अंकगणितीय प्रगति की संख्या कैसे ज्ञात करें। अंकगणितीय प्रगति - संख्या अनुक्रम

प्रथम स्तर

अंकगणितीय प्रगति. विस्तृत सिद्धांतउदाहरणों के साथ (2019)

संख्यात्मक अनुक्रम

तो चलिए बैठ जाते हैं और कुछ नंबर लिखना शुरू करते हैं। उदाहरण के लिए:
आप कोई भी संख्या लिख ​​सकते हैं, और जितने चाहें उतने हो सकते हैं (हमारे मामले में, उन्हें)। हम चाहे कितनी भी संख्याएँ लिख लें, हम हमेशा कह सकते हैं कि उनमें से कौन पहली है, कौन सी दूसरी है, और इसी तरह आखिरी तक, यानी हम उन्हें संख्या दे सकते हैं। यह एक संख्या अनुक्रम का एक उदाहरण है:

संख्यात्मक अनुक्रम
उदाहरण के लिए, हमारे अनुक्रम के लिए:

निर्दिष्ट संख्या केवल एक अनुक्रम संख्या के लिए विशिष्ट है। दूसरे शब्दों में, अनुक्रम में तीन सेकंड की संख्या नहीं है। दूसरी संख्या (जैसे -th संख्या) हमेशा समान होती है।
संख्या वाली संख्या को अनुक्रम का -वाँ सदस्य कहा जाता है।

हम आम तौर पर पूरे अनुक्रम को कुछ अक्षर (उदाहरण के लिए,) कहते हैं, और इस अनुक्रम के प्रत्येक सदस्य - इस सदस्य की संख्या के बराबर सूचकांक वाला एक ही अक्षर: ।

हमारे मामले में:

मान लें कि हमारे पास है संख्यात्मक अनुक्रम, जिसमें पड़ोसी संख्याओं के बीच का अंतर समान और बराबर है।
उदाहरण के लिए:

आदि।
इस तरह के संख्यात्मक अनुक्रम को अंकगणितीय प्रगति कहा जाता है।
शब्द "प्रगति" रोमन लेखक बोथियस द्वारा 6 वीं शताब्दी की शुरुआत में पेश किया गया था और इसे व्यापक अर्थों में एक अंतहीन संख्यात्मक अनुक्रम के रूप में समझा गया था। "अंकगणित" नाम को निरंतर अनुपात के सिद्धांत से स्थानांतरित किया गया था, जिसमें प्राचीन यूनानी लगे हुए थे।

यह एक संख्यात्मक अनुक्रम है, जिसका प्रत्येक सदस्य पिछले एक के बराबर है, उसी संख्या के साथ जोड़ा जाता है। इस संख्या को अंकगणितीय प्रगति का अंतर कहा जाता है और इसे निरूपित किया जाता है।

यह निर्धारित करने का प्रयास करें कि कौन से संख्या क्रम एक अंकगणितीय प्रगति हैं और कौन से नहीं हैं:

एक)
बी)
सी)
डी)

समझ गया? हमारे उत्तरों की तुलना करें:
हैअंकगणितीय प्रगति - बी, सी।
नहीं हैअंकगणितीय प्रगति - ए, डी।

आइए दी गई प्रगति () पर लौटते हैं और इसके वें सदस्य का मान ज्ञात करने का प्रयास करते हैं। मौजूद दोइसे खोजने का तरीका।

1. विधि

हम प्रगति संख्या के पिछले मान में तब तक जोड़ सकते हैं जब तक हम प्रगति के वें पद तक नहीं पहुंच जाते। यह अच्छा है कि हमारे पास संक्षेप में बताने के लिए बहुत कुछ नहीं है - केवल तीन मान:

तो, वर्णित अंकगणितीय प्रगति के -वें सदस्य के बराबर है।

2. विधि

क्या होगा यदि हमें प्रगति के वें पद का मूल्य ज्ञात करना है? योग करने में हमें एक घंटे से अधिक का समय लगता, और यह एक तथ्य नहीं है कि संख्याओं को जोड़ते समय हमने गलतियाँ नहीं की होंगी।
बेशक, गणितज्ञ एक ऐसा तरीका लेकर आए हैं जिसमें आपको अंकगणितीय प्रगति के अंतर को पिछले मान से जोड़ने की आवश्यकता नहीं है। खींचे गए चित्र को ध्यान से देखें ... निश्चित रूप से आपने पहले से ही एक निश्चित पैटर्न पर ध्यान दिया है, अर्थात्:

उदाहरण के लिए, आइए देखें कि इस अंकगणितीय प्रगति के -वें सदस्य का मूल्य क्या है:


दूसरे शब्दों में:

इस तरह से स्वतंत्र रूप से इस अंकगणितीय प्रगति के एक सदस्य के मूल्य को खोजने का प्रयास करें।

परिकलित? उत्तर के साथ अपनी प्रविष्टियों की तुलना करें:

ध्यान दें कि आपको पिछली विधि की तरह ही वही संख्या मिली है, जब हमने अंकगणितीय प्रगति के सदस्यों को पिछले मान में क्रमिक रूप से जोड़ा था।
आइए इस सूत्र को "प्रतिरूपित" करने का प्रयास करें - हम इसे एक सामान्य रूप में लाते हैं और प्राप्त करते हैं:

अंकगणितीय प्रगति समीकरण।

अंकगणितीय प्रगति या तो बढ़ रही है या घट रही है।

की बढ़ती- प्रगति जिसमें शर्तों के प्रत्येक बाद के मूल्य पिछले एक से अधिक है।
उदाहरण के लिए:

अवरोही- प्रगति जिसमें शर्तों के प्रत्येक बाद के मूल्य पिछले एक से कम है।
उदाहरण के लिए:

व्युत्पन्न सूत्र का उपयोग अंकगणितीय प्रगति के बढ़ते और घटते दोनों पदों की गणना में किया जाता है।
आइए इसे व्यवहार में देखें।
हमें एक अंकगणितीय प्रगति दी गई है जिसमें निम्नलिखित संख्याएं: आइए देखें कि इस अंकगणितीय प्रगति की -वीं संख्या क्या निकलेगी यदि हम इसकी गणना करते समय अपने सूत्र का उपयोग करते हैं:


तब से:

इस प्रकार, हम आश्वस्त थे कि यह सूत्र अंकगणितीय प्रगति को घटाने और बढ़ाने दोनों में काम करता है।
इस अंकगणितीय प्रगति के -वें और -वें सदस्यों को स्वयं खोजने का प्रयास करें।

आइए परिणामों की तुलना करें:

अंकगणितीय प्रगति संपत्ति

आइए कार्य को जटिल करें - हम एक अंकगणितीय प्रगति की संपत्ति प्राप्त करते हैं।
मान लीजिए कि हमें निम्नलिखित शर्त दी गई है:
- अंकगणितीय प्रगति, मान ज्ञात कीजिए।
यह आसान है, आप कहते हैं, और उस सूत्र के अनुसार गिनना शुरू करें जिसे आप पहले से जानते हैं:

चलो, ए, फिर:

