विभिन्न आधार उदाहरणों के साथ लघुगणक को हल करना। लॉग सूत्र

आपकी निजता हमारे लिए महत्वपूर्ण है। इस कारण से, हमने एक गोपनीयता नीति विकसित की है जो बताती है कि हम आपकी जानकारी का उपयोग और भंडारण कैसे करते हैं। कृपया हमारी गोपनीयता नीति पढ़ें और यदि आपके कोई प्रश्न हैं तो हमें बताएं।

व्यक्तिगत जानकारी का संग्रह और उपयोग

व्यक्तिगत जानकारी उस डेटा को संदर्भित करती है जिसका उपयोग किसी विशिष्ट व्यक्ति की पहचान करने या उससे संपर्क करने के लिए किया जा सकता है।

जब आप हमसे संपर्क करते हैं तो आपसे किसी भी समय अपनी व्यक्तिगत जानकारी प्रदान करने के लिए कहा जा सकता है।

निम्नलिखित कुछ उदाहरण हैं कि हम किस प्रकार की व्यक्तिगत जानकारी एकत्र कर सकते हैं और हम ऐसी जानकारी का उपयोग कैसे कर सकते हैं।

हम कौन सी व्यक्तिगत जानकारी एकत्र करते हैं:

  • जब आप साइट पर आवेदन जमा करते हैं, तो हम आपका नाम, फोन नंबर, ईमेल पता आदि सहित विभिन्न जानकारी एकत्र कर सकते हैं।

हम आपकी व्यक्तिगत जानकारी का उपयोग कैसे करते हैं:

  • हमारे द्वारा एकत्रित व्यक्तिगत जानकारीहमें आपसे संपर्क करने और अद्वितीय ऑफ़र, प्रचार और अन्य घटनाओं और आने वाली घटनाओं के बारे में सूचित करने की अनुमति देता है।
  • समय-समय पर, हम आपको महत्वपूर्ण नोटिस और संचार भेजने के लिए आपकी व्यक्तिगत जानकारी का उपयोग कर सकते हैं।
  • हम व्यक्तिगत जानकारी का उपयोग आंतरिक उद्देश्यों के लिए भी कर सकते हैं, जैसे कि ऑडिट करना, डेटा विश्लेषण और विभिन्न शोध करना ताकि हम प्रदान की जाने वाली सेवाओं में सुधार कर सकें और आपको हमारी सेवाओं के बारे में सिफारिशें प्रदान कर सकें।
  • यदि आप एक पुरस्कार ड्रा, प्रतियोगिता या इसी तरह के प्रोत्साहन में प्रवेश करते हैं, तो हम आपके द्वारा प्रदान की जाने वाली जानकारी का उपयोग ऐसे कार्यक्रमों को संचालित करने के लिए कर सकते हैं।

तीसरे पक्ष के लिए प्रकटीकरण

हम आपसे प्राप्त जानकारी को तीसरे पक्ष को नहीं बताते हैं।

अपवाद:

  • इस घटना में कि यह आवश्यक है - कानून के अनुसार, न्यायिक आदेश, कानूनी कार्यवाही में, और / या रूसी संघ के क्षेत्र में राज्य निकायों के सार्वजनिक अनुरोधों या अनुरोधों के आधार पर - आपकी व्यक्तिगत जानकारी का खुलासा करें। हम आपके बारे में जानकारी का खुलासा भी कर सकते हैं यदि हम यह निर्धारित करते हैं कि सुरक्षा, कानून प्रवर्तन, या अन्य सार्वजनिक हित के कारणों के लिए ऐसा प्रकटीकरण आवश्यक या उपयुक्त है।
  • पुनर्गठन, विलय या बिक्री की स्थिति में, हम अपने द्वारा एकत्रित की गई व्यक्तिगत जानकारी को संबंधित तृतीय पक्ष उत्तराधिकारी को स्थानांतरित कर सकते हैं।

व्यक्तिगत जानकारी की सुरक्षा

हम आपकी व्यक्तिगत जानकारी को हानि, चोरी और दुरुपयोग से बचाने के साथ-साथ अनधिकृत पहुंच, प्रकटीकरण, परिवर्तन और विनाश से बचाने के लिए - प्रशासनिक, तकनीकी और भौतिक सहित - सावधानी बरतते हैं।

कंपनी स्तर पर आपकी गोपनीयता बनाए रखना

यह सुनिश्चित करने के लिए कि आपकी व्यक्तिगत जानकारी सुरक्षित है, हम अपने कर्मचारियों को गोपनीयता और सुरक्षा प्रथाओं के बारे में बताते हैं और गोपनीयता प्रथाओं को सख्ती से लागू करते हैं।

\(a^(b)=c\) \(\Leftrightarrow\) \(\log_(a)(c)=b\)

आइए इसे आसान समझाते हैं। उदाहरण के लिए, \(\log_(2)(8)\) घात के बराबर है \(2\) को \(8\) प्राप्त करने के लिए बढ़ाया जाना चाहिए। इससे यह स्पष्ट होता है कि \(\log_(2)(8)=3\).

उदाहरण:

\(\log_(5)(25)=2\)

इसलिये \(5^(2)=25\)

\(\log_(3)(81)=4\)

इसलिये \(3^(4)=81\)

\(\log_(2)\)\(\frac(1)(32)\) \(=-5\)

इसलिये \(2^(-5)=\)\(\frac(1)(32)\)

लघुगणक का तर्क और आधार

किसी भी लघुगणक में निम्नलिखित "शरीर रचना" होती है:

लघुगणक का तर्क आमतौर पर इसके स्तर पर लिखा जाता है, और आधार लघुगणक के संकेत के करीब सबस्क्रिप्ट में लिखा जाता है। और इस प्रविष्टि को इस प्रकार पढ़ा जाता है: "पच्चीस का लघुगणक से पाँच के आधार तक।"

लघुगणक की गणना कैसे करें?

लघुगणक की गणना करने के लिए, आपको प्रश्न का उत्तर देने की आवश्यकता है: तर्क प्राप्त करने के लिए आधार को किस डिग्री तक बढ़ाया जाना चाहिए?

उदाहरण के लिए, लघुगणक की गणना करें: a) \(\log_(4)(16)\) b) \(\log_(3)\)\(\frac(1)(3)\) c) \(\log_(\ sqrt (5))(1)\) d) \(\log_(\sqrt(7))(\sqrt(7))\) e) \(\log_(3)(\sqrt(3))\)

a) \(16\) प्राप्त करने के लिए \(4\) को किस शक्ति तक बढ़ाया जाना चाहिए? जाहिर है दूसरा। इसीलिए:

\(\log_(4)(16)=2\)

\(\log_(3)\)\(\frac(1)(3)\) \(=-1\)

c) \(1\) प्राप्त करने के लिए \(\sqrt(5)\) को किस शक्ति तक बढ़ाया जाना चाहिए? और कौन सी डिग्री किसी भी संख्या को एक इकाई बनाती है? जीरो, बिल्कुल!

