Изразете променлива от онлайн уравнение. Решаване на уравнения с две променливи

В това видео ще анализираме цял набор от линейни уравнения, които се решават с помощта на един и същ алгоритъм - затова се наричат ​​най-простите.

Като начало, нека дефинираме: какво е линейно уравнение и кое от тях трябва да се нарече най-простото?

Линейно уравнение е това, в което има само една променлива и то само на първа степен.

Най-простото уравнение означава конструкцията:

други линейни уравнениясе свеждат до най-простите с помощта на алгоритъма:

  1. Отворени скоби, ако има такива;
  2. Преместете термини, съдържащи променлива от едната страна на знака за равенство, и термини без променлива от другата;
  3. Преместете подобни термини отляво и отдясно на знака за равенство;
  4. Разделете полученото уравнение на коефициента на променливата $x$.

Разбира се, този алгоритъм не винаги помага. Факт е, че понякога след всички тези машинации коефициентът на променливата $x$ се оказва равен на нула. В този случай са възможни два варианта:

  1. Уравнението изобщо няма решения. Например, когато получите нещо като $0\cdot x=8$, т.е. отляво е нула, а отдясно е различно от нула число. Във видеото по-долу ще разгледаме няколко причини, поради които тази ситуация е възможна.
  2. Решението е всички числа. Единственият случай, когато това е възможно, е когато уравнението е сведено до конструкцията $0\cdot x=0$. Съвсем логично е, че каквито и $x$ да заместим, пак ще се получи „нула е равна на нула“, т.е. правилно числово равенство.

А сега нека да видим как всичко работи на примера на реални проблеми.

Примери за решаване на уравнения

Днес се занимаваме с линейни уравнения и то само с най-простите. Най-общо линейно уравнение означава всяко равенство, което съдържа точно една променлива и то само на първа степен.

Такива конструкции се решават приблизително по същия начин:

  1. На първо място, трябва да отворите скобите, ако има такива (както в последния ни пример);
  2. След това донесете подобни
  3. Накрая изолирайте променливата, т.е. всичко, което е свързано с променливата - термините, в които се съдържа - се прехвърля от едната страна, а всичко, което остава без нея, се прехвърля от другата страна.

След това, като правило, трябва да донесете подобни от всяка страна на полученото равенство и след това остава само да се раздели на коефициента при "x" и ще получим окончателния отговор.

На теория това изглежда хубаво и просто, но на практика дори опитни гимназисти могат да направят обидни грешки в доста прости линейни уравнения. Обикновено се допускат грешки или при отваряне на скоби, или при броене на "плюсове" и "минуси".

Освен това се случва линейното уравнение изобщо да няма решения или така че решението да е цялата числова линия, т.е. произволен брой. Ще анализираме тези тънкости в днешния урок. Но ще започнем, както вече разбрахте, с най-много прости задачи.

Схема за решаване на прости линейни уравнения

Като начало нека отново напиша цялата схема за решаване на най-простите линейни уравнения:

  1. Разгънете скобите, ако има такива.
  2. Отделете променливите, т.е. всичко, което съдържа "х" се прехвърля на едната страна, а без "х" - на другата.
  3. Представяме подобни условия.
  4. Разделяме всичко на коефициента при "х".

Разбира се, тази схема не винаги работи, има някои тънкости и трикове и сега ще се запознаем с тях.

Решаване на реални примери на прости линейни уравнения

Задача №1

В първата стъпка се изисква да отворим скобите. Но те не са в този пример, така че пропускаме тази стъпка. Във втората стъпка трябва да изолираме променливите. Моля, обърнете внимание: говорим само за индивидуални условия. нека напишем:

Даваме подобни термини отляво и отдясно, но това вече е направено тук. Затова преминаваме към четвъртата стъпка: разделяне на коефициент:

\[\frac(6x)(6)=-\frac(72)(6)\]

Тук получихме отговора.

Задача №2

В тази задача можем да наблюдаваме скобите, така че нека ги разширим:

И отляво, и отдясно виждаме приблизително една и съща конструкция, но нека действаме според алгоритъма, т.е. секвестр променливи:

Ето някои като:

В какви корени работи това? Отговор: за всякакви. Следователно можем да напишем, че $x$ е произволно число.