बिल्कुल सही। यह पता चला है कि हम पहले पाते हैं, फिर इसे पहले नंबर में जोड़ते हैं और हम जो खोज रहे हैं उसे प्राप्त करते हैं। यदि प्रगति को छोटे मूल्यों द्वारा दर्शाया जाता है, तो इसमें कुछ भी जटिल नहीं है, लेकिन क्या होगा यदि हमें इस स्थिति में संख्याएं दी जाएं? सहमत हूं, गणना में गलती होने की संभावना है।
अब सोचो, क्या किसी सूत्र का प्रयोग करके इस समस्या को एक चरण में हल करना संभव है? बेशक, हाँ, और हम इसे अभी बाहर लाने का प्रयास करेंगे।

आइए अंकगणितीय प्रगति के वांछित शब्द को निरूपित करें, जैसा कि हम इसे खोजने के लिए सूत्र जानते हैं - यह वही सूत्र है जो हमने शुरुआत में प्राप्त किया था:
, फिर:

  • प्रगति का पिछला सदस्य है:
  • प्रगति का अगला पद है:

आइए प्रगति के पिछले और अगले सदस्यों का योग करें:

यह पता चला है कि प्रगति के पिछले और बाद के सदस्यों का योग उनके बीच स्थित प्रगति के सदस्य के मूल्य से दोगुना है। दूसरे शब्दों में, ज्ञात पिछले और लगातार मूल्यों के साथ प्रगति सदस्य के मूल्य को खोजने के लिए, उन्हें जोड़ना और विभाजित करना आवश्यक है।

यह सही है, हमें वही नंबर मिला है। आइए सामग्री को ठीक करें। प्रगति के लिए मूल्य की गणना स्वयं करें, क्योंकि यह बिल्कुल भी कठिन नहीं है।

बहुत बढ़िया! आप प्रगति के बारे में लगभग सब कुछ जानते हैं! यह केवल एक सूत्र का पता लगाना बाकी है, जो कि किंवदंती के अनुसार, सभी समय के महानतम गणितज्ञों में से एक, "गणितज्ञों के राजा" - कार्ल गॉस, आसानी से खुद के लिए निकाले गए ...

जब कार्ल गॉस 9 वर्ष के थे, तो शिक्षक ने अन्य कक्षाओं में छात्रों के काम की जाँच में व्यस्त होकर, पाठ में निम्नलिखित कार्य पूछा: “सभी का योग ज्ञात कीजिए। प्राकृतिक संख्यासे (अन्य स्रोतों के अनुसार) समावेशी। शिक्षक को क्या आश्चर्य हुआ जब उसके एक छात्र (वह कार्ल गॉस थे) ने एक मिनट के बाद कार्य का सही उत्तर दिया, जबकि डेयरडेविल के अधिकांश सहपाठियों ने लंबी गणना के बाद गलत परिणाम प्राप्त किया ...

यंग कार्ल गॉस ने एक पैटर्न देखा जिसे आप आसानी से देख सकते हैं।
मान लीजिए कि हमारे पास एक अंकगणितीय प्रगति है जिसमें -ti सदस्य शामिल हैं: हमें अंकगणितीय प्रगति के दिए गए सदस्यों का योग ज्ञात करना है। बेशक, हम मैन्युअल रूप से सभी मानों को जोड़ सकते हैं, लेकिन क्या होगा यदि हमें गॉस की तलाश में कार्य में इसकी शर्तों का योग खोजने की आवश्यकता है?

आइए हमें दी गई प्रगति को दर्शाते हैं। हाइलाइट की गई संख्याओं को ध्यान से देखें और उनके साथ विभिन्न गणितीय संक्रियाओं को करने का प्रयास करें।


कोशिश की? आपने क्या नोटिस किया? सही ढंग से! उनकी राशि बराबर है


अब उत्तर दीजिए, हमें दी गई प्रगति में ऐसे कितने जोड़े होंगे? बेशक, सभी संख्याओं का ठीक आधा, यानी।
इस तथ्य के आधार पर कि एक समान्तर श्रेणी के दो सदस्यों का योग समान है, और समान समान युग्म हैं, हम पाते हैं कि कुल राशिके बराबर है:
.
इस प्रकार, किसी समांतर श्रेणी के प्रथम पदों के योग का सूत्र होगा:

कुछ समस्याओं में, हम वें पद को नहीं जानते हैं, लेकिन हम प्रगति के अंतर को जानते हैं। योग सूत्र, वें सदस्य के सूत्र में स्थानापन्न करने का प्रयास करें।
तुम्हें क्या मिला?

बहुत बढ़िया! अब आइए उस समस्या पर लौटते हैं जो कार्ल गॉस को दी गई थी: अपने लिए गणना करें कि -वें से शुरू होने वाली संख्याओं का योग क्या है, और -वें से शुरू होने वाली संख्याओं का योग क्या है।

आपको कितना मिला?
गॉस ने पाया कि पदों का योग समान है, और पदों का योग है। क्या आपने ऐसा फैसला किया है?

वास्तव में, अंकगणितीय प्रगति के सदस्यों के योग का सूत्र प्राचीन यूनानी वैज्ञानिक डायोफैंटस द्वारा तीसरी शताब्दी में सिद्ध किया गया था, और इस पूरे समय में, मजाकिया लोगों ने अंकगणितीय प्रगति के गुणों का उपयोग शक्ति और मुख्य के साथ किया।
उदाहरण के लिए, कल्पना करें प्राचीन मिस्रऔर उस समय का सबसे बड़ा निर्माण स्थल - एक पिरामिड का निर्माण ... आकृति इसके एक पक्ष को दर्शाती है।

आप कहते हैं कि यहां प्रगति कहां है? ध्यान से देखें और पिरामिड की दीवार की प्रत्येक पंक्ति में रेत के ब्लॉकों की संख्या में एक पैटर्न खोजें।


एक अंकगणितीय प्रगति क्यों नहीं? गिनें कि एक दीवार के निर्माण के लिए कितने ब्लॉकों की आवश्यकता होगी यदि ब्लॉक ईंटों को आधार में रखा जाए। मुझे आशा है कि आप मॉनिटर पर अपनी उंगली घुमाकर गिनती नहीं करेंगे, क्या आपको अंतिम सूत्र और अंकगणितीय प्रगति के बारे में हमने जो कुछ कहा है वह सब कुछ याद है?