\(\log_(\sqrt(5))(1)=0\)

d) \(\sqrt(7)\) प्राप्त करने के लिए \(\sqrt(7)\) को किस घात तक बढ़ाया जाना चाहिए? प्रथम में - प्रथम अंश में कोई भी संख्या स्वयं के बराबर होती है।

\(\log_(\sqrt(7))(\sqrt(7))=1\)

ई) \(\sqrt(3)\) प्राप्त करने के लिए \(3\) को किस शक्ति तक बढ़ाया जाना चाहिए? से हम जानते हैं कि यह एक भिन्नात्मक शक्ति है, जिसका अर्थ है वर्गमूलडिग्री है \(\frac(1)(2)\) ।

\(\log_(3)(\sqrt(3))=\)\(\frac(1)(2)\)

उदाहरण : लघुगणक की गणना करें \(\log_(4\sqrt(2))(8)\)

समाधान :

\(\log_(4\sqrt(2))(8)=x\)

हमें लघुगणक का मान ज्ञात करने की आवश्यकता है, आइए इसे x के रूप में निरूपित करें। आइए अब लघुगणक की परिभाषा का उपयोग करें:
\(\log_(a)(c)=b\) \(\Leftrightarrow\) \(a^(b)=c\)

\((4\sqrt(2))^(x)=8\)

क्या लिंक \(4\sqrt(2)\) और \(8\)? दो, क्योंकि दोनों संख्याओं को दो से दर्शाया जा सकता है:
\(4=2^(2)\) \(\sqrt(2)=2^(\frac(1)(2))\) \(8=2^(3)\)

\(((2^(2)\cdot2^(\frac(1)(2))))^(x)=2^(3)\)

बाईं ओर, हम डिग्री गुणों का उपयोग करते हैं: \(a^(m)\cdot a^(n)=a^(m+n)\) और \((a^(m))^(n)=a ^(m\cdot n)\)

\(2^(\frac(5)(2)x)=2^(3)\)

आधार समान हैं, हम संकेतकों की समानता के लिए आगे बढ़ते हैं

\(\frac(5x)(2)\) \(=3\)


समीकरण के दोनों पक्षों को \(\frac(2)(5)\) से गुणा करें


परिणामी जड़ लघुगणक का मान है

उत्तर : \(\log_(4\sqrt(2))(8)=1,2\)

लॉगरिदम का आविष्कार क्यों किया गया था?

इसे समझने के लिए, आइए समीकरण को हल करें: \(3^(x)=9\)। समानता कार्य करने के लिए बस \(x\) का मिलान करें। बेशक, \(x=2\)।

अब समीकरण को हल करें: \(3^(x)=8\)। x किसके बराबर है? यही तो बात है।

सबसे सरल कहेगा: "X दो से थोड़ा कम है।" यह संख्या वास्तव में कैसे लिखी जाए? इस प्रश्न का उत्तर देने के लिए, वे लघुगणक के साथ आए। उसके लिए धन्यवाद, यहाँ उत्तर \(x=\log_(3)(8)\) के रूप में लिखा जा सकता है।

मैं इस बात पर जोर देना चाहता हूं कि \(\log_(3)(8)\), साथ ही कोई भी लघुगणक केवल एक संख्या है. हाँ, यह असामान्य लगता है, लेकिन यह छोटा है। क्योंकि अगर हम इसे दशमलव के रूप में लिखना चाहते हैं, तो यह इस तरह दिखेगा: \(1.892789260714.....\)

उदाहरण : समीकरण को हल करें \(4^(5x-4)=10\)

समाधान :

\(4^(5x-4)=10\)

\(4^(5x-4)\) और \(10\) को एक ही आधार पर कम नहीं किया जा सकता है। तो यहाँ आप लघुगणक के बिना नहीं कर सकते।

आइए लघुगणक की परिभाषा का उपयोग करें:
\(a^(b)=c\) \(\Leftrightarrow\) \(\log_(a)(c)=b\)

\(\log_(4)(10)=5x-4\)

समीकरण को पलटें ताकि x बाईं ओर हो

\(5x-4=\log_(4)(10)\)

हमारे सामने। \(4\) को दाईं ओर ले जाएं।

और लघुगणक से डरो मत, इसे एक सामान्य संख्या की तरह मानें।

\(5x=\log_(4)(10)+4\)

समीकरण को 5 . से विभाजित करें

\(x=\)\(\frac(\log_(4)(10)+4)(5)\)


यहाँ हमारी जड़ है। हां, यह असामान्य लग रहा है, लेकिन उत्तर नहीं चुना गया है।

उत्तर : \(\frac(\log_(4)(10)+4)(5)\)

दशमलव और प्राकृतिक लघुगणक

जैसा कि लघुगणक की परिभाषा में कहा गया है, इसका आधार एक \((a>0, a\neq1)\) को छोड़कर कोई भी धनात्मक संख्या हो सकती है। और सभी संभावित आधारों में से दो ऐसे हैं जो इतनी बार होते हैं कि उनके साथ लघुगणक के लिए एक विशेष लघु संकेतन का आविष्कार किया गया था:

प्राकृतिक लघुगणक: एक लघुगणक जिसका आधार यूलर संख्या \(e\) है (लगभग \(2.7182818…\) के बराबर), और लघुगणक \(\ln(a)\) के रूप में लिखा जाता है।

वह है, \(\ln(a)\) \(\log_(e)(a)\) के समान है

दशमलव लघुगणक: एक लघुगणक जिसका आधार 10 है \(\lg(a)\) लिखा है।

वह है, \(\lg(a)\) \(\log_(10)(a)\) के समान है, जहां \(a\) कुछ संख्या है।

मूल लघुगणकीय पहचान

लॉगरिदम में कई गुण होते हैं। उनमें से एक को "मूल लघुगणकीय पहचान" कहा जाता है और यह इस तरह दिखता है:

\(a^(\log_(a)(c))=c\)

यह संपत्ति सीधे परिभाषा से आती है। आइए देखें कि यह फॉर्मूला कैसे आया।

लघुगणक की संक्षिप्त परिभाषा को याद करें:

अगर \(a^(b)=c\), तो \(\log_(a)(c)=b\)

अर्थात्, \(b\) \(\log_(a)(c)\) के समान है। फिर हम सूत्र \(a^(b)=c\) में \(b\) के बजाय \(\log_(a)(c)\) लिख सकते हैं। यह निकला \(a^(\log_(a)(c))=c\) - मुख्य लघुगणकीय पहचान।

आप लघुगणक के शेष गुण पा सकते हैं। उनकी मदद से, आप लघुगणक के साथ भावों के मूल्यों को सरल और गणना कर सकते हैं, जिनकी सीधे गणना करना मुश्किल है।

उदाहरण : व्यंजक का मान ज्ञात कीजिए \(36^(\log_(6)(5))\)

समाधान :

उत्तर : \(25\)

किसी संख्या को लघुगणक के रूप में कैसे लिखें?