Задача №3

Третото линейно уравнение вече е по-интересно:

\[\left(6-x \right)+\left(12+x \right)-\left(3-2x \right)=15\]

Тук има няколко скоби, но те не се умножават по нищо, а просто имат различни знаци пред тях. Нека ги разделим:

Извършваме втората стъпка, която вече ни е известна:

\[-x+x+2x=15-6-12+3\]

Нека изчислим:

Ние изпълняваме последна стъпка- разделете всичко на коефициента при "x":

\[\frac(2x)(x)=\frac(0)(2)\]

Неща, които трябва да запомните, когато решавате линейни уравнения

Ако пренебрегнем твърде простите задачи, бих искал да кажа следното:

  • Както казах по-горе, не всяко линейно уравнение има решение - понякога просто няма корени;
  • Дори да има корени, между тях може да влезе нула - в това няма нищо лошо.

Нулата е същото число като останалите, не трябва по някакъв начин да го дискриминирате или да предполагате, че ако получите нула, значи сте направили нещо нередно.

Друга особеност е свързана с разширяването на скобите. Моля, обърнете внимание: когато има „минус“ пред тях, ние го премахваме, но в скоби променяме знаците на противоположност. И тогава можем да го отворим според стандартните алгоритми: ще получим това, което видяхме в изчисленията по-горе.

Разбирайки това прост фактще ви предпази от допускане на глупави и болезнени грешки в гимназията, когато правенето на такива неща се приема за даденост.

Решаване на сложни линейни уравнения

Нека да преминем към повече сложни уравнения. Сега конструкциите ще станат по-сложни и ще се появи квадратична функция при извършване на различни трансформации. Но не трябва да се страхувате от това, защото ако, според намерението на автора, решим линейно уравнение, тогава в процеса на трансформация всички мономи, съдържащи квадратична функция, задължително ще бъдат намалени.

Пример #1

Очевидно първата стъпка е отварянето на скобите. Нека направим това много внимателно:

Сега да вземем поверителността:

\[-x+6((x)^(2))-6((x)^(2))+x=-12\]

Ето някои като:

Очевидно това уравнение няма решения, така че в отговора пишем следното:

\[\сорт \]

или без корени.

Пример #2

Изпълняваме същите стъпки. Първа стъпка:

Нека преместим всичко с променлива наляво, а без нея - надясно:

Ето някои като:

Очевидно това линейно уравнение няма решение, така че го записваме така:

\[\varnothing\],

или без корени.

Нюанси на решението

И двете уравнения са напълно решени. На примера на тези два израза отново се уверихме, че дори в най-простите линейни уравнения всичко може да не е толкова просто: може да има или едно, или нито едно, или безкрайно много. В нашия случай разгледахме две уравнения, и в двете просто няма корени.

Но бих искал да обърна внимание на друг факт: как да работите със скоби и как да ги разширите, ако пред тях има знак минус. Помислете за този израз:

Преди да отворите, трябва да умножите всичко по "x". Моля, обърнете внимание: умножете всеки отделен термин. Вътре има два термина - съответно два термина и се умножава.

И едва след като тези на пръв поглед елементарни, но много важни и опасни трансформации са завършени, може да се отвори скобата от гледна точка на това, че след нея има знак минус. Да, да: едва сега, когато трансформациите са направени, ние си спомняме, че има знак минус пред скобите, което означава, че всичко отдолу просто променя знаците. В същото време самите скоби изчезват и, най-важното, предният „минус“ също изчезва.

Правим същото с второто уравнение:

Неслучайно обръщам внимание на тези дребни, на пръв поглед незначителни факти. Защото решаването на уравнения винаги е последователност елементарни трансформации, където невъзможността за ясно и компетентно извършване на прости действия води до факта, че учениците от гимназията идват при мен и отново се учат как да решават такива прости уравнения.

Разбира се, ще дойде ден, когато ще усъвършенствате тези умения до автоматизм. Вече не е нужно да извършвате толкова много трансформации всеки път, ще пишете всичко на един ред. Но докато просто учите, трябва да напишете всяко действие отделно.

Решаване на още по-сложни линейни уравнения

Това, което ще решим сега, трудно може да се нарече най-простата задача, но смисълът остава същият.