इस मामले में, प्रगति इस तरह दिखती है:
अंकगणितीय प्रगति अंतर।
अंकगणितीय प्रगति के सदस्यों की संख्या।
आइए अपने डेटा को अंतिम फ़ार्मुलों में बदलें (हम 2 तरीकों से ब्लॉक की संख्या गिनते हैं)।

विधि 1।

विधि 2।

और अब आप मॉनिटर पर भी गणना कर सकते हैं: प्राप्त मूल्यों की तुलना हमारे पिरामिड में मौजूद ब्लॉकों की संख्या से करें। क्या यह सहमत था? अच्छा किया, आपने अंकगणितीय प्रगति के वें पदों के योग में महारत हासिल कर ली है।
बेशक, आप आधार पर ब्लॉक से पिरामिड नहीं बना सकते हैं, लेकिन कहां से? इस स्थिति के साथ दीवार बनाने के लिए कितनी रेत ईंटों की गणना करने की कोशिश करें।
क्या आप संभाल पाओगे?
सही उत्तर ब्लॉक है:

कसरत करना

कार्य:

  1. माशा गर्मियों के लिए आकार में हो रही है। वह हर दिन स्क्वैट्स की संख्या बढ़ाती है। माशा हफ्तों में कितनी बार स्क्वाट करेगी अगर उसने पहली कसरत में स्क्वाट किया था।
  2. में निहित सभी विषम संख्याओं का योग क्या है?
  3. लॉग को स्टोर करते समय, लंबरजैक उन्हें इस तरह से स्टैक करते हैं कि प्रत्येक शीर्ष परत में पिछले वाले की तुलना में एक कम लॉग होता है। एक चिनाई में कितने लॉग होते हैं, यदि चिनाई का आधार लॉग है।

उत्तर:

  1. आइए हम अंकगणितीय प्रगति के मापदंडों को परिभाषित करें। इस मामले में
    (सप्ताह = दिन)।

    उत्तर:दो सप्ताह में, माशा को दिन में एक बार बैठना चाहिए।

  2. पहली विषम संख्या, अंतिम संख्या।
    अंकगणितीय प्रगति अंतर।
    - आधे में विषम संख्याओं की संख्या, हालांकि, अंकगणितीय प्रगति के -वें सदस्य को खोजने के लिए सूत्र का उपयोग करके इस तथ्य की जांच करें:

    संख्याओं में विषम संख्याएँ होती हैं।
    हम उपलब्ध डेटा को सूत्र में प्रतिस्थापित करते हैं:

    उत्तर:इसमें निहित सभी विषम संख्याओं का योग बराबर होता है।

  3. पिरामिड के बारे में समस्या को याद करें। हमारे मामले के लिए, चूंकि प्रत्येक शीर्ष परत एक लॉग से कम हो जाती है, केवल परतों का एक गुच्छा होता है, अर्थात।
    डेटा को सूत्र में बदलें:

    उत्तर:चिनाई में लॉग हैं।

उपसंहार

  1. - एक संख्यात्मक अनुक्रम जिसमें आसन्न संख्याओं के बीच का अंतर समान और बराबर होता है। यह बढ़ रहा है और घट रहा है।
  2. सूत्र ढूँढनाअंकगणितीय प्रगति का वां सदस्य सूत्र द्वारा लिखा जाता है - , प्रगति में संख्याओं की संख्या कहां है।
  3. एक समान्तर श्रेणी के सदस्यों की संपत्ति- - कहाँ - प्रगति में संख्याओं की संख्या।
  4. एक समान्तर श्रेणी के सदस्यों का योगदो तरह से पाया जा सकता है:

    , जहां मूल्यों की संख्या है।

अंकगणितीय प्रगति। औसत स्तर

संख्यात्मक अनुक्रम

आइए बैठें और कुछ संख्याएँ लिखना शुरू करें। उदाहरण के लिए:

आप कोई भी संख्या लिख ​​सकते हैं, और जितने चाहें उतने हो सकते हैं। लेकिन आप हमेशा बता सकते हैं कि उनमें से कौन पहला है, कौन सा दूसरा है, और इसी तरह, हम उन्हें नंबर दे सकते हैं। यह एक संख्या अनुक्रम का एक उदाहरण है।

संख्यात्मक अनुक्रमसंख्याओं का एक समूह है, जिनमें से प्रत्येक को एक अद्वितीय संख्या दी जा सकती है।

दूसरे शब्दों में, प्रत्येक संख्या को एक निश्चित प्राकृतिक संख्या से जोड़ा जा सकता है, और केवल एक। और हम इस नंबर को इस सेट से किसी अन्य नंबर को असाइन नहीं करेंगे।

संख्या वाली संख्या को अनुक्रम का -वाँ सदस्य कहा जाता है।

हम आम तौर पर पूरे अनुक्रम को कुछ अक्षर (उदाहरण के लिए,) कहते हैं, और इस अनुक्रम के प्रत्येक सदस्य - इस सदस्य की संख्या के बराबर सूचकांक वाला एक ही अक्षर: ।

यह बहुत सुविधाजनक है यदि अनुक्रम का -वाँ सदस्य किसी सूत्र द्वारा दिया जा सकता है। उदाहरण के लिए, सूत्र

अनुक्रम सेट करता है:

और सूत्र निम्नलिखित अनुक्रम है:

उदाहरण के लिए, एक अंकगणितीय प्रगति एक अनुक्रम है (यहां पहला शब्द बराबर है, और अंतर)। या (, अंतर)।

nth टर्म फॉर्मूला

हम एक आवर्तक सूत्र को ऐसा सूत्र कहते हैं, जिसमें वें पद का पता लगाने के लिए, आपको पिछले या कई पिछले वाले को जानना होगा:

उदाहरण के लिए, इस तरह के एक सूत्र का उपयोग करके प्रगति का वां पद खोजने के लिए, हमें पिछले नौ की गणना करनी होगी। उदाहरण के लिए, चलो। फिर:

खैर, अब यह स्पष्ट है कि सूत्र क्या है?

प्रत्येक पंक्ति में, हम जोड़ते हैं, किसी संख्या से गुणा करते हैं। किसलिए? बहुत आसान: यह वर्तमान सदस्य माइनस की संख्या है:

अब और अधिक आरामदायक, है ना? हम जाँच:

अपने लिए तय करें:

एक समान्तर श्रेणी में, nवें पद का सूत्र ज्ञात कीजिए और सौवाँ पद ज्ञात कीजिए।

समाधान:

पहला सदस्य बराबर है। और क्या अंतर है? और यहाँ क्या है:

(आखिरकार, इसे अंतर कहा जाता है क्योंकि यह प्रगति के क्रमिक सदस्यों के अंतर के बराबर है)।

तो सूत्र है:

तो सौवाँ पद है:

से सभी प्राकृत संख्याओं का योग क्या है?

किंवदंती के अनुसार, महान गणितज्ञ कार्ल गॉस ने 9 साल का लड़का होने के कारण कुछ ही मिनटों में इस राशि की गणना की। उन्होंने देखा कि पहले और का योग आखरी दिनबराबर है, दूसरे और अंतिम का योग समान है, तीसरे और तीसरे का योग अंत से समान है, और इसी तरह। ऐसे कितने जोड़े हैं? यह सही है, सभी संख्याओं की आधी संख्या, यानी। इसलिए,

किसी भी अंकगणितीय प्रगति के पहले पदों के योग का सामान्य सूत्र होगा:

उदाहरण:
सभी का योग ज्ञात कीजिए दो अंकों की संख्या, गुणक।

समाधान:

ऐसा पहला नंबर है। प्रत्येक अगला पिछले एक में एक संख्या जोड़कर प्राप्त किया जाता है। इस प्रकार, हमारे लिए ब्याज की संख्या पहले पद और अंतर के साथ एक अंकगणितीय प्रगति बनाती है।

इस प्रगति के लिए वें पद का सूत्र है:

प्रगति में कितने पद हैं यदि वे सभी दो अंकों के होने चाहिए?