जैसा कि ऊपर उल्लेख किया गया है, कोई भी लघुगणक केवल एक संख्या है। विलोम भी सत्य है: किसी भी संख्या को लघुगणक के रूप में लिखा जा सकता है। उदाहरण के लिए, हम जानते हैं कि \(\log_(2)(4)\) दो के बराबर है। फिर आप दो के बजाय \(\log_(2)(4)\) लिख सकते हैं।

लेकिन \(\log_(3)(9)\) भी \(2\) के बराबर है, इसलिए आप \(2=\log_(3)(9)\) भी लिख सकते हैं। इसी तरह \(\log_(5)(25)\), और \(\log_(9)(81)\), आदि के साथ। यानी यह पता चला है

\(2=\log_(2)(4)=\log_(3)(9)=\log_(4)(16)=\log_(5)(25)=\log_(6)(36)=\ लॉग_(7)(49)...\)

इस प्रकार, यदि हमें आवश्यकता है, तो हम दोनों को किसी भी आधार के साथ लॉगरिदम के रूप में कहीं भी लिख सकते हैं (यहां तक ​​​​कि एक समीकरण में, यहां तक ​​​​कि एक अभिव्यक्ति में भी, यहां तक ​​​​कि असमानता में भी) - हम केवल वर्ग आधार को तर्क के रूप में लिखते हैं।

ट्रिपल के साथ भी ऐसा ही है - इसे \(\log_(2)(8)\), या \(\log_(3)(27)\), या \(\log_(4)( के रूप में लिखा जा सकता है) 64) \) ... यहाँ हम घन में आधार को तर्क के रूप में लिखते हैं:

\(3=\log_(2)(8)=\log_(3)(27)=\log_(4)(64)=\log_(5)(125)=\log_(6)(216)=\ लॉग_(7)(343)...\)

और चार के साथ:

\(4=\log_(2)(16)=\log_(3)(81)=\log_(4)(256)=\log_(5)(625)=\log_(6)(1296)=\ लॉग_(7)(2401)...\)

और माइनस वन के साथ:

\(-1=\) \(\log_(2)\)\(\frac(1)(2)\) \(=\) \(\log_(3)\)\(\frac(1)( 3)\) \(=\) \(\log_(4)\)\(\frac(1)(4)\) \(=\) \(\log_(5)\)\(\frac(1 )(5)\) \(=\) \(\log_(6)\)\(\frac(1)(6)\) \(=\) \(\log_(7)\)\(\frac (1)(7)\)\(...\)

और एक तिहाई के साथ:

\(\frac(1)(3)\) \(=\log_(2)(\sqrt(2))=\log_(3)(\sqrt(3))=\log_(4)(\sqrt( 4))=\log_(5)(\sqrt(5))=\log_(6)(\sqrt(6))=\log_(7)(\sqrt(7))...\)

किसी भी संख्या \(a\) को आधार \(b\) के साथ लघुगणक के रूप में दर्शाया जा सकता है: \(a=\log_(b)(b^(a))\)

उदाहरण : व्यंजक का मान ज्ञात कीजिए \(\frac(\log_(2)(14))(1+\log_(2)(7))\)

समाधान :

उत्तर : \(1\)

a (a > 0, a 1) को आधार बनाने के लिए b (b > 0) का लघुगणकवह घातांक है जिसके लिए आपको b प्राप्त करने के लिए संख्या a को बढ़ाने की आवश्यकता है।

b का आधार 10 लघुगणक इस प्रकार लिखा जा सकता है: लॉग (बी), और आधार e का लघुगणक (प्राकृतिक लघुगणक) - एलएन (बी).

लॉगरिदम के साथ समस्याओं को हल करते समय अक्सर उपयोग किया जाता है:

लघुगणक के गुण

चार मुख्य हैं लघुगणक के गुण.

मान लीजिए a > 0, a 1, x > 0 और y > 0.

संपत्ति 1. उत्पाद का लघुगणक

उत्पाद का लघुगणक योग के बराबर हैलघुगणक:

log a (x ⋅ y) = log a x + log a y

गुण 2. भागफल का लघुगणक

भागफल का लघुगणकलघुगणक के अंतर के बराबर है:

लॉग a (x / y) = लॉग a x - लॉग a y

संपत्ति 3. डिग्री का लघुगणक

डिग्री लघुगणकडिग्री और लघुगणक के गुणनफल के बराबर है:

यदि लघुगणक का आधार घातांक में है, तो दूसरा सूत्र लागू होता है:

गुण 4. जड़ का लघुगणक

यह गुण डिग्री के लघुगणक के गुण से प्राप्त किया जा सकता है, क्योंकि nth डिग्री का मूल 1/n की शक्ति के बराबर है:

एक आधार में लघुगणक से दूसरे आधार में लघुगणक में जाने का सूत्र

लॉगरिदम के लिए विभिन्न कार्यों को हल करते समय अक्सर इस सूत्र का भी उपयोग किया जाता है:

विशेष मामला:

लघुगणक की तुलना (असमानता)

मान लीजिए कि हमारे पास समान आधार वाले लॉगरिदम के तहत 2 फ़ंक्शन f(x) और g(x) हैं और उनके बीच एक असमानता का संकेत है:

उनकी तुलना करने के लिए, आपको सबसे पहले लघुगणक के आधार को देखना होगा:

  • यदि a > 0, तो f(x) > g(x) > 0
  • अगर 0< a < 1, то 0 < f(x) < g(x)

लघुगणक के साथ समस्याओं को कैसे हल करें: उदाहरण

लघुगणक के साथ कार्यटास्क 5 और टास्क 7 में ग्रेड 11 के लिए गणित में यूएसई में शामिल, आप उपयुक्त अनुभागों में हमारी वेबसाइट पर समाधान के साथ कार्य पा सकते हैं। साथ ही, गणित में कार्यों के बैंक में लघुगणक वाले कार्य पाए जाते हैं। आप साइट पर खोज करके सभी उदाहरण पा सकते हैं।

एक लघुगणक क्या है

स्कूली गणित के पाठ्यक्रम में लघुगणक को हमेशा एक कठिन विषय माना गया है। लघुगणक की कई अलग-अलग परिभाषाएँ हैं, लेकिन किसी कारण से अधिकांश पाठ्यपुस्तकें उनमें से सबसे जटिल और दुर्भाग्यपूर्ण का उपयोग करती हैं।

हम लघुगणक को सरल और स्पष्ट रूप से परिभाषित करेंगे। आइए इसके लिए एक टेबल बनाएं:

तो, हमारे पास दो की शक्तियां हैं।

लघुगणक - गुण, सूत्र, कैसे हल करें

यदि आप नीचे की रेखा से संख्या लेते हैं, तो आप आसानी से उस शक्ति का पता लगा सकते हैं जिसके लिए आपको इस संख्या को प्राप्त करने के लिए दो को उठाना होगा। उदाहरण के लिए, 16 प्राप्त करने के लिए, आपको दो से चौथी शक्ति बढ़ाने की आवश्यकता है। और 64 प्राप्त करने के लिए, आपको दो को छठी शक्ति तक बढ़ाने की आवश्यकता है। इसे तालिका से देखा जा सकता है।

और अब - वास्तव में, लघुगणक की परिभाषा:

तर्क x का आधार a वह शक्ति है जिसके लिए संख्या x प्राप्त करने के लिए संख्या को उठाया जाना चाहिए।

नोटेशन: लॉग a x \u003d b, जहां a आधार है, x तर्क है, b वास्तव में लॉगरिदम के बराबर है।

उदाहरण के लिए, 2 3 = 8 लॉग 2 8 = 3 (8 का आधार 2 लघुगणक तीन है क्योंकि 2 3 = 8)। 2 64 = 6 भी लॉग कर सकते हैं, क्योंकि 2 6 = 64।

किसी दिए गए आधार से किसी संख्या का लघुगणक ज्ञात करने की क्रिया कहलाती है। तो चलिए अपनी तालिका में एक नई पंक्ति जोड़ते हैं:

2 1 2 2 2 3 2 4 2 5 2 6
2 4 8 16 32 64
लॉग 2 2 = 1 लॉग 2 4 = 2 लॉग 2 8 = 3 लॉग 2 16 = 4 लॉग 2 32 = 5 लॉग 2 64 = 6

दुर्भाग्य से, सभी लघुगणक को इतनी आसानी से नहीं माना जाता है। उदाहरण के लिए, लॉग 2 5 खोजने का प्रयास करें। संख्या 5 तालिका में नहीं है, लेकिन तर्क बताता है कि लॉगरिदम खंड पर कहीं स्थित होगा। क्योंकि 2 2< 5 < 2 3 , а чем больше степень двойки, тем больше получится число.

