उदाहरण आसानी से और त्रुटियों के बिना हल किया जाएगा!

इसलिए, द्विघात समीकरणों को कैसे हल करेंविवेचक के माध्यम से हमें याद आया। या सीखा, जो अच्छा भी है। क्या आप सही पहचान सकते हैं ए, बी और सी. आपको पता है कैसे सावधानी सेउन्हें मूल सूत्र में प्रतिस्थापित करें और सावधानी सेपरिणाम गिनें। आपको समझ में आया कीवर्डयहां - सावधानी से?

हालाँकि, द्विघात समीकरण अक्सर थोड़े अलग दिखते हैं। उदाहरण के लिए, इस तरह:

यह अपूर्ण द्विघात समीकरण . उन्हें विवेचक के माध्यम से भी हल किया जा सकता है। आपको बस सही ढंग से यह पता लगाने की जरूरत है कि यहां क्या बराबर है ए, बी और सी.

समझना? पहले उदाहरण में ए = 1; बी = -4;एक सी? यह बिल्कुल मौजूद नहीं है! अच्छा, हाँ, यह सही है। गणित में, इसका अर्थ है कि सी = 0 ! बस इतना ही। सूत्र में के स्थान पर शून्य रखिए सी,और सब कुछ हमारे लिए काम करेगा। इसी तरह दूसरे उदाहरण के साथ। केवल शून्य हमारे यहाँ नहीं है साथ, एक बी !

लेकिन अधूरे द्विघात समीकरणों को बहुत आसानी से हल किया जा सकता है। बिना किसी भेदभाव के। पहले अपूर्ण समीकरण पर विचार करें। बाईं ओर क्या किया जा सकता है? आप X को कोष्ठक से बाहर निकाल सकते हैं! आइए इसे बाहर निकालें।

और इसका क्या? और तथ्य यह है कि उत्पाद शून्य के बराबर है, और केवल अगर कोई भी कारक शून्य के बराबर है! विश्वास मत करो? खैर, फिर दो गैर-शून्य संख्याएँ लेकर आएँ, जिन्हें गुणा करने पर शून्य मिलेगा!
काम नहीं करता है? कुछ...
इसलिए, हम विश्वास के साथ लिख सकते हैं: एक्स = 0, या एक्स = 4

हर चीज़। ये हमारे समीकरण की जड़ें होंगी। दोनों फिट। उनमें से किसी को भी मूल समीकरण में प्रतिस्थापित करने पर, हमें सही पहचान 0 = 0 प्राप्त होती है। जैसा कि आप देख सकते हैं, विवेचक की तुलना में समाधान बहुत सरल है।

दूसरा समीकरण भी आसानी से हल किया जा सकता है। हम 9 को दाईं ओर ले जाते हैं। हम पाते हैं:

यह 9 से जड़ निकालने के लिए बनी हुई है, और बस। प्राप्त:

भी दो जड़ें . एक्स = +3 और एक्स = -3.

इस प्रकार सभी अपूर्ण द्विघात समीकरणों को हल किया जाता है। या तो एक्स को कोष्ठक से निकालकर, या बस संख्या को दाईं ओर स्थानांतरित करके, उसके बाद रूट निकालकर।
इन तरीकों को भ्रमित करना बेहद मुश्किल है। सिर्फ इसलिए कि पहले मामले में आपको एक्स से रूट निकालना होगा, जो किसी भी तरह समझ से बाहर है, और दूसरे मामले में ब्रैकेट से बाहर निकलने के लिए कुछ भी नहीं है ...

अब उन व्यावहारिक तकनीकों पर ध्यान दें जो त्रुटियों की संख्या को नाटकीय रूप से कम करती हैं। वही जो असावधानी के कारण होते हैं... जिसके लिए यह फिर दर्दनाक और अपमानजनक होता है...