बहुत आसान: ।

प्रगति की अंतिम अवधि बराबर होगी। फिर योग:

उत्तर: ।

अब आप स्वयं निर्णय लें:

  1. हर दिन एथलीट पिछले दिन की तुलना में 1 मी अधिक दौड़ता है। यदि वह पहले दिन किमी मीटर दौड़ता है तो वह सप्ताहों में कितने किलोमीटर दौड़ेगा?
  2. एक साइकिल चालक पिछले दिन की तुलना में प्रत्येक दिन अधिक मील की सवारी करता है। पहले दिन उन्होंने किमी की यात्रा की। एक किलोमीटर की दूरी तय करने के लिए उसे कितने दिन ड्राइव करना होगा? यात्रा के अंतिम दिन वह कितने किलोमीटर की यात्रा करेगा?
  3. स्टोर में एक रेफ्रिजरेटर की कीमत हर साल उतनी ही कम हो जाती है। निर्धारित करें कि प्रत्येक वर्ष रेफ्रिजरेटर की कीमत कितनी कम हो जाती है, यदि रूबल के लिए बिक्री के लिए रखा जाता है, छह साल बाद इसे रूबल के लिए बेचा गया था।

उत्तर:

  1. यहां सबसे महत्वपूर्ण बात यह है कि अंकगणितीय प्रगति को पहचानना और उसके मापदंडों को निर्धारित करना है। इस मामले में, (सप्ताह = दिन)। आपको इस प्रगति की पहली शर्तों का योग निर्धारित करने की आवश्यकता है:
    .
    उत्तर:
  2. यहाँ यह दिया गया है: इसे खोजना आवश्यक है।
    जाहिर है, आपको पिछली समस्या के समान योग सूत्र का उपयोग करने की आवश्यकता है:
    .
    मानों को प्रतिस्थापित करें:

    जड़ स्पष्ट रूप से फिट नहीं है, तो जवाब।
    आइए -वें सदस्य के सूत्र का उपयोग करके अंतिम दिन में तय की गई दूरी की गणना करें:
    (किमी)।
    उत्तर:

  3. दिया गया: । पाना: ।
    यह आसान नहीं होता है:
    (रगड़ना)।
    उत्तर:

अंकगणितीय प्रगति। संक्षेप में मुख्य के बारे में

यह एक संख्यात्मक अनुक्रम है जिसमें आसन्न संख्याओं के बीच का अंतर समान और बराबर होता है।

अंकगणितीय प्रगति बढ़ रही है () और घट रही है ()।

उदाहरण के लिए:

अंकगणितीय प्रगति के n-वें सदस्य को खोजने का सूत्र

एक सूत्र के रूप में लिखा जाता है, जहाँ क्रम में संख्याओं की संख्या होती है।

एक समान्तर श्रेणी के सदस्यों की संपत्ति

यह प्रगति के सदस्य को ढूंढना आसान बनाता है यदि उसके पड़ोसी सदस्य ज्ञात हों - प्रगति में संख्याओं की संख्या कहां है।

एक समान्तर श्रेणी के सदस्यों का योग

राशि ज्ञात करने के दो तरीके हैं:

मूल्यों की संख्या कहां है।

मूल्यों की संख्या कहां है।

अनुदेश

एक अंकगणितीय प्रगति a1, a1+d, a1+2d..., a1+(n-1)d के रूप का अनुक्रम है। संख्या डी चरण प्रगतिजाहिर है, अंकगणित के एक मनमाना nवें पद का योग प्रगतिका रूप है: An = A1+(n-1)d। फिर सदस्यों में से एक को जानना प्रगति, सदस्य प्रगतिऔर कदम प्रगति, हो सकता है , अर्थात्, प्रगति अवधि की संख्या। जाहिर है, यह सूत्र n = (An-A1+d)/d द्वारा निर्धारित किया जाएगा।

अब mth पद ज्ञात करें प्रगतिऔर कुछ अन्य सदस्य प्रगति- n-th, लेकिन n , जैसा कि पिछले मामले में है, लेकिन यह ज्ञात है कि n और m मेल नहीं खाते। चरण प्रगतिसूत्र द्वारा गणना की जा सकती है: d = (An-Am)/(n-m)। तब n = (An-Am+md)/d.

यदि एक अंकगणित के कई तत्वों का योग प्रगति, साथ ही इसके पहले और अंतिम, तो इन तत्वों की संख्या भी निर्धारित की जा सकती है प्रगतिके बराबर होगा: S = ((A1+An)/2)n। फिर n = 2S/(A1+An) chdenov . हैं प्रगति. इस तथ्य का उपयोग करते हुए कि An = A1+(n-1)d, इस सूत्र को इस प्रकार लिखा जा सकता है: n = 2S/(2A1+(n-1)d)। इससे n को हल करके व्यक्त किया जा सकता है द्विघात समीकरण.

एक अंकगणितीय अनुक्रम संख्याओं का एक ऐसा क्रमबद्ध सेट है, जिसमें से प्रत्येक सदस्य, पहले को छोड़कर, पिछले एक से समान मात्रा में भिन्न होता है। इस स्थिरांक को प्रगति या उसके चरण का अंतर कहा जाता है और इसकी गणना अंकगणितीय प्रगति के ज्ञात सदस्यों से की जा सकती है।

अनुदेश

यदि समस्या की स्थितियों से पहले और दूसरे या पड़ोसी शब्दों के किसी अन्य जोड़े के मूल्यों को जाना जाता है, तो अंतर (डी) की गणना करने के लिए, बस पिछले पद को अगले पद से घटाएं। परिणामी मूल्य या तो सकारात्मक या नकारात्मक हो सकता है - यह इस बात पर निर्भर करता है कि प्रगति बढ़ रही है या नहीं। पर सामान्य फ़ॉर्मप्रगति के पड़ोसी सदस्यों के एक स्वेच्छ युग्म (aᵢ और aᵢ₊₁) का हल इस प्रकार लिखिए: d = aᵢ₊₁ - aᵢ।

ऐसी प्रगति के सदस्यों की एक जोड़ी के लिए, जिनमें से एक पहला (ए₁) है, और दूसरा कोई अन्य मनमाने ढंग से चुना गया है, कोई भी अंतर (डी) खोजने के लिए एक सूत्र भी बना सकता है। हालांकि, इस मामले में, अनुक्रम के मनमाने ढंग से चुने गए सदस्य की क्रम संख्या (i) ज्ञात होनी चाहिए। अंतर की गणना करने के लिए, दोनों संख्याओं को जोड़ें, और परिणाम को एक से कम किए गए एक मनमाना शब्द की क्रमिक संख्या से विभाजित करें। पर सामान्य दृष्टि सेइस सूत्र को इस प्रकार लिखें: d = (a₁+ aᵢ)/(i-1)।