Задача №1

\[\left(7x+1 \right)\left(3x-1 \right)-21((x)^(2))=3\]

Нека умножим всички елементи от първата част:

Да направим отстъпление:

Ето някои като:

Нека направим последната стъпка:

\[\frac(-4x)(4)=\frac(4)(-4)\]

Ето нашия окончателен отговор. И въпреки факта, че в процеса на решаване имахме коефициенти с квадратична функция, обаче, те взаимно се компенсират, което прави уравнението точно линейно, а не квадратно.

Задача №2

\[\left(1-4x \right)\left(1-3x \right)=6x\left(2x-1 \right)\]

Нека направим първата стъпка внимателно: умножете всеки елемент в първата скоба по всеки елемент във втората. Общо четири нови члена трябва да бъдат получени след трансформации:

А сега внимателно изпълнете умножението във всеки член:

Нека преместим членовете с "x" наляво, а без - надясно:

\[-3x-4x+12((x)^(2))-12((x)^(2))+6x=-1\]

Ето подобни термини:

Получихме категоричен отговор.

Нюанси на решението

Най-важната забележка за тези две уравнения е следната: щом започнем да умножаваме скобите, в които има член, по-голям от него, тогава това се прави според следващото правило: вземаме първия член от първия и умножаваме с всеки елемент от втория; след това вземаме втория елемент от първия и по подобен начин умножаваме с всеки елемент от втория. В резултат на това получаваме четири термина.

На алгебричната сума

С последния пример бих искал да напомня на учениците какво е алгебрична сума. В класическата математика под $1-7$ имаме предвид проста конструкция: изваждаме седем от едно. В алгебрата под това разбираме следното: към числото „едно“ добавяме друго число, а именно „минус седем“. Тази алгебрична сума се различава от обичайната аритметична сума.

Веднага щом при извършване на всички трансформации, всяко добавяне и умножение започнете да виждате конструкции, подобни на описаните по-горе, просто няма да имате проблеми в алгебрата, когато работите с полиноми и уравнения.

В заключение, нека да разгледаме още няколко примера, които ще бъдат още по-сложни от тези, които току-що разгледахме, и за да ги решим, ще трябва леко да разширим нашия стандартен алгоритъм.

Решаване на уравнения с дроб

За решаването на такива задачи ще трябва да добавим още една стъпка към нашия алгоритъм. Но първо ще напомня нашия алгоритъм:

  1. отворени скоби.
  2. Отделни променливи.
  3. Донесете подобни.
  4. Разделете на коефициент.

Уви, този прекрасен алгоритъм, въпреки цялата му ефективност, не е напълно подходящ, когато имаме дроби пред нас. И в това, което ще видим по-долу, имаме дроб отляво и отдясно и в двете уравнения.

Как да работим в този случай? Да, много е просто! За да направите това, трябва да добавите още една стъпка към алгоритъма, която може да се извърши както преди първото действие, така и след него, а именно да се отървете от дроби. Така алгоритъмът ще бъде както следва:

  1. Отървете се от дробите.
  2. отворени скоби.
  3. Отделни променливи.
  4. Донесете подобни.
  5. Разделете на коефициент.

Какво означава „да се отървем от дробите“? И защо е възможно това да се прави както след, така и преди първата стандартна стъпка? Всъщност в нашия случай всички дроби са числови по отношение на знаменателя, т.е. навсякъде знаменателят е просто число. Следователно, ако умножим и двете части на уравнението по това число, тогава ще се отървем от дроби.

Пример #1

\[\frac(\left(2x+1 \right)\left(2x-3 \right))(4)=((x)^(2))-1\]

Нека се отървем от дробите в това уравнение:

\[\frac(\left(2x+1 \right)\left(2x-3 \right)\cdot 4)(4)=\left(((x)^(2))-1 \right)\cdot четири\]

Моля, обърнете внимание: всичко се умножава по „четири“ веднъж, т.е. това, че имате две скоби, не означава, че трябва да умножите всяка от тях по "четири". нека напишем:

\[\left(2x+1 \right)\left(2x-3 \right)=\left(((x)^(2))-1 \right)\cdot 4\]

Сега нека го отворим:

Извършваме изолиране на променлива:

Ние извършваме намаляване на подобни условия:

\[-4x=-1\наляво| :\left(-4 \right) \right.\]

\[\frac(-4x)(-4)=\frac(-1)(-4)\]

Получихме окончателното решение, преминаваме към второто уравнение.