ऐसी संख्याओं को अपरिमेय कहा जाता है: दशमलव बिंदु के बाद की संख्याएँ अनिश्चित काल तक लिखी जा सकती हैं, और वे कभी भी दोहराई नहीं जाती हैं। यदि लघुगणक अपरिमेय हो जाता है, तो इसे इस तरह छोड़ना बेहतर है: लॉग 2 5, लॉग 3 8, लॉग 5 100।

यह समझना महत्वपूर्ण है कि लघुगणक दो चर (आधार और तर्क) के साथ एक व्यंजक है। सबसे पहले, बहुत से लोग भ्रमित करते हैं कि आधार कहाँ है और तर्क कहाँ है। कन्नी काटना दुर्भाग्यपूर्ण गलतफहमीबस तस्वीर पर एक नज़र डालें:

हमारे सामने लघुगणक की परिभाषा से ज्यादा कुछ नहीं है। याद है: लघुगणक शक्ति है, जिसके लिए आपको तर्क प्राप्त करने के लिए आधार बढ़ाने की आवश्यकता है। यह आधार है जिसे एक शक्ति तक बढ़ाया जाता है - चित्र में इसे लाल रंग में हाइलाइट किया गया है। यह पता चला है कि आधार हमेशा सबसे नीचे होता है! मैं यह अद्भुत नियम अपने छात्रों को पहले ही पाठ में बताता हूं - और कोई भ्रम नहीं है।

लघुगणक कैसे गिनें

हमने परिभाषा का पता लगाया - यह सीखना बाकी है कि लॉगरिदम कैसे गिनें, यानी। "लॉग" चिह्न से छुटकारा पाएं। आरंभ करने के लिए, हम ध्यान दें कि परिभाषा से दो महत्वपूर्ण तथ्य अनुसरण करते हैं:

  1. तर्क और आधार हमेशा शून्य से बड़ा होना चाहिए। यह एक तर्कसंगत घातांक द्वारा डिग्री की परिभाषा का अनुसरण करता है, जिससे लघुगणक की परिभाषा कम हो जाती है।
  2. आधार एकता से अलग होना चाहिए, क्योंकि एक इकाई से किसी भी शक्ति तक अभी भी एक इकाई है। इस वजह से, "दो प्राप्त करने के लिए किसी को किस शक्ति को उठाया जाना चाहिए" का प्रश्न व्यर्थ है। ऐसी कोई डिग्री नहीं है!

ऐसे प्रतिबंधों को कहा जाता है मान्य रेंज(ओडीजेड)। यह पता चला है कि लघुगणक का ODZ इस तरह दिखता है: लॉग a x = b ⇒ x> 0, a> 0, a 1।

ध्यान दें कि संख्या b (लघुगणक का मान) पर कोई प्रतिबंध नहीं लगाया गया है। उदाहरण के लिए, लघुगणक ऋणात्मक भी हो सकता है: log 2 0.5 = −1, क्योंकि 0.5 = 2 -1।

हालाँकि, अब हम केवल संख्यात्मक व्यंजकों पर विचार कर रहे हैं, जहाँ लघुगणक के ODZ को जानना आवश्यक नहीं है। समस्याओं के संकलनकर्ताओं द्वारा सभी प्रतिबंधों को पहले ही ध्यान में रखा जा चुका है। लेकिन जब लॉगरिदमिक समीकरण और असमानताएं चलन में आती हैं, तो डीएचएस आवश्यकताएं अनिवार्य हो जाएंगी। दरअसल, आधार और तर्क में बहुत मजबूत निर्माण हो सकते हैं, जो जरूरी नहीं कि उपरोक्त प्रतिबंधों के अनुरूप हों।

अब लघुगणक की गणना के लिए सामान्य योजना पर विचार करें। इसमें तीन चरण होते हैं:

  1. आधार a और तर्क x को एक घात के रूप में व्यक्त करें जिसका आधार एक से अधिक हो। साथ ही, दशमलव अंशों से छुटकारा पाना बेहतर है;
  2. चर b: x = a b के लिए समीकरण हल करें;
  3. परिणामी संख्या b उत्तर होगी।

बस इतना ही! यदि लघुगणक अपरिमेय निकलता है, तो यह पहले चरण में ही दिखाई देगा। आधार के एक से अधिक होने की आवश्यकता बहुत प्रासंगिक है: यह त्रुटि की संभावना को कम करता है और गणना को बहुत सरल करता है। के समान दशमलव: यदि आप उन्हें तुरंत सामान्य में अनुवाद करते हैं, तो कई गुना कम त्रुटियां होंगी।

आइए देखें कि यह योजना विशिष्ट उदाहरणों के साथ कैसे काम करती है:

एक कार्य। लघुगणक की गणना करें: लॉग 5 25

  1. आइए आधार और तर्क को पांच की शक्ति के रूप में प्रस्तुत करें: 5 = 5 1 ; 25 = 52;
  2. आइए समीकरण बनाएं और हल करें:
    लॉग 5 25 = बी ⇒ (5 1) बी = 5 2 ⇒5 बी = 5 2 ⇒ बी = 2;

  3. उत्तर प्राप्त हुआ: 2.

एक कार्य। लघुगणक की गणना करें:

एक कार्य। लघुगणक की गणना करें: लॉग 4 64

  1. आइए आधार और तर्क को दो की घात के रूप में निरूपित करें: 4 = 2 2 ; 64 = 26;
  2. आइए समीकरण बनाएं और हल करें:
    log 4 64 = b (2 2) b = 2 6 2 2b = 2 6 ⇒2b = 6 b = 3;
  3. उत्तर मिला: 3.

एक कार्य। लघुगणक की गणना करें: लॉग 16 1

  1. आइए आधार और तर्क को दो की घात के रूप में निरूपित करें: 16 = 2 4; 1 = 20;
  2. आइए समीकरण बनाएं और हल करें:
    लॉग 16 1 = बी ⇒ (2 4) बी = 2 0 ⇒2 4 बी = 2 0 ⇒4 बी = 0 ⇒ बी = 0;
  3. प्रतिक्रिया मिली: 0.

एक कार्य। लघुगणक की गणना करें: लॉग 7 14

  1. आइए आधार और तर्क को सात की घात के रूप में निरूपित करें: 7 = 7 1 ; 14 को सात की शक्ति के रूप में नहीं दर्शाया गया है, क्योंकि 7 1< 14 < 7 2 ;
  2. यह पिछले पैराग्राफ से इस प्रकार है कि लघुगणक पर विचार नहीं किया जाता है;
  3. उत्तर कोई परिवर्तन नहीं है: लॉग 7 14.