यदि, क्रमिक संख्या i के साथ अंकगणितीय प्रगति के एक मनमाना सदस्य के अलावा, क्रमांक संख्या u वाला कोई अन्य सदस्य ज्ञात है, तो पिछले चरण से सूत्र को तदनुसार बदलें। इस मामले में, प्रगति का अंतर (डी) इन दो शब्दों के योग को उनकी क्रमिक संख्याओं में अंतर से विभाजित किया जाएगा: d = (aᵢ+aᵥ)/(i-v)।

अंतर (डी) की गणना के लिए सूत्र कुछ अधिक जटिल हो जाता है, यदि समस्या की स्थितियों में, इसके पहले सदस्य (ए₁) का मूल्य और दी गई संख्या (आई) के पहले सदस्यों का योग (एसᵢ) अंकगणितीय क्रम दिया गया है। वांछित मूल्य प्राप्त करने के लिए, योग को उन पदों की संख्या से विभाजित करें जो इसे बनाते हैं, अनुक्रम में पहली संख्या के मूल्य को घटाते हैं, और परिणाम को दोगुना करते हैं। परिणामी मान को उन पदों की संख्या से विभाजित करें, जो योग को एक से घटाकर बनाते हैं। सामान्य तौर पर, विवेचक की गणना के लिए सूत्र इस प्रकार लिखें: d = 2*(Sᵢ/i-a₁)/(i-1)।

क्या मुख्य मुद्दासूत्र?

यह सूत्र आपको खोजने की अनुमति देता है कोई उनके नंबर से" एन" .

बेशक, आपको पहला टर्म जानने की जरूरत है एक 1और प्रगति अंतर डी, ठीक है, इन मापदंडों के बिना, आप एक विशिष्ट प्रगति नहीं लिख सकते।

इस सूत्र को याद रखना (या धोखा देना) पर्याप्त नहीं है। इसके सार को आत्मसात करना और सूत्र को विभिन्न कार्यों में लागू करना आवश्यक है। हाँ, और सही समय पर मत भूलना, हाँ...) कैसे भूलना नहीं- मुझे नहीं पता। परंतु कैसे याद रखेंयदि आवश्यक हो तो मैं आपको एक संकेत दूंगा। उन लोगों के लिए जो अंत तक पाठ में महारत हासिल करते हैं।)

तो, आइए अंकगणितीय प्रगति के n-वें सदस्य के सूत्र से निपटें।

सामान्य रूप से एक सूत्र क्या है - हम कल्पना करते हैं।) एक अंकगणितीय प्रगति क्या है, एक सदस्य संख्या, एक प्रगति अंतर - पिछले पाठ में स्पष्ट रूप से कहा गया है। अगर आपने नहीं पढ़ा है तो देख लीजिए। वहां सब कुछ सरल है। यह पता लगाना बाकी है क्या नौवां सदस्य.

सामान्य तौर पर प्रगति को संख्याओं की एक श्रृंखला के रूप में लिखा जा सकता है:

ए 1, ए 2, ए 3, ए 4, ए 5, .....

एक 1- अंकगणितीय प्रगति के पहले पद को दर्शाता है, एक 3- तीसरा सदस्य एक 4- चौथा, और इसी तरह। यदि हम पांचवें कार्यकाल में रुचि रखते हैं, तो मान लें कि हम साथ काम कर रहे हैं एक 5, अगर एक सौ बीसवां - से एक 120.

सामान्य रूप से कैसे परिभाषित करें कोईअंकगणितीय प्रगति का सदस्य, s कोईसंख्या? बहुत आसान! ऐशे ही:

एक

यह वही है अंकगणितीय प्रगति के n-वें सदस्य।अक्षर n के तहत सदस्यों की सभी संख्याएँ एक साथ छिपी हुई हैं: 1, 2, 3, 4, और इसी तरह।

और ऐसा रिकॉर्ड हमें क्या देता है? जरा सोचिए, उन्होंने एक नंबर की जगह एक लेटर लिख दिया...

यह अंकन हमें अंकगणितीय प्रगति के साथ काम करने के लिए एक शक्तिशाली उपकरण देता है। नोटेशन का उपयोग करना एक, हम जल्दी से पा सकते हैं कोईसदस्य कोईअंकगणितीय प्रगति। और कार्यों का एक गुच्छा प्रगति में हल करने के लिए। आप आगे देखेंगे।

अंकगणितीय प्रगति के nवें सदस्य के सूत्र में:

ए एन = ए 1 + (एन -1) डी

एक 1- अंकगणितीय प्रगति का पहला सदस्य;

एन- सदस्य संख्या।

सूत्र किसी भी प्रगति के प्रमुख मापदंडों को जोड़ता है: एक ; एक 1 ; डीतथा एन. इन मापदंडों के इर्द-गिर्द, सभी पहेलियाँ प्रगति में घूमती हैं।

एक विशिष्ट प्रगति लिखने के लिए nवें पद के सूत्र का भी उपयोग किया जा सकता है। उदाहरण के लिए, समस्या में यह कहा जा सकता है कि प्रगति शर्त द्वारा दी गई है:

ए एन = 5 + (एन -1) 2.

ऐसी समस्या भ्रमित भी कर सकती है ... कोई श्रृंखला नहीं है, कोई अंतर नहीं है ... लेकिन, सूत्र के साथ स्थिति की तुलना करना, यह पता लगाना आसान है कि इस प्रगति में ए 1 \u003d 5, और डी \u003d 2.

और यह और भी गुस्सा हो सकता है!) अगर हम एक ही शर्त लेते हैं: ए एन = 5 + (एन -1) 2,हाँ, कोष्ठक खोलिए और समान संख्याएँ दीजिए? हमें एक नया सूत्र मिलता है:

एक = 3 + 2n।

यह केवल सामान्य नहीं, बल्कि एक विशिष्ट प्रगति के लिए। यहीं पर घाटा है। कुछ लोग सोचते हैं कि पहला पद तीन है। हालांकि वास्तव में पहला सदस्य पांच है ... थोड़ा कम हम ऐसे संशोधित फॉर्मूले के साथ काम करेंगे।

प्रगति के कार्यों में एक और संकेतन है - एक एन+1. यह है, आपने अनुमान लगाया है, प्रगति का "एन प्लस पहला" शब्द। इसका अर्थ सरल और हानिरहित है।) यह प्रगति का सदस्य है, जिसकी संख्या अधिक संख्याएन से एक। उदाहरण के लिए, यदि किसी समस्या में हम लेते हैं एकपाँचवाँ कार्यकाल, फिर एक एन+1छठे सदस्य होंगे। आदि।

अक्सर पदनाम एक एन+1पुनरावर्ती सूत्रों में होता है। इस भयानक शब्द से डरो मत!) यह एक अंकगणितीय प्रगति के शब्द को व्यक्त करने का एक तरीका है पिछले एक के माध्यम से।मान लीजिए कि हमें पुनरावर्ती सूत्र का उपयोग करके इस रूप में एक अंकगणितीय प्रगति दी गई है:

एक एन+1 = एक एन +3

ए 2 = ए 1 + 3 = 5+3 = 8

ए 3 = ए 2 + 3 = 8+3 = 11

चौथा - तीसरे के माध्यम से, पांचवें - चौथे के माध्यम से, और इसी तरह। और तुरंत कैसे गिनें, बीसवाँ पद कहें, एक 20? लेकिन कोई रास्ता नहीं!) जबकि 19वां पद ज्ञात नहीं है, 20वीं की गणना नहीं की जा सकती है। इसमें है मूलभूत अंतर nवें पद के सूत्र से आवर्तक सूत्र। रिकर्सिव केवल के माध्यम से काम करता है पिछलापद, और nवें पद का सूत्र - के माध्यम से सबसे पहलाऔर अनुमति देता है तुरंतकिसी भी सदस्य को उसके नंबर से खोजें। संख्याओं की पूरी श्रृंखला को क्रम में नहीं गिनना।

अंकगणितीय प्रगति में, पुनरावर्ती सूत्र को नियमित सूत्र में बदलना आसान होता है। लगातार पदों की एक जोड़ी की गणना करें, अंतर की गणना करें डी,खोजें, यदि आवश्यक हो, तो पहला पद एक 1, सूत्र को सामान्य रूप में लिखें, और उसके साथ कार्य करें। GIA में, ऐसे कार्य अक्सर पाए जाते हैं।

अंकगणितीय प्रगति के n-वें सदस्य के सूत्र का अनुप्रयोग।

शुरू करने के लिए, विचार करें प्रत्यक्ष आवेदनसूत्र पिछले पाठ के अंत में एक समस्या थी:

एक अंकगणितीय प्रगति (ए एन) को देखते हुए। यदि a 1 =3 और d=1/6 हो तो 121 ज्ञात कीजिए।

इस समस्या को बिना किसी सूत्र के हल किया जा सकता है, केवल अंकगणितीय प्रगति के अर्थ के आधार पर। जोड़ें, हाँ जोड़ें ... एक या दो घंटे।)

और सूत्र के अनुसार घोल में एक मिनट से भी कम समय लगेगा। आप इसे समय दे सकते हैं।) हम तय करते हैं।

शर्तें सूत्र का उपयोग करने के लिए सभी डेटा प्रदान करती हैं: ए 1 \u003d 3, डी \u003d 1/6।यह देखना बाकी है क्या एन।कोई बात नहीं! हमें खोजने की जरूरत है एक 121. यहाँ हम लिखते हैं:

ध्यान दीजिए! एक सूचकांक के बजाय एनएक विशिष्ट संख्या दिखाई दी: 121. जो काफी तार्किक है।) हम अंकगणितीय प्रगति के सदस्य में रुचि रखते हैं नंबर एक सौ इक्कीस।यह हमारा होगा एन।यही अर्थ है एन= 121 हम आगे सूत्र में, कोष्ठकों में प्रतिस्थापित करेंगे। सूत्र में सभी संख्याओं को रखें और गणना करें:

ए 121 = 3 + (121-1) 1/6 = 3+20 = 23

यही सब है इसके लिए। जितनी जल्दी कोई पांच सौ दसवां सदस्य, और एक हजार और तीसरा, कोई भी ढूंढ सकता है। हम इसके बजाय डालते हैं एन वांछित संख्यापत्र के सूचकांक में " एक"और कोष्ठक में, और हम विचार करते हैं।

मैं आपको सार याद दिलाता हूं: यह सूत्र आपको खोजने की अनुमति देता है कोईएक अंकगणितीय प्रगति की अवधि उनके नंबर से" एन" .

आइए समस्या को बेहतर तरीके से हल करें। मान लें कि हमें निम्नलिखित समस्या है:

समांतर श्रेणी (a n) का पहला पद ज्ञात कीजिए यदि a 17 =-2; डी = -0.5।

यदि आपको कोई कठिनाई है, तो मैं पहला कदम सुझाऊंगा। एक समान्तर श्रेणी के nवें पद का सूत्र लिखिए!हाँ हाँ। हाथ से लिखें, ठीक अपनी नोटबुक में:

ए एन = ए 1 + (एन -1) डी

और अब, सूत्र के अक्षरों को देखते हुए, हम समझते हैं कि हमारे पास क्या डेटा है और क्या गायब है? उपलब्ध घ = -0.5,सत्रहवाँ सदस्य है ... सब कुछ? अगर आपको लगता है कि बस इतना ही है, तो आप समस्या का समाधान नहीं कर सकते, हाँ...

हमारा भी एक नंबर है एन! हालत में एक 17 = -2छुपे हुए दो विकल्प।यह सत्रहवें सदस्य (-2) और इसकी संख्या (17) दोनों का मान है। वे। एन = 17।यह "ट्रिफ़ल" अक्सर सिर के पीछे से फिसल जाता है, और इसके बिना, ("ट्रिफ़ल" के बिना, सिर नहीं!) समस्या हल नहीं हो सकती है। हालांकि ... और बिना सिर के भी।)

अब हम मूर्खतापूर्ण तरीके से अपने डेटा को सूत्र में बदल सकते हैं:

ए 17 \u003d ए 1 + (17-1) (-0.5)

ओह हां, एक 17हम जानते हैं कि यह -2 है। ठीक है, चलो इसे डालते हैं:

-2 \u003d ए 1 + (17-1) (-0.5)

वह, संक्षेप में, सब कुछ है। यह सूत्र से अंकगणितीय प्रगति के पहले पद को व्यक्त करने और गणना करने के लिए बनी हुई है। आपको उत्तर मिलता है: ए 1 = 6.

ऐसी तकनीक - सूत्र लिखना और केवल ज्ञात डेटा को प्रतिस्थापित करना - सरल कार्यों में बहुत मदद करता है। ठीक है, आपको निश्चित रूप से एक सूत्र से एक चर व्यक्त करने में सक्षम होना चाहिए, लेकिन क्या करना है!? इस कौशल के बिना गणित की पढ़ाई बिल्कुल भी नहीं हो सकती...

एक और लोकप्रिय समस्या:

समांतर श्रेणी (a n) का अंतर ज्ञात कीजिए यदि a 1 =2; एक 15 = 12।

हम क्या कर रहे हैं? आपको आश्चर्य होगा, हम सूत्र लिखते हैं!)