Пример #2

\[\frac(\left(1-x \right)\left(1+5x \right))(5)+((x)^(2))=1\]

Тук извършваме всички същите действия:

\[\frac(\left(1-x \right)\left(1+5x \right)\cdot 5)(5)+((x)^(2))\cdot 5=5\]

\[\frac(4x)(4)=\frac(4)(4)\]

Проблема решен.

Това всъщност е всичко, което исках да кажа днес.

Ключови точки

Основните констатации са следните:

  • Познаване на алгоритъма за решаване на линейни уравнения.
  • Възможност за отваряне на скоби.
  • Не се притеснявайте, ако някъде имате квадратични функции, най-вероятно в процеса на по-нататъшни трансформации те ще бъдат намалени.
  • Корените в линейните уравнения, дори и най-простите, са три вида: един единствен корен, цялата числова линия е корен, корени изобщо няма.

Надявам се, че този урок ще ви помогне да овладеете проста, но много важна тема за по-нататъшно разбиране на цялата математика. Ако нещо не е ясно, отидете на сайта, решете представените там примери. Очаквайте още много интересни неща!

за решаване на математика. Намерете бързо решение на математическо уравнениев режим онлайн. Уебсайтът www.site позволява реши уравнениетопочти всяко дадено алгебричен, тригонометриченили трансцендентно уравнение онлайн. Когато изучавате почти всеки раздел от математиката на различни етапи, човек трябва да реши уравнения онлайн. За да получите незабавен отговор и най-важното точен отговор, имате нужда от ресурс, който ви позволява да направите това. Благодарение на www.site решавайте уравнения онлайнще отнеме няколко минути. Основното предимство на www.site при решаване на математически уравнения онлайн- е бързината и точността на издадения отговор. Сайтът е в състояние да реши всеки алгебрични уравнения онлайн, тригонометрични уравнения онлайн, трансцендентални уравнения онлайн, както и уравненияс неизвестни параметри в режима онлайн. Уравненияслужат като мощен математически апарат решения практически задачи. С помощ математически уравнениявъзможно е да се изразят факти и отношения, които на пръв поглед изглеждат объркващи и сложни. неизвестни количества уравненияможе да се намери чрез формулиране на проблема в математическиезик във формата уравненияи решиполучената задача в режим онлайнна уебсайта www.site. Всякакви алгебрично уравнение, тригонометрично уравнениеили уравнениясъдържащи трансценденталенви представя лесно решионлайн и получете правилния отговор. изучаване природни наукинеизбежно се натъкват на необходимостта решаване на уравнения. В този случай отговорът трябва да е точен и да бъде получен веднага в режим онлайн. Следователно, за решаване на математически уравнения онлайнпрепоръчваме сайта www.site, който ще стане вашият незаменим калкулатор за решения алгебрични уравненияонлайн, тригонометрични уравненияонлайн, както и трансцендентални уравнения онлайнили уравненияс неизвестни параметри. За практически задачи за намиране на корените на различни математически уравненияресурс www.. Решаване уравнения онлайнсами, е полезно да проверите получения отговор с помощта на онлайн решение на уравненияна уебсайта www.site. Необходимо е да напишете уравнението правилно и незабавно да получите онлайн решение, след което остава само да сравните отговора с вашето решение на уравнението. Проверката на отговора ще отнеме не повече от минута, достатъчно решете уравнението онлайни сравнете отговорите. Това ще ви помогне да избегнете грешки в решениеи коригирайте отговора навреме решаване на уравнения онлайндали алгебричен, тригонометричен, трансцендентенили уравнениетос неизвестни параметри.

Уравнения

Как се решават уравнения?

В този раздел ще си припомним (или ще изучим - както кой иска) най-елементарните уравнения. И така, какво е уравнение? Казано на човешки език, това е малко математически израз, където има знак за равенство и неизвестно. Което обикновено се обозначава с буквата "Х". реши уравнениетое да намерите такива x-стойности, които при заместване в оригиналенизраз, ще ни даде правилната идентичност. Позволете ми да ви напомня, че идентичността е израз, който не предизвиква съмнения дори за човек, който абсолютно не е обременен с математически знания. Като 2=2, 0=0, ab=ab и т.н. И така, как решавате уравнения?Нека да го разберем.