पहला स्वागत. द्विघात समीकरण को मानक रूप में लाने के लिए हल करने से पहले आलसी मत बनो। इसका क्या मतलब है?
मान लीजिए, किसी भी परिवर्तन के बाद, आपको निम्नलिखित समीकरण मिलता है:

जड़ों का सूत्र लिखने में जल्दबाजी न करें! आप लगभग निश्चित रूप से बाधाओं को मिलाएंगे ए, बी और सी।उदाहरण सही ढंग से बनाएँ। पहले, x चुकता, फिर बिना वर्ग के, फिर एक मुक्त सदस्य। ऐशे ही:

और फिर, जल्दी मत करो! x चुकता से पहले का माइनस आपको बहुत परेशान कर सकता है। इसे भूलना आसान है... माइनस से छुटकारा पाएं। कैसे? हाँ, जैसा कि पिछले विषय में पढ़ाया गया था! हमें पूरे समीकरण को -1 से गुणा करना होगा। हम पाते हैं:

और अब आप जड़ों के लिए सूत्र को सुरक्षित रूप से लिख सकते हैं, विवेचक की गणना कर सकते हैं और उदाहरण को पूरा कर सकते हैं। आप ही निर्णय लें। आपको जड़ों 2 और -1 के साथ समाप्त होना चाहिए।

दूसरा स्वागत।अपनी जड़ों की जाँच करें! Vieta के प्रमेय के अनुसार। चिंता मत करो, मैं सब कुछ समझा दूंगा! चेकिंग आखिरी बातसमीकरण। वे। जिसके द्वारा हमने मूलों का सूत्र लिख दिया। यदि (इस उदाहरण में) गुणांक ए = 1, जड़ों को आसानी से जांचें। उन्हें गुणा करने के लिए पर्याप्त है। आपको एक फ्री टर्म मिलना चाहिए, यानी। हमारे मामले -2 में। ध्यान दें, 2 नहीं, बल्कि -2! स्वतंत्र सदस्य आपके संकेत के साथ . अगर यह काम नहीं करता है, तो इसका मतलब है कि वे पहले ही कहीं गड़बड़ कर चुके हैं। एक त्रुटि की तलाश करें। यदि यह काम करता है, तो आपको जड़ों को मोड़ना होगा। अंतिम और अंतिम जांच। अनुपात होना चाहिए बीसाथ विलोम संकेत। हमारे मामले में -1+2 = +1। एक गुणांक बी, जो x से पहले है, -1 के बराबर है। तो, सब कुछ सही है!
यह अफ़सोस की बात है कि यह केवल उन उदाहरणों के लिए इतना सरल है जहाँ x वर्ग शुद्ध है, एक गुणांक के साथ ए = 1.लेकिन कम से कम ऐसे समीकरणों की जाँच करें! कम गलतियाँ होंगी।

रिसेप्शन तीसरा. यदि आपके समीकरण में भिन्नात्मक गुणांक हैं, तो भिन्नों से छुटकारा पाएं! पिछले अनुभाग में वर्णित सामान्य भाजक द्वारा समीकरण को गुणा करें। अंशों, त्रुटियों के साथ काम करते समय, किसी कारण से चढ़ना ...

वैसे, मैंने एक बुरे उदाहरण का वादा किया था जिसमें मिनिस के एक समूह को सरल बनाया गया था। कृप्या! वह यहाँ है।

Minuses में भ्रमित न होने के लिए, हम समीकरण को -1 से गुणा करते हैं। हम पाते हैं:

बस इतना ही! निर्णय लेना मजेदार है!

तो चलिए विषय को फिर से समझते हैं।

व्यावहारिक सुझाव:

1. हल करने से पहले, हम द्विघात समीकरण को मानक रूप में लाते हैं, इसे बनाते हैं सही.

2. यदि वर्ग में x के सामने ऋणात्मक गुणांक है, तो हम पूरे समीकरण को -1 से गुणा करके इसे समाप्त करते हैं।

3. यदि गुणांक भिन्नात्मक हैं, तो हम संपूर्ण समीकरण को संगत कारक से गुणा करके भिन्नों को हटा देते हैं।

4. यदि x वर्ग शुद्ध है, तो इसका गुणांक एक के बराबर है, विलयन को Vieta के प्रमेय द्वारा आसानी से जाँचा जा सकता है। इसे करें!

भिन्नात्मक समीकरण। ओडीजेड.