ए एन = ए 1 + (एन -1) डी

विचार करें कि हम क्या जानते हैं: ए 1 = 2; एक 15 =12; और (विशेष हाइलाइट!) एन = 15। सूत्र में स्थानापन्न करने के लिए स्वतंत्र महसूस करें:

12=2 + (15-1)डी

चलो अंकगणित करते हैं।)

12=2 + 14डी

डी=10/14 = 5/7

यह सही जवाब है।

तो, कार्य एक एन, एक 1तथा डीनिर्णय लिया। यह सीखना बाकी है कि संख्या कैसे प्राप्त करें:

संख्या 99 अंकगणितीय प्रगति (ए एन) का सदस्य है, जहां 1 =12; घ = 3. इस सदस्य की संख्या ज्ञात कीजिए।

हम ज्ञात मात्राओं को nवें पद के सूत्र में प्रतिस्थापित करते हैं:

ए एन = 12 + (एन -1) 3

पहली नज़र में, यहाँ दो अज्ञात मात्राएँ हैं: एक एन और एन।परंतु एकसंख्या के साथ प्रगति का कुछ सदस्य है एन... और प्रगति के इस सदस्य को हम जानते हैं! यह 99 है। हमें उसका नंबर नहीं पता। एन,इसलिए इस नंबर को भी खोजने की जरूरत है। प्रगति पद 99 को सूत्र में बदलें:

99 = 12 + (एन -1) 3

हम सूत्र से व्यक्त करते हैं एन, हमें लगता है कि। हमें उत्तर मिलता है: एन = 30।

और अब एक ही विषय पर एक समस्या, लेकिन अधिक रचनात्मक):

निर्धारित करें कि क्या संख्या 117 अंकगणितीय प्रगति (ए एन) का सदस्य होगा:

-3,6; -2,4; -1,2 ...

आइए फिर से सूत्र लिखें। क्या, कोई विकल्प नहीं है? हम्म... हमें आँखों की आवश्यकता क्यों है?) क्या हम प्रगति के पहले सदस्य को देखते हैं? हम देखते हैं। यह -3.6 है। आप सुरक्षित रूप से लिख सकते हैं: ए 1 \u003d -3.6।अंतर डीश्रृंखला से निर्धारित किया जा सकता है? यह आसान है यदि आप जानते हैं कि अंकगणितीय प्रगति का अंतर क्या है:

डी = -2.4 - (-3.6) = 1.2

हां, हमने सबसे आसान काम किया। यह अज्ञात नंबर से निपटने के लिए बनी हुई है एनऔर एक समझ से बाहर की संख्या 117। पिछली समस्या में, कम से कम यह ज्ञात था कि यह प्रगति का शब्द था जो दिया गया था। लेकिन यहाँ हम यह भी नहीं जानते कि ... कैसे हो!? अच्छा, कैसे होना है, कैसे होना है... चालू करें रचनात्मक कौशल!)

हम मान लीजिएआखिरकार, 117 हमारी प्रगति का सदस्य है। एक अनजान नंबर के साथ एन. और, पिछली समस्या की तरह, आइए इस संख्या को खोजने का प्रयास करें। वे। हम सूत्र लिखते हैं (हाँ-हाँ!)) और अपनी संख्याएँ प्रतिस्थापित करते हैं:

117 = -3.6 + (एन-1) 1.2

फिर से हम सूत्र से व्यक्त करते हैंएन, हम गिनते हैं और प्राप्त करते हैं:

उफ़! नंबर निकला भिन्नात्मक!डेढ़ सौ। और प्रगति में भिन्नात्मक संख्याएं नहीं हो सकता।हम क्या निष्कर्ष निकालते हैं? हाँ! संख्या 117 नहीं हैहमारी प्रगति के सदस्य। यह 101वें और 102वें सदस्यों के बीच कहीं है। यदि संख्या प्राकृतिक निकली, अर्थात। सकारात्मक पूर्णांक है, तो संख्या मिली संख्या के साथ प्रगति का सदस्य होगा। और हमारे मामले में, समस्या का उत्तर होगा: ना।

कार्य आधारित वास्तविक संस्करणजीआईए:

अंकगणितीय प्रगति शर्त द्वारा दी गई है:

ए एन \u003d -4 + 6.8n

प्रगति के पहले और दसवें पद ज्ञात कीजिए।

यहां प्रगति को असामान्य तरीके से सेट किया गया है। किसी प्रकार का सूत्र ... होता है।) हालाँकि, यह सूत्र (जैसा कि मैंने ऊपर लिखा था) - अंकगणितीय प्रगति के n-वें सदस्य का सूत्र भी!वह भी अनुमति देती है प्रगति के किसी भी सदस्य को उसकी संख्या से ज्ञात कीजिए।

हम पहले सदस्य की तलाश कर रहे हैं। वह जो सोचता है। कि पहला पद शून्य से चार है, मोटे तौर पर गलत है!) क्योंकि समस्या में सूत्र संशोधित है। इसमें अंकगणितीय प्रगति का पहला पद छुपे हुए।कुछ नहीं, हम इसे अभी खोज लेंगे।)

पिछले कार्यों की तरह, हम स्थानापन्न करते हैं एन = 1इस सूत्र में:

ए 1 \u003d -4 + 6.8 1 \u003d 2.8

यहां! पहला पद 2.8 है, -4 नहीं!

इसी तरह, हम दसवें पद की तलाश कर रहे हैं:

ए 10 \u003d -4 + 6.8 10 \u003d 64

यही सब है इसके लिए।

और अब, उन लोगों के लिए जिन्होंने इन पंक्तियों को पढ़ा है, वादा किया गया बोनस।)

मान लीजिए, जीआईए या एकीकृत राज्य परीक्षा की कठिन लड़ाई की स्थिति में, आप अंकगणितीय प्रगति के n-वें सदस्य के उपयोगी सूत्र को भूल गए हैं। कुछ दिमाग में आता है, लेकिन किसी तरह अनिश्चित रूप से ... चाहे एनवहाँ, या एन+1, या एन-1...हो कैसे!?

शांत! यह सूत्र निकालना आसान है। बहुत सख्त नहीं है, लेकिन आत्मविश्वास और सही निर्णय के लिए निश्चित रूप से पर्याप्त है!) निष्कर्ष के लिए, अंकगणितीय प्रगति के प्रारंभिक अर्थ को याद रखना और कुछ मिनटों का समय है। आपको बस एक तस्वीर खींचने की जरूरत है। विस्तृत जानकारी के लिए।

हम एक संख्यात्मक अक्ष खींचते हैं और उस पर पहले वाले को चिह्नित करते हैं। दूसरा, तीसरा, आदि सदस्य। और अंतर नोट करें डीसदस्यों के बीच। ऐशे ही:

हम चित्र को देखते हैं और सोचते हैं: दूसरा पद किसके बराबर है? दूसरा एक डी:

एक 2 =ए 1 + 1 डी

तीसरा कार्यकाल क्या है? तीसराटर्म पहले टर्म प्लस के बराबर है दो डी.

एक 3 =ए 1 + 2 डी

क्या आपको यह समझ आया? मैं कुछ शब्दों को बिना कुछ लिए बोल्ड में नहीं डालता। ठीक है, एक और कदम।)

चौथा पद क्या है? चौथीटर्म पहले टर्म प्लस के बराबर है तीन डी.

एक 4 =ए 1 + 3 डी

यह महसूस करने का समय है कि अंतराल की संख्या, अर्थात। डी, हमेशा आप जिस सदस्य की तलाश कर रहे हैं, उसकी संख्या से एक कम एन. यानी संख्या तक n, अंतराल की संख्याहोगा एन-1.तो, सूत्र होगा (कोई विकल्प नहीं!):

ए एन = ए 1 + (एन -1) डी

सामान्य तौर पर, दृश्य चित्र गणित में कई समस्याओं को हल करने में बहुत सहायक होते हैं। चित्रों की उपेक्षा न करें। लेकिन अगर चित्र बनाना मुश्किल है, तो ... केवल एक सूत्र!) इसके अलावा, nवें पद का सूत्र आपको गणित के पूरे शक्तिशाली शस्त्रागार को समाधान से जोड़ने की अनुमति देता है - समीकरण, असमानता, सिस्टम, आदि। आप समीकरण में तस्वीर नहीं लगा सकते...