Има всякакви уравнения (изненадах се, нали?). Но цялото им безкрайно разнообразие може да бъде разделено само на четири вида.

4. друго.)

Всичко останало, разбира се, най-вече, да ...) Това включва кубични, експоненциални, логаритмични, тригонометрични и всякакви други. Ще работим в тясно сътрудничество с тях в съответните раздели.

Веднага трябва да кажа, че понякога уравненията на първото три видатолкова ще го навият, че няма да ги познаете... Нищо. Ще се научим как да ги развиваме.

И защо имаме нужда от тези четири вида? И тогава какво линейни уравнениярешен по един начин квадратдруги дробно рационално - третото,а Почивкаизобщо не е решен! Е, не че те изобщо не решават, напразно обидих математиката.) Просто те имат свои собствени специални техники и методи.

Но за всеки (повтарям - за всякакви!) уравнения е надеждна и безпроблемна основа за решаване. Работи навсякъде и винаги. Тази база - Звучи страшно, но работата е много проста. И много (много!)важно.

Всъщност решението на уравнението се състои от същите тези трансформации. На 99%. Отговор на въпроса: " Как се решават уравнения?" лъжи, точно в тези трансформации. Ясен ли е намекът?)

Тъждествени трансформации на уравнения.

AT всякакви уравненияза да се намери неизвестното, е необходимо да се трансформира и опрости оригиналният пример. Освен това, така че при смяна външен вид същността на уравнението не се е променила.Такива трансформации се наричат идентиченили еквивалентно.

Имайте предвид, че тези трансформации са само за уравненията.В математиката все още има идентични трансформации изрази.Това е друга тема.

Сега ще повторим всички-всички-всички основни идентични трансформации на уравнения.

Основни, защото могат да бъдат приложени към всякаквиуравнения - линейни, квадратни, дробни, тригонометрични, експоненциални, логаритмични и др. и т.н.

Първо идентично преобразуване: двете страни на всяко уравнение могат да бъдат добавени (извадени) всякакви(но същото!) число или израз (включително израз с неизвестно!). Същността на уравнението не се променя.

Между другото, постоянно си използвал тази трансформация, само си мислел, че прехвърляш някои членове от една част на уравнението в друга с промяна на знака. Тип:

Материята е позната, местим двойката надясно и получаваме:

Всъщност вие отнетот двете страни на уравнението двойка. Резултатът е същият:

х+2 - 2 = 3 - 2

Прехвърлянето на термини наляво-надясно с промяна на знака е просто съкратена версия на първата идентична трансформация. И защо се нуждаем от толкова дълбоки познания? - ти питаш. Нищо в уравненията. Мръдни, за бога. Само не забравяйте да смените знака. Но при неравенствата навикът за пренасяне може да доведе до задънена улица....

Втора трансформация на идентичността: и двете страни на уравнението могат да бъдат умножени (разделени) по едно и също ненулевчисло или израз. Тук вече се появява разбираемо ограничение: глупаво е да се умножава по нула, но изобщо е невъзможно да се дели. Това е трансформацията, която използвате, когато решите нещо готино

разбираемо, х= 2. Но как го намерихте? Избор? Или просто свети? За да не вдигате и чакате прозрение, трябва да разберете, че сте справедливи разделете двете страни на уравнениетос 5. При разделяне на лявата страна (5x), петицата беше намалена, оставяйки чисто X. Което ни трябваше. И когато разделихме дясната страна на (10) на пет, се оказа, разбира се, двойка.

Това е всичко.

Смешно е, но тези две (само две!) еднакви трансформации са в основата на решението всички уравнения на математиката.Как! Има смисъл да разгледаме примери за това какво и как, нали?)

Примери за тъждествени преобразувания на уравнения. Основни проблеми.

Да започнем с първиидентична трансформация. Преместване наляво-надясно.

Пример за най-малките.)