हम समीकरणों में महारत हासिल करना जारी रखते हैं। हम पहले से ही जानते हैं कि रैखिक और द्विघात समीकरणों के साथ कैसे काम करना है। अंतिम दृश्य रहता है भिन्नात्मक समीकरण. या उन्हें बहुत अधिक ठोस भी कहा जाता है - आंशिक तर्कसंगत समीकरण . यह बिल्कुल वैसा है।

भिन्नात्मक समीकरण।

जैसा कि नाम से ही स्पष्ट है, इन समीकरणों में आवश्यक रूप से भिन्न होते हैं। लेकिन केवल भिन्न ही नहीं, बल्कि वे भिन्न जिनमें हर में अज्ञात. कम से कम एक में। उदाहरण के लिए:

मैं आपको याद दिला दूं, यदि केवल हरों में नंबर, ये रैखिक समीकरण हैं।

कैसे तय करें भिन्नात्मक समीकरण? सबसे पहले, अंशों से छुटकारा पाएं! उसके बाद, समीकरण, सबसे अधिक बार, एक रैखिक या द्विघात में बदल जाता है। और फिर हम जानते हैं कि क्या करना है... कुछ मामलों में, यह एक पहचान में बदल सकता है, जैसे 5=5 या गलत व्यंजक, जैसे 7=2। लेकिन ऐसा कम ही होता है। नीचे मैं इसका उल्लेख करूंगा।

लेकिन अंशों से कैसे छुटकारा पाएं !? बहुत आसान। सभी समान परिवर्तनों को लागू करना।

हमें पूरे समीकरण को उसी व्यंजक से गुणा करने की आवश्यकता है। ताकि सभी भाजक घटें! सब कुछ तुरंत आसान हो जाएगा। मैं एक उदाहरण से समझाता हूं। मान लें कि हमें समीकरण को हल करने की आवश्यकता है:

प्राथमिक विद्यालय में उन्हें कैसे पढ़ाया जाता था? हम सब कुछ एक दिशा में स्थानांतरित करते हैं, इसे एक सामान्य भाजक में कम करते हैं, आदि। भूल जाओ कितना बुरा सपना! जब आप भिन्नात्मक व्यंजकों को जोड़ते या घटाते हैं तो आपको यही करना होता है। या असमानताओं के साथ काम करें। और समीकरणों में, हम तुरंत दोनों भागों को एक व्यंजक से गुणा करते हैं जो हमें सभी हरों को कम करने का अवसर देगा (अर्थात, संक्षेप में, एक सामान्य हर द्वारा)। और यह अभिव्यक्ति क्या है?

बाईं ओर, हर को कम करने के लिए, आपको गुणा करना होगा एक्स+2. और दाईं ओर, 2 से गुणा करना आवश्यक है। इसलिए, समीकरण को से गुणा किया जाना चाहिए 2(x+2). हम गुणा करते हैं:

यह भिन्नों का सामान्य गुणन है, लेकिन मैं विस्तार से लिखूंगा:

कृपया ध्यान दें कि मैं अभी तक कोष्ठक नहीं खोल रहा हूँ। (एक्स + 2)! इसलिए, इसकी संपूर्णता में, मैं इसे लिखता हूं:

बाईं ओर, यह पूरी तरह से कम हो गया है (एक्स+2), और दाईं ओर 2. आवश्यकतानुसार! कमी के बाद हमें मिलता है रैखिकसमीकरण:

इस समीकरण को कोई भी हल कर सकता है! एक्स = 2.

आइए एक और उदाहरण हल करें, थोड़ा और जटिल:

अगर हमें याद है कि 3 = 3/1, और 2x = 2x/ 1 लिखा जा सकता है:

और फिर से हम उस चीज़ से छुटकारा पा लेते हैं जो हमें वास्तव में पसंद नहीं है - भिन्नों से।

हम देखते हैं कि हर को x से कम करने के लिए, भिन्न को से गुणा करना आवश्यक है (एक्स - 2). और इकाइयाँ हमारे लिए कोई बाधा नहीं हैं। अच्छा, चलो गुणा करें। सभीबाईं ओर और सबदाईं ओर:

ब्रैकेट फिर से (एक्स - 2)मैं प्रकट नहीं करता। मैं पूरी तरह से ब्रैकेट के साथ काम करता हूं, जैसे कि यह एक नंबर था! ऐसा हमेशा करना चाहिए, नहीं तो कुछ भी कम नहीं होगा।

गहरी संतुष्टि की भावना के साथ, हम काटते हैं (एक्स - 2)और हमें एक रूलर में बिना किसी भिन्न के समीकरण प्राप्त होता है!