स्वतंत्र निर्णय के लिए कार्य।

वार्म-अप के लिए:

1. समांतर श्रेणी में (a n) a 2 =3; ए 5 \u003d 5.1. एक 3 खोजें।

संकेत: चित्र के अनुसार, कार्य 20 सेकंड में हल हो जाता है ... सूत्र के अनुसार, यह अधिक कठिन हो जाता है। लेकिन सूत्र में महारत हासिल करने के लिए, यह अधिक उपयोगी है।) धारा 555 में, इस समस्या को चित्र और सूत्र दोनों द्वारा हल किया गया है। अंतर महसूस करें!)

और यह अब वार्म-अप नहीं है।)

2. अंकगणितीय प्रगति में (ए एन) ए 85 \u003d 19.1; a 236 =49, 3. एक 3 खोजें।

क्या, चित्र बनाने में अनिच्छा?) फिर भी! यह सूत्र में बेहतर है, हाँ...

3. अंकगणितीय प्रगति शर्त द्वारा दी गई है:ए 1 \u003d -5.5; एक एन+1 = एक एन +0.5। इस प्रगति का एक सौ पच्चीसवाँ पद ज्ञात कीजिए।

इस कार्य में, प्रगति को आवर्तक तरीके से दिया जाता है। लेकिन एक सौ पच्चीसवें कार्यकाल तक की गिनती... हर कोई ऐसा कारनामा नहीं कर सकता।) लेकिन नौवें पद का सूत्र हर किसी की शक्ति के भीतर है!

4. एक समान्तर श्रेणी (a n) को देखते हुए:

-148; -143,8; -139,6; -135,4, .....

प्रगति के सबसे छोटे धनात्मक पदों की संख्या ज्ञात कीजिए।

5. कार्य 4 की शर्त के अनुसार, प्रगति के सबसे छोटे धनात्मक और सबसे बड़े ऋणात्मक सदस्यों का योग ज्ञात कीजिए।

6. बढ़ती हुई अंकगणितीय प्रगति के पांचवें और बारहवें पदों का गुणनफल -2.5 है, और तीसरे और ग्यारहवें पदों का योग शून्य है। एक 14 खोजें।

सबसे आसान काम नहीं, हाँ ...) यहाँ "उंगलियों पर" विधि काम नहीं करेगी। आपको सूत्र लिखना है और समीकरणों को हल करना है।

उत्तर (अव्यवस्था में):

3,7; 3,5; 2,2; 37; 2,7; 56,5

हो गई? यह अच्छा है!)

सब कुछ नहीं चलता? हो जाता है। वैसे, अंतिम कार्य में एक सूक्ष्म बिंदु है। समस्या को पढ़ते समय सावधानी की आवश्यकता होगी। और तर्क।

इन सभी समस्याओं के समाधान पर धारा 555 में विस्तार से चर्चा की गई है। और चौथे के लिए काल्पनिक तत्व, और छठे के लिए सूक्ष्म क्षण, और nवें पद के सूत्र के लिए किसी भी समस्या को हल करने के लिए सामान्य दृष्टिकोण - सब कुछ चित्रित किया गया है। मेरा सुझाव है।

अगर आपको यह साइट पसंद है...

वैसे, मेरे पास आपके लिए कुछ और दिलचस्प साइटें हैं।)

आप उदाहरणों को हल करने का अभ्यास कर सकते हैं और अपने स्तर का पता लगा सकते हैं। तत्काल सत्यापन के साथ परीक्षण। सीखना - रुचि के साथ!)

आप कार्यों और डेरिवेटिव से परिचित हो सकते हैं।

संख्यात्मक अनुक्रम की अवधारणा का तात्पर्य है कि प्रत्येक प्राकृतिक संख्या कुछ वास्तविक मूल्य से मेल खाती है। संख्याओं की ऐसी श्रृंखला मनमानी हो सकती है और इसमें कुछ गुण होते हैं - एक प्रगति। बाद के मामले में, अनुक्रम के प्रत्येक बाद के तत्व (सदस्य) की गणना पिछले एक का उपयोग करके की जा सकती है।

एक अंकगणितीय प्रगति संख्यात्मक मूल्यों का एक क्रम है जिसमें इसके पड़ोसी सदस्य एक ही संख्या से एक दूसरे से भिन्न होते हैं (श्रृंखला के सभी तत्व, 2 से शुरू होकर, समान संपत्ति रखते हैं)। यह संख्या - पिछले और बाद के सदस्य के बीच का अंतर - स्थिर है और इसे प्रगति अंतर कहा जाता है।

प्रगति अंतर: परिभाषा

एक अनुक्रम पर विचार करें जिसमें j मान A = a(1), a(2), a(3), a(4) … a(j), j हैं जो प्राकृतिक संख्याओं N के सेट से संबंधित हैं। एक अंकगणितीय प्रगति, इसकी परिभाषा के अनुसार, एक अनुक्रम है, जिसमें a(3) - a(2) = a(4) - a(3) = a(5) - a(4) = ... = a(j) - ए (जे -1) = डी। d का मान इस प्रगति का वांछित अंतर है।

डी = ए (जे) - ए (जे -1)।

आवंटित करें:

  • एक बढ़ती हुई प्रगति, जिस स्थिति में d> 0. उदाहरण: 4, 8, 12, 16, 20, ...
  • घटती प्रगति, फिर d< 0. Пример: 18, 13, 8, 3, -2, …

प्रगति और उसके मनमाने तत्वों का अंतर

यदि प्रगति के 2 मनमाने सदस्य (i-th, k-th) ज्ञात हैं, तो इस अनुक्रम के लिए अंतर संबंध के आधार पर स्थापित किया जा सकता है:

a(i) = a(k) + (i - k)*d, इसलिए d = (a(i) - a(k))/(i-k)।

प्रगति अंतर और इसका पहला कार्यकाल

यह अभिव्यक्ति अज्ञात मान को केवल उन मामलों में निर्धारित करने में मदद करेगी जहां अनुक्रम तत्व की संख्या ज्ञात है।

प्रगति अंतर और उसका योग

एक प्रगति का योग उसकी शर्तों का योग है। इसके पहले j तत्वों के कुल मान की गणना करने के लिए, संबंधित सूत्र का उपयोग करें:

S(j) =((a(1) + a(j))/2)*j, लेकिन चूँकि a(j) = a(1) + d(j – 1), तब S(j) = ((a(1) + a(1) + d(j – 1))/2)*j=(( 2a(1) + d(– 1))/2)*j.

दोस्तों के साथ शेयर करें या अपने लिए सेव करें:

लोड हो रहा है...