अंतिम उदाहरण पर एक छोटा सा नोट। कैसे सुनिश्चित करें कि एक संख्या दूसरी संख्या की सटीक शक्ति नहीं है? बहुत आसान - बस इसे प्रमुख कारकों में विघटित करें। यदि विस्तार में कम से कम दो अलग-अलग कारक हैं, तो संख्या एक सटीक शक्ति नहीं है।

एक कार्य। पता लगाएँ कि क्या संख्या की सटीक शक्तियाँ हैं: 8; 48; 81; 35; चौदह।

8 \u003d 2 2 2 \u003d 2 3 - सटीक डिग्री, क्योंकि केवल एक गुणक है;
48 = 6 8 = 3 2 2 2 2 = 3 2 4 एक सटीक शक्ति नहीं है क्योंकि दो कारक हैं: 3 और 2;
81 \u003d 9 9 \u003d 3 3 3 3 \u003d 3 4 - सटीक डिग्री;
35 = 7 5 - फिर से एक सटीक डिग्री नहीं;
14 \u003d 7 2 - फिर से सटीक डिग्री नहीं;

हम यह भी नोट करते हैं कि हम अभाज्य सँख्याहमेशा स्वयं की सटीक शक्तियाँ हैं।

दशमलव लघुगणक

कुछ लघुगणक इतने सामान्य होते हैं कि उनका एक विशेष नाम और पदनाम होता है।

x तर्क का आधार 10 लघुगणक है, अर्थात। वह शक्ति जिससे x प्राप्त करने के लिए 10 को ऊपर उठाना होगा। पदनाम: एलजीएक्स।

उदाहरण के लिए, लॉग 10 = 1; लॉग 100 = 2; एलजी 1000 = 3 - आदि।

अब से, जब पाठ्यपुस्तक में "फाइंड एलजी 0.01" जैसा वाक्यांश दिखाई दे, तो जान लें कि यह टाइपो नहीं है। यह दशमलव लघुगणक है। हालाँकि, यदि आप इस तरह के पदनाम के अभ्यस्त नहीं हैं, तो आप इसे हमेशा फिर से लिख सकते हैं:
लॉग एक्स = लॉग 10 एक्स

साधारण लघुगणक के लिए जो कुछ भी सत्य है वह दशमलव के लिए भी सत्य है।

प्राकृतिक

एक और लघुगणक है जिसका अपना अंकन है। एक मायने में यह दशमलव से भी ज्यादा महत्वपूर्ण है। यह प्राकृतिक लघुगणक है।

x तर्क का आधार e का लघुगणक है, अर्थात। संख्या x प्राप्त करने के लिए संख्या ई को जिस शक्ति तक बढ़ाया जाना चाहिए। पदनाम: एलएनएक्स।

बहुत से लोग पूछेंगे: ई नंबर क्या है? यह एक अपरिमेय संख्या है सही मूल्यखोजना और रिकॉर्ड करना असंभव है। यहाँ केवल पहली संख्याएँ हैं:
ई = 2.718281828459…

हम यह नहीं समझेंगे कि यह संख्या क्या है और इसकी आवश्यकता क्यों है। बस याद रखें कि ई प्राकृतिक लघुगणक का आधार है:
एलएन एक्स = लॉग ई एक्स

इस प्रकार एलएन ई = 1; लॉग ई 2 = 2; एलएन ई 16 = 16 - आदि। दूसरी ओर, ln 2 एक अपरिमेय संख्या है। सामान्य तौर पर, किसी भी परिमेय संख्या का प्राकृतिक लघुगणक अपरिमेय होता है। बेशक, एकता को छोड़कर: एलएन 1 = 0।

प्राकृतिक लघुगणक के लिए, सामान्य लघुगणक के लिए सत्य सभी नियम मान्य हैं।

यह सभी देखें:

लघुगणक। लघुगणक के गुण (लघुगणक की शक्ति)।

किसी संख्या को लघुगणक के रूप में कैसे निरूपित करें?

हम लघुगणक की परिभाषा का उपयोग करते हैं।

लॉगरिदम उस शक्ति का एक संकेतक है जिसके लिए लॉगरिदम के संकेत के तहत संख्या प्राप्त करने के लिए आधार को ऊपर उठाया जाना चाहिए।

इस प्रकार, आधार a के लघुगणक के रूप में एक निश्चित संख्या c का प्रतिनिधित्व करने के लिए, आपको लघुगणक के संकेत के तहत लघुगणक के आधार के समान आधार के साथ एक डिग्री रखने की आवश्यकता है, और इस संख्या c को घातांक में लिखें:

लघुगणक के रूप में, आप बिल्कुल किसी भी संख्या का प्रतिनिधित्व कर सकते हैं - धनात्मक, ऋणात्मक, पूर्णांक, भिन्नात्मक, परिमेय, अपरिमेय:

किसी परीक्षण या परीक्षा की तनावपूर्ण स्थितियों में a और c को भ्रमित न करने के लिए, आप निम्नलिखित नियम को याद रखने के लिए उपयोग कर सकते हैं:

जो नीचे है वह नीचे जाता है, जो ऊपर है वह ऊपर जाता है।

उदाहरण के लिए, आप संख्या 2 को आधार 3 के लघुगणक के रूप में प्रस्तुत करना चाहते हैं।

हमारे पास दो संख्याएँ हैं - 2 और 3। ये संख्याएँ आधार और घातांक हैं, जिन्हें हम लघुगणक के चिह्न के नीचे लिखेंगे। यह निर्धारित करना बाकी है कि इनमें से कौन सी संख्या नीचे लिखी जानी चाहिए, डिग्री के आधार पर, और कौन सी - ऊपर, घातांक में।

लॉगरिदम के रिकॉर्ड में आधार 3 सबसे नीचे है, जिसका अर्थ है कि जब हम 3 के आधार पर ड्यूस को लघुगणक के रूप में निरूपित करते हैं, तो हम आधार के नीचे 3 भी लिखेंगे।

2 3 से अधिक है। और डिग्री के अंकन में, हम तीन के ऊपर दो को लिखते हैं, अर्थात घातांक में:

लघुगणक। प्रथम स्तर।

लघुगणक

लोगारित्मसकारात्मक संख्या बीवजह से एक, कहाँ पे ए> 0, ए 1, वह घातांक है जिस पर संख्या बढ़ाई जानी चाहिए। एक, प्राप्त होना बी.

लघुगणक की परिभाषासंक्षेप में इस प्रकार लिखा जा सकता है:

यह समानता के लिए मान्य है बी> 0, ए> 0, ए 1।उसे आमतौर पर कहा जाता है लॉगरिदमिक पहचान।
किसी संख्या का लघुगणक ज्ञात करने की क्रिया कहलाती है लघुगणक

लघुगणक के गुण:

उत्पाद का लघुगणक:

भाग से भागफल का लघुगणक:

लघुगणक के आधार को बदलना:

डिग्री लघुगणक:

मूल लघुगणक:

शक्ति आधार के साथ लघुगणक:





दशमलव और प्राकृतिक लघुगणक।

दशमलव लघुगणकसंख्याएँ उस संख्या के आधार 10 लघुगणक को बुलाती हैं और   lg . लिखती हैं बी
प्राकृतिकसंख्याएँ इस संख्या के लघुगणक को आधार पर बुलाती हैं , कहाँ पे एक अपरिमेय संख्या है, लगभग 2.7 के बराबर। साथ ही, वे ln . लिखते हैं बी.