और अब हम कोष्ठक खोलते हैं:

हम समान देते हैं, सब कुछ बाईं ओर स्थानांतरित करते हैं और प्राप्त करते हैं:

शास्त्रीय द्विघात समीकरण। लेकिन आगे माइनस अच्छा नहीं है। आप इसे -1 से गुणा या भाग करके हमेशा छुटकारा पा सकते हैं। लेकिन अगर आप उदाहरण को करीब से देखें, तो आप देखेंगे कि इस समीकरण को -2 से विभाजित करना सबसे अच्छा है! एक झटके में, माइनस गायब हो जाएगा, और गुणांक सुंदर हो जाएंगे! हम -2 से विभाजित करते हैं। बाईं ओर - पद दर पद, और दाईं ओर - बस शून्य को -2, शून्य से विभाजित करें और प्राप्त करें:

हम विवेचक के माध्यम से हल करते हैं और वीटा प्रमेय के अनुसार जांच करते हैं। हम पाते हैं एक्स = 1 और एक्स = 3. दो जड़ें।

जैसा कि आप देख सकते हैं, पहले मामले में, परिवर्तन के बाद का समीकरण रैखिक हो गया, और यहाँ यह द्विघात है। ऐसा होता है कि भिन्नों से छुटकारा पाने के बाद, सभी x कम हो जाते हैं। कुछ बचा है, जैसे 5=5। इसका मतलब है कि x कुछ भी हो सकता है. जो भी हो, यह अभी भी कम किया जाएगा। और पावन सत्य, 5=5। लेकिन, भिन्नों से छुटकारा पाने के बाद, यह पूरी तरह से असत्य हो सकता है, जैसे कि 2=7। और इसका मतलब है कि कोई समाधान नहीं! किसी भी x के साथ, यह असत्य हो जाता है।

हल करने का मुख्य तरीका समझ में आया भिन्नात्मक समीकरण ? यह सरल और तार्किक है। हम मूल अभिव्यक्ति को बदल देते हैं ताकि वह सब कुछ गायब हो जाए जो हमें पसंद नहीं है। या हस्तक्षेप करें। इस मामले में, यह अंश है। हम सबके साथ ऐसा ही करेंगे जटिल उदाहरणलघुगणक, साइन और अन्य भयावहता के साथ। हम हमेशाहम इस सब से छुटकारा पायेंगे।

हालाँकि, हमें मूल अभिव्यक्ति को उस दिशा में बदलने की आवश्यकता है जिसकी हमें आवश्यकता है नियमों के अनुसार, हाँ ... जिसका विकास गणित में परीक्षा की तैयारी है। यहां हम सीख रहे हैं।

अब हम सीखेंगे कि इनमें से किसी एक को कैसे बायपास किया जाए परीक्षा पर मुख्य घात! लेकिन पहले, देखते हैं कि आप इसमें गिरते हैं या नहीं?

आइए एक साधारण उदाहरण लें:

मामला पहले से ही परिचित है, हम दोनों भागों को गुणा करते हैं (एक्स - 2), हम पाते हैं:

याद रखें, कोष्ठक के साथ (एक्स - 2)हम एक के रूप में काम करते हैं, अभिन्न अभिव्यक्ति!

यहाँ मैंने अब हर में एक नहीं लिखा है, अशोभनीय ... और मैंने हर में कोष्ठक नहीं खींचा, सिवाय इसके कि एक्स - 2कुछ भी नहीं है, आप आकर्षित नहीं कर सकते। हम छोटा करते हैं:

हम कोष्ठक खोलते हैं, सब कुछ बाईं ओर ले जाते हैं, हम समान देते हैं:

हम हल करते हैं, जांचते हैं, हमें दो जड़ें मिलती हैं। एक्स = 2तथा एक्स = 3. उत्कृष्ट।

मान लीजिए कि कार्य एक से अधिक जड़ होने पर मूल या उनका योग लिखने के लिए कहता है। हम क्या लिखेंगे?

यदि आप तय करते हैं कि उत्तर 5 है, तो आप घात लगाए हुए थे. और कार्य आपके लिए नहीं गिना जाएगा। उन्होंने व्यर्थ काम किया ... सही उत्तर 3 है।

क्या बात है?! और आप जांच करने की कोशिश करते हैं। अज्ञात के मानों को प्रतिस्थापित करें शुरुआतीउदाहरण। और अगर एक्स = 3सब कुछ एक साथ आश्चर्यजनक रूप से बढ़ता है, हमें 9 = 9 मिलता है, फिर साथ एक्स = 2शून्य से भाग दें! क्या बिल्कुल नहीं किया जा सकता है। माध्यम एक्स = 2समाधान नहीं है, और उत्तर में इस पर ध्यान नहीं दिया जाता है। यह तथाकथित बाहरी या अतिरिक्त जड़ है। हम बस इसे त्याग देते हैं। केवल एक अंतिम जड़ है। एक्स = 3.