Да кажем, че трябва да решим следното уравнение:

3-2x=5-3x

Да си спомним заклинанието: "с Х - наляво, без Х - надясно!"Това заклинание е инструкция за прилагане на първата трансформация на идентичността.) Какъв е изразът с x вдясно? 3x? Отговорът е грешен! От дясната ни страна - 3x! Минустри х! Следователно, когато се премести наляво, знакът ще се промени на плюс. Вземете:

3-2x+3x=5

И така, X бяха събрани. Нека направим числата. Три отляво. Какъв знак? Отговорът "с нито една" не се приема!) Пред тройката наистина нищо не е нарисувано. И това означава, че пред тройката е плюс.Така че математиците се съгласиха. Нищо не е написано, значи плюс.Следователно, в правилната странатримата ще бъдат преместени с минус.Получаваме:

-2x+3x=5-3

Остават празни места. Отляво - дайте подобни, отдясно - пребройте. Отговорът е веднага:

В този пример беше достатъчна една идентична трансформация. Второто не беше необходимо. Ми добре.)

Пример за старейшините.)

Ако харесвате този сайт...

Между другото, имам още няколко интересни сайта за вас.)

Можете да практикувате решаване на примери и да разберете вашето ниво. Тестване с незабавна проверка. Учене - с интерес!)

можете да се запознаете с функции и производни.

Квадратните уравнения се изучават в 8 клас, така че тук няма нищо сложно. Способността да ги решавате е от съществено значение.

Квадратно уравнение е уравнение от вида ax 2 + bx + c = 0, където коефициентите a , b и c са произволни числа и a ≠ 0.

Преди да изучаваме конкретни методи за решаване, отбелязваме, че всички квадратни уравнения могат да бъдат разделени на три класа:

  1. Нямат корени;
  2. Те имат точно един корен;
  3. Те имат два различни корена.

Това е важна разлика между квадратните и линейните уравнения, където коренът винаги съществува и е уникален. Как да определим колко корена има едно уравнение? Има нещо прекрасно за това - дискриминанта.

Дискриминанта

Нека е дадено квадратното уравнение ax 2 + bx + c = 0. Тогава дискриминантът е просто числото D = b 2 − 4ac.

Тази формула трябва да се знае наизуст. Сега не е важно откъде идва. Друго нещо е важно: чрез знака на дискриминанта можете да определите колко корена има едно квадратно уравнение. а именно:

  1. Ако Д< 0, корней нет;
  2. Ако D = 0, има точно един корен;
  3. Ако D > 0, ще има два корена.

Моля, обърнете внимание: дискриминантът показва броя на корените, а не изобщо техните знаци, както по някаква причина много хора мислят. Разгледайте примерите и сами ще разберете всичко:

Задача. Колко корена имат квадратните уравнения:

  1. x 2 - 8x + 12 = 0;
  2. 5x2 + 3x + 7 = 0;
  3. x 2 − 6x + 9 = 0.

Записваме коефициентите за първото уравнение и намираме дискриминанта:
a = 1, b = −8, c = 12;
D = (−8) 2 − 4 1 12 = 64 − 48 = 16

И така, дискриминантът е положителен, така че уравнението има два различни корена. Анализираме второто уравнение по същия начин:
а = 5; b = 3; c = 7;
D \u003d 3 2 - 4 5 7 \u003d 9 - 140 \u003d -131.

Дискриминантът е отрицателен, няма корени. Остава последното уравнение:
а = 1; b = -6; c = 9;
D = (−6) 2 − 4 1 9 = 36 − 36 = 0.

Дискриминантът е равен на нула - коренът ще бъде единица.

Имайте предвид, че коефициентите са записани за всяко уравнение. Да, дълго е, да, досадно е - но няма да объркате шансовете и да не правите глупави грешки. Изберете сами: скорост или качество.

Между другото, ако „напълните ръката си“, след известно време вече няма да е необходимо да пишете всички коефициенти. Ще извършвате такива операции в главата си. Повечето хора започват да правят това някъде след 50-70 решени уравнения - като цяло не са толкова много.

Корените на квадратно уравнение

Сега да преминем към решението. Ако дискриминантът D > 0, корените могат да бъдат намерени по формулите:

Основната формула за корените на квадратно уравнение

Когато D = 0, можете да използвате всяка от тези формули - получавате същото число, което ще бъде отговорът. И накрая, ако Д< 0, корней нет — ничего считать не надо.

  1. x 2 - 2x - 3 = 0;
  2. 15 - 2x - x2 = 0;
  3. x2 + 12x + 36 = 0.