बीजगणित और ज्यामिति पर अन्य नोट्स

लघुगणक के मूल गुण

लघुगणक के मूल गुण

लॉगरिदम, किसी भी संख्या की तरह, हर संभव तरीके से जोड़ा, घटाया और परिवर्तित किया जा सकता है। लेकिन चूंकि लॉगरिदम बिल्कुल सामान्य संख्या नहीं हैं, इसलिए यहां नियम हैं, जिन्हें कहा जाता है बुनियादी गुण.

इन नियमों को अवश्य जानना चाहिए - इनके बिना कोई भी गंभीर लघुगणकीय समस्या हल नहीं हो सकती है। इसके अलावा, उनमें से बहुत कम हैं - एक दिन में सब कुछ सीखा जा सकता है। तो चलो शुरू करते है।

लघुगणक का जोड़ और घटाव

समान आधार वाले दो लघुगणक पर विचार करें: a x लॉग करें और y लॉग करें। फिर उन्हें जोड़ा और घटाया जा सकता है, और:

  1. लॉग ए एक्स + लॉग ए वाई = लॉग ए (एक्स वाई);
  2. लॉग ए एक्स - लॉग ए वाई = लॉग ए (एक्स: वाई)।

तो, लघुगणक का योग उत्पाद के लघुगणक के बराबर है, और अंतर भागफल का लघुगणक है। कृपया ध्यान दें: यहाँ मुख्य बिंदु है - एक ही आधार. यदि आधार भिन्न हैं, तो ये नियम काम नहीं करते हैं!

ये सूत्र आपको गणना करने में मदद करेंगे लघुगणकीय व्यंजकतब भी जब इसके अलग-अलग हिस्सों पर विचार नहीं किया जाता है (पाठ "एक लघुगणक क्या है" देखें)। उदाहरणों पर एक नज़र डालें और देखें:

लॉग 6 4 + लॉग 6 9.

चूंकि लघुगणक के आधार समान हैं, इसलिए हम योग सूत्र का उपयोग करते हैं:
लॉग 6 4 + लॉग 6 9 = लॉग 6 (4 9) = लॉग 6 36 = 2।

एक कार्य। व्यंजक का मान ज्ञात कीजिए: लघुगणक 2 48 - लघुगणक 2 3।

आधार समान हैं, हम अंतर सूत्र का उपयोग करते हैं:
लॉग 2 48 - लॉग 2 3 = लॉग 2 (48: 3) = लॉग 2 16 = 4।

एक कार्य। व्यंजक का मान ज्ञात कीजिए: लघुगणक 3 135 - लघुगणक 3 5.

फिर से, आधार समान हैं, इसलिए हमारे पास है:
लघुगणक 3 135 - लघुगणक 3 5 = लघुगणक 3 (135: 5) = लघुगणक 3 27 = 3.

जैसा कि आप देख सकते हैं, मूल भाव "खराब" लघुगणक से बने होते हैं, जिन्हें अलग से नहीं माना जाता है। लेकिन परिवर्तनों के बाद काफी सामान्य संख्याएँ निकलती हैं। इस तथ्य के आधार पर अनेक टेस्ट पेपर. हां, नियंत्रण - पूरी गंभीरता से समान भाव (कभी-कभी - वस्तुतः कोई बदलाव नहीं) परीक्षा में पेश किए जाते हैं।

घातांक को लघुगणक से हटाना

अब कार्य को थोड़ा जटिल करते हैं। क्या होगा यदि लघुगणक के आधार या तर्क में कोई डिग्री हो? तब इस डिग्री के घातांक को निम्न नियमों के अनुसार लघुगणक के चिह्न से निकाला जा सकता है:

यह देखना आसान है कि अंतिम नियम उनके पहले दो का अनुसरण करता है। लेकिन इसे वैसे भी याद रखना बेहतर है - कुछ मामलों में यह गणना की मात्रा को काफी कम कर देगा।

बेशक, ये सभी नियम समझ में आते हैं यदि ओडीजेड लॉगरिदम मनाया जाता है: ए> 0, ए ≠ 1, एक्स> 0. और एक और बात: न केवल बाएं से दाएं, बल्कि इसके विपरीत भी सभी सूत्रों को लागू करना सीखें, यानी। आप लघुगणक के चिह्न से पहले संख्याओं को लघुगणक में ही दर्ज कर सकते हैं।

लघुगणक कैसे हल करें

यह वही है जो सबसे अधिक बार आवश्यक होता है।

एक कार्य। व्यंजक का मान ज्ञात कीजिए: log 7 49 6 ।

आइए पहले सूत्र के अनुसार तर्क में डिग्री से छुटकारा पाएं:
लघुगणक 7 49 6 = 6 लघुगणक 7 49 = 6 2 = 12

एक कार्य। व्यंजक का मान ज्ञात कीजिए:

ध्यान दें कि हर एक लघुगणक है जिसका आधार और तर्क सटीक शक्तियाँ हैं: 16 = 2 4; 49 = 72। हमारे पास है:

मुझे लगता है कि अंतिम उदाहरण को स्पष्टीकरण की आवश्यकता है। लघुगणक कहाँ चले गए हैं? अंतिम क्षण तक, हम केवल हर के साथ काम करते हैं। उन्होंने वहां खड़े लघुगणक के आधार और तर्क को डिग्री के रूप में प्रस्तुत किया और संकेतक निकाले - उन्हें "तीन मंजिला" अंश मिला।

अब आइए मुख्य अंश को देखें। अंश और हर की संख्या समान है: लॉग 2 7. चूंकि लॉग 2 7 0, हम भिन्न को कम कर सकते हैं - 2/4 हर में रहेगा। अंकगणित के नियमों के अनुसार, चार को अंश में स्थानांतरित किया जा सकता है, जो किया गया था। परिणाम उत्तर है: 2.

एक नई नींव में संक्रमण

लॉगरिदम जोड़ने और घटाने के नियमों के बारे में बोलते हुए, मैंने विशेष रूप से जोर दिया कि वे केवल एक ही आधार के साथ काम करते हैं। क्या होगा यदि आधार अलग हैं? क्या होगा यदि वे एक ही संख्या की सटीक शक्तियां नहीं हैं?

एक नए आधार पर संक्रमण के लिए सूत्र बचाव के लिए आते हैं। हम उन्हें एक प्रमेय के रूप में तैयार करते हैं:

मान लीजिए लघुगणक लघुगणक a x दिया जाता है। फिर किसी भी संख्या c जैसे कि c > 0 और c ≠ 1 के लिए, समानता सत्य है:

विशेष रूप से, यदि हम c = x रखते हैं, तो हमें प्राप्त होता है:

यह दूसरे सूत्र से इस प्रकार है कि आधार और लघुगणक के तर्क को आपस में बदलना संभव है, लेकिन इस मामले में पूरी अभिव्यक्ति "उलट" है, अर्थात। लघुगणक हर में है।

ये सूत्र सामान्य संख्यात्मक अभिव्यक्तियों में बहुत कम पाए जाते हैं। यह मूल्यांकन करना संभव है कि निर्णय लेने पर ही वे कितने सुविधाजनक हैं लघुगणक समीकरणऔर असमानताएं।

हालाँकि, ऐसे कार्य हैं जिन्हें एक नई नींव में जाने के अलावा हल नहीं किया जा सकता है। आइए इनमें से कुछ पर विचार करें:

एक कार्य। व्यंजक का मान ज्ञात कीजिए: लघुगणक 5 16 लघुगणक 2 25.