ऐसा कैसे?! मैं आक्रोशित उद्गार सुनता हूं। हमें सिखाया गया था कि एक समीकरण को एक व्यंजक से गुणा किया जा सकता है! यह वही परिवर्तन है!

हाँ, समान। एक छोटी सी शर्त के तहत - वह व्यंजक जिससे हम गुणा (विभाजित) करते हैं - शून्य से अलग. लेकिन एक्स - 2पर एक्स = 2शून्य के बराबर! तो सब जायज है।

और अब मैं क्या कर सकता हूँ?! व्यंजक से गुणा न करें? क्या आप हर बार चेक करते हैं? फिर से अस्पष्ट!

शांति से! घबराए नहीं!

इस कठिन परिस्थिति में तीन जादुई अक्षर हमें बचाएंगे। मुझे पता है कि तुम क्या सोच रहे थे। सही ढंग से! यह ओडीजेड . मान्य मूल्यों का क्षेत्र।

मुझे उम्मीद है कि इस लेख का अध्ययन करने के बाद, आप सीखेंगे कि पूर्ण द्विघात समीकरण की जड़ें कैसे खोजें।

विवेचक की सहायता से केवल पूर्ण द्विघात समीकरणों को हल किया जाता है अपूर्ण द्विघात समीकरणों को हल करने के लिए अन्य विधियों का उपयोग किया जाता है, जो आपको "अपूर्ण द्विघात समीकरणों को हल करना" लेख में मिलेगा।

किस द्विघात समीकरण को पूर्ण कहा जाता है? यह ax 2 + b x + c = 0 . के रूप के समीकरण, जहां गुणांक ए, बी और सी शून्य के बराबर नहीं हैं। तो, पूर्ण द्विघात समीकरण को हल करने के लिए, आपको विवेचक डी की गणना करने की आवश्यकता है।

डी \u003d बी 2 - 4ac।

विवेचक के मूल्य के आधार पर, हम उत्तर लिखेंगे।

यदि विवेचक एक ऋणात्मक संख्या है (D< 0),то корней нет.

यदि विवेचक शून्य है, तो x \u003d (-b) / 2a। जब विवेचक एक धनात्मक संख्या हो (D > 0),

तो x 1 = (-b - D)/2a, और x 2 = (-b + D)/2a.

उदाहरण के लिए। प्रश्न हल करें एक्स 2- 4x + 4 = 0।

डी \u003d 4 2 - 4 4 \u003d 0

एक्स = (- (-4))/2 = 2

उत्तर : 2.

समीकरण 2 को हल करें एक्स 2 + एक्स + 3 = 0।

डी \u003d 1 2 - 4 2 3 \u003d - 23

उत्तर: कोई जड़ नहीं.

समीकरण 2 को हल करें एक्स 2 + 5x - 7 = 0.

डी \u003d 5 2 - 4 2 (-7) \u003d 81

x 1 \u003d (-5 - 81) / (2 2) \u003d (-5 - 9) / 4 \u003d - 3.5

x 2 \u003d (-5 + 81) / (2 2) \u003d (-5 + 9) / 4 \u003d 1

उत्तर:- 3.5; एक.

तो आइए चित्र 1 में योजना द्वारा पूर्ण द्विघात समीकरणों के हल की कल्पना करें।

इन सूत्रों का उपयोग किसी भी पूर्ण द्विघात समीकरण को हल करने के लिए किया जा सकता है। बस आपको सावधान रहने की जरूरत है समीकरण को मानक रूप के बहुपद के रूप में लिखा गया था

एक एक्स 2 + बीएक्स + सी,अन्यथा आप गलती कर सकते हैं। उदाहरण के लिए, समीकरण x + 3 + 2x 2 = 0 लिखकर, आप गलती से यह तय कर सकते हैं कि

a = 1, b = 3 और c = 2. तब

डी \u003d 3 2 - 4 1 2 \u003d 1 और फिर समीकरण की दो जड़ें हैं। और ये सच नहीं है. (ऊपर उदाहरण 2 समाधान देखें)।