Първо уравнение:
x 2 - 2x - 3 = 0 ⇒ a = 1; b = −2; с = -3;
D = (−2) 2 − 4 1 (−3) = 16.

D > 0 ⇒ уравнението има два корена. Нека ги намерим:

Второ уравнение:
15 − 2x − x 2 = 0 ⇒ a = −1; b = −2; с = 15;
D = (−2) 2 − 4 (−1) 15 = 64.

D > 0 ⇒ уравнението отново има два корена. Да ги намерим

\[\begin(align) & ((x)_(1))=\frac(2+\sqrt(64))(2\cdot \left(-1 \right))=-5; \\ & ((x)_(2))=\frac(2-\sqrt(64))(2\cdot \left(-1 \right))=3. \\ \край (подравняване)\]

И накрая, третото уравнение:
x 2 + 12x + 36 = 0 ⇒ a = 1; b = 12; с = 36;
D = 12 2 − 4 1 36 = 0.

D = 0 ⇒ уравнението има един корен. Всяка формула може да се използва. Например първото:

Както можете да видите от примерите, всичко е много просто. Ако знаете формулите и можете да смятате, няма да има проблеми. Най-често възникват грешки, когато във формулата се заменят отрицателни коефициенти. Тук отново ще ви помогне описаната по-горе техника: погледнете формулата буквално, нарисувайте всяка стъпка - и се отървете от грешките много скоро.

Непълни квадратни уравнения

Случва се квадратното уравнение да е малко по-различно от даденото в дефиницията. Например:

  1. x2 + 9x = 0;
  2. x2 − 16 = 0.

Лесно се вижда, че един от членовете липсва в тези уравнения. Такива квадратни уравнения са дори по-лесни за решаване от стандартните: те дори не трябва да изчисляват дискриминанта. Така че нека въведем нова концепция:

Уравнението ax 2 + bx + c = 0 се нарича непълно квадратно уравнение, ако b = 0 или c = 0, т.е. коефициентът на променливата x или свободния елемент е равен на нула.

Разбира се, възможен е много труден случай, когато и двата коефициента са равни на нула: b \u003d c \u003d 0. В този случай уравнението приема формата ax 2 \u003d 0. Очевидно такова уравнение има един корен: x \u003d 0.

Да разгледаме други случаи. Нека b \u003d 0, тогава получаваме непълно квадратно уравнение под формата ax 2 + c \u003d 0. Нека леко го трансформираме:

Защото аритметиката Корен квадратенсъществува само от неотрицателно число, последното равенство има смисъл само за (−c /a ) ≥ 0. Заключение:

  1. Ако непълно квадратно уравнение от формата ax 2 + c = 0 удовлетворява неравенството (−c / a ) ≥ 0, ще има два корена. Формулата е дадена по-горе;
  2. Ако (−c / a)< 0, корней нет.

Както можете да видите, дискриминантът не е задължителен - не е пълен квадратни уравненияникакви сложни изчисления. Всъщност дори не е необходимо да помним неравенството (−c / a ) ≥ 0. Достатъчно е да изразим стойността на x 2 и да видим какво има от другата страна на знака за равенство. Ако има положително число, ще има два корена. Ако е отрицателен, изобщо няма да има корени.

Сега нека разгледаме уравнения от формата ax 2 + bx = 0, в които свободният елемент е равен на нула. Тук всичко е просто: винаги ще има два корена. Достатъчно е да факторизираме полинома:

Изваждане на общия множител от скобата

Произведението е равно на нула, когато поне един от множителите е равен на нула. От тук идват корените. В заключение ще анализираме няколко от тези уравнения:

Задача. Решаване на квадратни уравнения:

  1. x2 − 7x = 0;
  2. 5x2 + 30 = 0;
  3. 4x2 − 9 = 0.

x 2 − 7x = 0 ⇒ x (x − 7) = 0 ⇒ x 1 = 0; x2 = −(−7)/1 = 7.

5x2 + 30 = 0 ⇒ 5x2 = -30 ⇒ x2 = -6. Няма корени, т.к квадратът не може да бъде равен на отрицателно число.

4x 2 − 9 = 0 ⇒ 4x 2 = 9 ⇒ x 2 = 9/4 ⇒ x 1 = 3/2 = 1,5; x 2 \u003d -1,5.

Споделете с приятели или запазете за себе си:

Зареждане...