ध्यान दें कि दोनों लघुगणक के तर्क सटीक घातांक हैं। आइए संकेतक निकालें: लॉग 5 16 = लॉग 5 2 4 = 4लॉग 5 2; लघुगणक 2 25 = लघुगणक 2 5 2 = 2 लघुगणक 2 5;

अब दूसरा लघुगणक पलटें:

चूंकि उत्पाद कारकों के क्रमपरिवर्तन से नहीं बदलता है, हमने शांति से चार और दो को गुणा किया, और फिर लघुगणक का पता लगाया।

एक कार्य। व्यंजक का मान ज्ञात कीजिए: log 9 100 lg 3.

पहले लघुगणक का आधार और तर्क सटीक शक्तियाँ हैं। आइए इसे लिख लें और संकेतकों से छुटकारा पाएं:

आइए अब एक नए आधार पर जाकर दशमलव लघुगणक से छुटकारा पाएं:

मूल लघुगणकीय पहचान

अक्सर हल करने की प्रक्रिया में किसी दिए गए आधार के लिए एक संख्या को लघुगणक के रूप में प्रस्तुत करना आवश्यक होता है।

इस मामले में, सूत्र हमारी मदद करेंगे:

पहले मामले में, संख्या n तर्क में घातांक बन जाती है। संख्या n बिल्कुल कुछ भी हो सकती है, क्योंकि यह केवल लघुगणक का मान है।

दूसरा सूत्र वास्तव में एक व्याख्यात्मक परिभाषा है। इसे इस तरह कहा जाता है:

वास्तव में, क्या होगा यदि संख्या b को इस हद तक बढ़ा दिया जाए कि इस अंश की संख्या b संख्या a दे दे? यह सही है: यह वही संख्या है a. इस पैराग्राफ को फिर से ध्यान से पढ़ें - बहुत से लोग इसे "लटका" देते हैं।

नए आधार रूपांतरण फ़ार्मुलों की तरह, मूल लघुगणकीय पहचान कभी-कभी एकमात्र संभव समाधान होता है।

एक कार्य। व्यंजक का मान ज्ञात कीजिए:

ध्यान दें कि लॉग 25 64 = लॉग 5 8 - बस वर्ग को आधार और लॉगरिदम के तर्क से निकाल दिया। शक्तियों को गुणा करने के नियमों को देखते हुए एक ही आधार, हम पाते हैं:

अगर किसी को पता नहीं है, तो यह एकीकृत राज्य परीक्षा से एक वास्तविक कार्य था

लघुगणक इकाई और लघुगणक शून्य

अंत में, मैं दो पहचान दूंगा जिन्हें गुणों को कॉल करना मुश्किल है - बल्कि, ये लॉगरिदम की परिभाषा से परिणाम हैं। वे लगातार समस्याओं में पाए जाते हैं और आश्चर्यजनक रूप से, "उन्नत" छात्रों के लिए भी समस्याएं पैदा करते हैं।

  1. लॉग ए = 1 है। एक बार और सभी के लिए याद रखें: किसी भी आधार के लिए लघुगणक उस आधार से ही एक के बराबर होता है।
  2. लॉग ए 1 = 0 है। आधार a कुछ भी हो सकता है, लेकिन यदि तर्क एक है, तो लघुगणक शून्य है! क्योंकि 0 = 1 परिभाषा का प्रत्यक्ष परिणाम है।

वह सब गुण है। उन्हें अभ्यास में लाने का अभ्यास करना सुनिश्चित करें! पाठ की शुरुआत में चीट शीट डाउनलोड करें, उसका प्रिंट आउट लें और समस्याओं का समाधान करें।

बुनियादी गुण.

  1. लॉगैक्स + लोगे = लॉग (एक्स वाई);
  2. लघुगणक - लघुगणक = लघुगणक (x: y)।

एक ही आधार

लॉग 6 4 + लॉग 6 9.

अब कार्य को थोड़ा जटिल करते हैं।

लघुगणक हल करने के उदाहरण

क्या होगा यदि लघुगणक के आधार या तर्क में कोई डिग्री हो? तब इस डिग्री के घातांक को निम्न नियमों के अनुसार लघुगणक के चिह्न से निकाला जा सकता है:

बेशक, ये सभी नियम समझ में आते हैं यदि ODZ लघुगणक मनाया जाता है: a > 0, a 1, x >

एक कार्य। व्यंजक का मान ज्ञात कीजिए:

एक नई नींव में संक्रमण

बता दें कि लघुगणक लघुगणक दिया जाता है। फिर किसी भी संख्या c जैसे कि c > 0 और c ≠ 1 के लिए, समानता सत्य है:

एक कार्य। व्यंजक का मान ज्ञात कीजिए:

यह सभी देखें:


लघुगणक के मूल गुण

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.



घातांक 2.718281828…. प्रतिपादक को याद करने के लिए, आप नियम का अध्ययन कर सकते हैं: प्रतिपादक 2.7 है और लियो टॉल्स्टॉय के जन्म के वर्ष का दोगुना है।

लघुगणक के मूल गुण

इस नियम को जानकर आप घातांक का सही मूल्य और लियो टॉल्स्टॉय की जन्म तिथि दोनों को जान जाएंगे।


लघुगणक के उदाहरण

व्यंजकों का लघुगणक लें

उदाहरण 1
एक)। x=10ac^2 (ए>0, सी>0)।

गुण 3,5 से हम गणना करते हैं

2.

3.

4. कहाँ पे .



उदाहरण 2 x ज्ञात कीजिए यदि


उदाहरण 3. मान लीजिए कि लघुगणक का मान दिया गया है

लॉग (x) की गणना करें यदि




लघुगणक के मूल गुण

लॉगरिदम, किसी भी संख्या की तरह, हर संभव तरीके से जोड़ा, घटाया और परिवर्तित किया जा सकता है। लेकिन चूंकि लॉगरिदम बिल्कुल सामान्य संख्या नहीं हैं, इसलिए यहां नियम हैं, जिन्हें कहा जाता है बुनियादी गुण.

इन नियमों को अवश्य जानना चाहिए - इनके बिना कोई भी गंभीर लघुगणकीय समस्या हल नहीं हो सकती है। इसके अलावा, उनमें से बहुत कम हैं - एक दिन में सब कुछ सीखा जा सकता है। तो चलो शुरू करते है।

लघुगणक का जोड़ और घटाव

समान आधार वाले दो लघुगणक पर विचार करें: लघुगणक और लघुगणक। फिर उन्हें जोड़ा और घटाया जा सकता है, और:

  1. लॉगैक्स + लोगे = लॉग (एक्स वाई);
  2. लघुगणक - लघुगणक = लघुगणक (x: y)।

तो, लघुगणक का योग उत्पाद के लघुगणक के बराबर है, और अंतर भागफल का लघुगणक है। कृपया ध्यान दें: यहाँ मुख्य बिंदु है - एक ही आधार. यदि आधार भिन्न हैं, तो ये नियम काम नहीं करते हैं!