इसलिए, यदि समीकरण को मानक रूप के बहुपद के रूप में नहीं लिखा जाता है, तो पहले पूर्ण द्विघात समीकरण को मानक रूप के बहुपद के रूप में लिखा जाना चाहिए। उच्चतम संकेतकडिग्री, अर्थात् एक एक्स 2 , फिर कम . के साथ बीएक्स, और फिर मुक्त अवधि साथ।

उपरोक्त द्विघात समीकरण और द्विघात समीकरण को दूसरे पद के लिए सम गुणांक के साथ हल करते समय, अन्य सूत्रों का भी उपयोग किया जा सकता है। आइए इन सूत्रों से परिचित हों। यदि दूसरे पद के साथ पूर्ण द्विघात समीकरण में गुणांक सम (b = 2k) है, तो चित्र 2 के आरेख में दिखाए गए सूत्रों का उपयोग करके समीकरण को हल किया जा सकता है।

एक पूर्ण द्विघात समीकरण को कम किया जाता है यदि गुणांक एक्स 2 एकता के बराबर होती है और समीकरण रूप लेता है एक्स 2 + पीएक्स + क्यू = 0. इस तरह के समीकरण को हल करने के लिए दिया जा सकता है, या समीकरण के सभी गुणांक को गुणांक द्वारा विभाजित करके प्राप्त किया जा सकता है एकपर खड़े एक्स 2 .

चित्रा 3 कम वर्ग के समाधान का एक आरेख दिखाता है
समीकरण इस आलेख में चर्चा किए गए सूत्रों के आवेदन के उदाहरण पर विचार करें।

उदाहरण। प्रश्न हल करें

3एक्स 2 + 6x - 6 = 0.

आइए चित्र 1 में दिखाए गए सूत्रों का उपयोग करके इस समीकरण को हल करें।

डी \u003d 6 2 - 4 3 (- 6) \u003d 36 + 72 \u003d 108

D = √108 = √(36 3) = 6√3

x 1 \u003d (-6 - 6 3) / (2 3) \u003d (6 (-1- (3))) / 6 \u003d -1 - 3

x 2 \u003d (-6 + 6 3) / (2 3) \u003d (6 (-1 + √ (3))) / 6 \u003d -1 + 3

उत्तर: -1 - 3; -1 + 3

आप देख सकते हैं कि इस समीकरण में x पर गुणांक एक सम संख्या है, अर्थात्, b \u003d 6 या b \u003d 2k, जहाँ से k \u003d 3. फिर आइए आकृति आरेख में दिखाए गए सूत्रों का उपयोग करके समीकरण को हल करने का प्रयास करें। डी 1 \u003d 3 2 - 3 (- 6 ) = 9 + 18 = 27

(डी 1) = √27 = √(9 3) = 3√3

x 1 \u003d (-3 - 3√3) / 3 \u003d (3 (-1 - √ (3))) / 3 \u003d - 1 - 3

x 2 \u003d (-3 + 3√3) / 3 \u003d (3 (-1 + √ (3))) / 3 \u003d - 1 + 3

उत्तर: -1 - 3; -1 + 3. यह देखते हुए कि इस द्विघात समीकरण के सभी गुणांक 3 से विभाज्य हैं और विभाजित करने पर, हमें घटा हुआ द्विघात समीकरण x 2 + 2x - 2 = 0 प्राप्त होता है।
समीकरण चित्रा 3.

डी 2 \u003d 2 2 - 4 (- 2) \u003d 4 + 8 \u003d 12

(डी 2) = 12 = √(4 3) = 2√3

x 1 \u003d (-2 - 2√3) / 2 \u003d (2 (-1 - √ (3))) / 2 \u003d - 1 - 3

x 2 \u003d (-2 + 2 3) / 2 \u003d (2 (-1 + √ (3))) / 2 \u003d - 1 + 3

उत्तर: -1 - 3; -1 + 3।

जैसा कि आप देख सकते हैं, विभिन्न सूत्रों का उपयोग करके इस समीकरण को हल करने पर, हमें एक ही उत्तर मिला। इसलिए, चित्र 1 के आरेख में दिखाए गए सूत्रों में अच्छी तरह से महारत हासिल करने के बाद, आप हमेशा किसी भी पूर्ण द्विघात समीकरण को हल कर सकते हैं।

साइट, सामग्री की पूर्ण या आंशिक प्रतिलिपि के साथ, स्रोत के लिए एक लिंक आवश्यक है।

उदाहरण के लिए, त्रिपद \(3x^2+2x-7\) के लिए, विवेचक \(2^2-4\cdot3\cdot(-7)=4+84=88\) होगा। और त्रिपद \(x^2-5x+11\) के लिए, यह \((-5)^2-4\cdot1\cdot11=25-44=-19\) के बराबर होगा।

विवेचक को \(D\) अक्षर से निरूपित किया जाता है और इसे हल करते समय अक्सर उपयोग किया जाता है। साथ ही, विवेचक के मान से, आप समझ सकते हैं कि ग्राफ़ कैसा दिखता है (नीचे देखें)।

विभेदक और द्विघात समीकरण की जड़ें

विभेदक का मान द्विघात समीकरण की मात्रा को दर्शाता है:
- यदि \(D\) धनात्मक है, तो समीकरण के दो मूल होंगे;
- यदि \(D\) शून्य के बराबर है - केवल एक मूल;
- यदि \(D\) ऋणात्मक है, तो कोई मूल नहीं है।

इसे सिखाने की आवश्यकता नहीं है, इस तरह के निष्कर्ष पर आना आसान है, बस यह जानकर कि विवेचक (अर्थात, \(\sqrt(D)\) से द्विघात समीकरण की जड़ों की गणना के लिए सूत्र में शामिल है : \(x_(1)=\)\( \frac(-b+\sqrt(D))(2a)\) और \(x_(2)=\)\(\frac(-b-\sqrt(D) ))(2a)\) आइए प्रत्येक मामले को और देखें।

यदि विवेचक सकारात्मक है

इस मामले में, इसका मूल कुछ सकारात्मक संख्या है, जिसका अर्थ है \(x_(1)\) और \(x_(2)\) मूल्य में भिन्न होंगे, क्योंकि पहले सूत्र में \(\sqrt(D) \) जोड़ा जाता है, और दूसरे में - घटाया जाता है। और हमारी दो अलग-अलग जड़ें हैं।

उदाहरण : समीकरण के मूल ज्ञात कीजिए \(x^2+2x-3=0\)
समाधान :

उत्तर : \(x_(1)=1\); \(x_(2)=-3\)

यदि विवेचक शून्य है

और यदि विवेचक शून्य है तो कितनी जड़ें होंगी? आइए तर्क करें।

मूल सूत्र इस तरह दिखते हैं: \(x_(1)=\)\(\frac(-b+\sqrt(D))(2a)\) और \(x_(2)=\)\(\frac(- बी- \sqrt(D))(2a)\) । और यदि विवेचक शून्य है, तो उसका मूल भी शून्य है। तब यह पता चलता है:

\(x_(1)=\)\(\frac(-b+\sqrt(D))(2a)\) \(=\)\(\frac(-b+\sqrt(0))(2a)\) \(=\)\(\frac(-b+0)(2a)\) \(=\)\(\frac(-b)(2a)\)

\(x_(2)=\)\(\frac(-b-\sqrt(D))(2a)\) \(=\)\(\frac(-b-\sqrt(0))(2a) \) \(=\)\(\frac(-b-0)(2a)\) \(=\)\(\frac(-b)(2a)\)

यानी समीकरण के मूलों का मान मेल खाएगा, क्योंकि शून्य को जोड़ने या घटाने से कुछ भी नहीं बदलता है।

उदाहरण : समीकरण के मूल ज्ञात कीजिए \(x^2-4x+4=0\)
समाधान :

\(x^2-4x+4=0\)

हम गुणांक लिखते हैं:

\(a=1;\) \(b=-4;\) \(c=4;\)

सूत्र \(D=b^2-4ac\) का उपयोग करके विवेचक की गणना करें

\(डी=(-4)^2-4\cdot1\cdot4=\)
\(=16-16=0\)

समीकरण के मूल ज्ञात करना

\(x_(1)=\) \(\frac(-(-4)+\sqrt(0))(2\cdot1)\)\(=\)\(\frac(4)(2)\) \(=2\)

\(x_(2)=\) \(\frac(-(-4)-\sqrt(0))(2\cdot1)\)\(=\)\(\frac(4)(2)\) \(=2\)


हमें दो समान जड़ें मिली हैं, इसलिए उन्हें अलग-अलग लिखने का कोई मतलब नहीं है - हम उन्हें एक के रूप में लिखते हैं।

उत्तर : \(x=2\)

दोस्तों के साथ शेयर करें या अपने लिए सेव करें:

लोड हो रहा है...