ये सूत्र लघुगणक व्यंजक की गणना करने में मदद करेंगे, भले ही इसके अलग-अलग हिस्सों पर विचार न किया गया हो (पाठ "एक लघुगणक क्या है" देखें)। उदाहरणों पर एक नज़र डालें और देखें:

चूंकि लघुगणक के आधार समान हैं, इसलिए हम योग सूत्र का उपयोग करते हैं:
log6 4 + log6 9 = log6 (4 9) = log6 36 = 2।

एक कार्य। व्यंजक का मान ज्ञात कीजिए: log2 48 - log2 3.

आधार समान हैं, हम अंतर सूत्र का उपयोग करते हैं:
log2 48 - log2 3 = log2 (48: 3) = log2 16 = 4।

एक कार्य। व्यंजक का मान ज्ञात कीजिए: log3 135 - log3 5.

फिर से, आधार समान हैं, इसलिए हमारे पास है:
log3 135 - log3 5 = log3 (135: 5) = log3 27 = 3।

जैसा कि आप देख सकते हैं, मूल भाव "खराब" लघुगणक से बने होते हैं, जिन्हें अलग से नहीं माना जाता है। लेकिन परिवर्तनों के बाद काफी सामान्य संख्याएँ निकलती हैं। कई परीक्षण इस तथ्य पर आधारित हैं। हां, नियंत्रण - पूरी गंभीरता से समान भाव (कभी-कभी - वस्तुतः कोई बदलाव नहीं) परीक्षा में पेश किए जाते हैं।

घातांक को लघुगणक से हटाना

यह देखना आसान है कि अंतिम नियम उनके पहले दो का अनुसरण करता है। लेकिन इसे वैसे भी याद रखना बेहतर है - कुछ मामलों में यह गणना की मात्रा को काफी कम कर देगा।

बेशक, ये सभी नियम समझ में आते हैं यदि ओडीजेड लॉगरिदम मनाया जाता है: ए> 0, ए ≠ 1, एक्स> 0. और एक और बात: न केवल बाएं से दाएं, बल्कि इसके विपरीत भी सभी सूत्रों को लागू करना सीखें, यानी। आप लघुगणक के चिह्न से पहले संख्याओं को लघुगणक में ही दर्ज कर सकते हैं। यह वही है जो सबसे अधिक बार आवश्यक होता है।

एक कार्य। व्यंजक का मान ज्ञात कीजिए: log7 496।

आइए पहले सूत्र के अनुसार तर्क में डिग्री से छुटकारा पाएं:
log7 496 = 6 log7 49 = 6 2 = 12

एक कार्य। व्यंजक का मान ज्ञात कीजिए:

ध्यान दें कि हर एक लघुगणक है जिसका आधार और तर्क सटीक शक्तियाँ हैं: 16 = 24; 49 = 72. हमारे पास है:

मुझे लगता है कि अंतिम उदाहरण को स्पष्टीकरण की आवश्यकता है। लघुगणक कहाँ चले गए हैं? अंतिम क्षण तक, हम केवल हर के साथ काम करते हैं।

लघुगणक के सूत्र। लघुगणक समाधान के उदाहरण हैं।

उन्होंने वहां खड़े लघुगणक के आधार और तर्क को डिग्री के रूप में प्रस्तुत किया और संकेतक निकाले - उन्हें "तीन मंजिला" अंश मिला।

अब आइए मुख्य अंश को देखें। अंश और हर की संख्या समान है: log2 7. चूंकि log2 7 0, हम भिन्न को कम कर सकते हैं - 2/4 हर में रहेगा। अंकगणित के नियमों के अनुसार, चार को अंश में स्थानांतरित किया जा सकता है, जो किया गया था। परिणाम उत्तर है: 2.

एक नई नींव में संक्रमण

लॉगरिदम जोड़ने और घटाने के नियमों के बारे में बोलते हुए, मैंने विशेष रूप से जोर दिया कि वे केवल एक ही आधार के साथ काम करते हैं। क्या होगा यदि आधार अलग हैं? क्या होगा यदि वे एक ही संख्या की सटीक शक्तियां नहीं हैं?

एक नए आधार पर संक्रमण के लिए सूत्र बचाव के लिए आते हैं। हम उन्हें एक प्रमेय के रूप में तैयार करते हैं:

बता दें कि लघुगणक लघुगणक दिया जाता है। फिर किसी भी संख्या c जैसे कि c > 0 और c ≠ 1 के लिए, समानता सत्य है:

विशेष रूप से, यदि हम c = x रखते हैं, तो हमें प्राप्त होता है:

यह दूसरे सूत्र से इस प्रकार है कि आधार और लघुगणक के तर्क को आपस में बदलना संभव है, लेकिन इस मामले में पूरी अभिव्यक्ति "उलट" है, अर्थात। लघुगणक हर में है।

ये सूत्र सामान्य संख्यात्मक अभिव्यक्तियों में बहुत कम पाए जाते हैं। यह मूल्यांकन करना संभव है कि लॉगरिदमिक समीकरणों और असमानताओं को हल करते समय ही वे कितने सुविधाजनक होते हैं।

हालाँकि, ऐसे कार्य हैं जिन्हें एक नई नींव में जाने के अलावा हल नहीं किया जा सकता है। आइए इनमें से कुछ पर विचार करें:

एक कार्य। व्यंजक का मान ज्ञात कीजिए: log5 16 log2 25.

ध्यान दें कि दोनों लघुगणक के तर्क सटीक घातांक हैं। आइए संकेतक निकालें: log5 16 = log5 24 = 4log5 2; log2 25 = log2 52 = 2log2 5;

अब दूसरा लघुगणक पलटें:

चूंकि उत्पाद कारकों के क्रमपरिवर्तन से नहीं बदलता है, हमने शांति से चार और दो को गुणा किया, और फिर लघुगणक का पता लगाया।

एक कार्य। व्यंजक का मान ज्ञात कीजिए: log9 100 lg 3.

पहले लघुगणक का आधार और तर्क सटीक शक्तियाँ हैं। आइए इसे लिख लें और संकेतकों से छुटकारा पाएं:

आइए अब एक नए आधार पर जाकर दशमलव लघुगणक से छुटकारा पाएं:

मूल लघुगणकीय पहचान

अक्सर हल करने की प्रक्रिया में किसी दिए गए आधार के लिए एक संख्या को लघुगणक के रूप में प्रस्तुत करना आवश्यक होता है। इस मामले में, सूत्र हमारी मदद करेंगे:

पहले मामले में, संख्या n तर्क में घातांक बन जाती है। संख्या n बिल्कुल कुछ भी हो सकती है, क्योंकि यह केवल लघुगणक का मान है।

दूसरा सूत्र वास्तव में एक व्याख्यात्मक परिभाषा है। इसे इस तरह कहा जाता है:

वास्तव में, क्या होगा यदि संख्या b को इस हद तक बढ़ा दिया जाए कि इस अंश की संख्या b संख्या a दे दे? यह सही है: यह वही संख्या है a. इस पैराग्राफ को फिर से ध्यान से पढ़ें - बहुत से लोग इसे "लटका" देते हैं।

नए आधार रूपांतरण फ़ार्मुलों की तरह, मूल लघुगणकीय पहचान कभी-कभी एकमात्र संभव समाधान होता है।

एक कार्य। व्यंजक का मान ज्ञात कीजिए:

ध्यान दें कि log25 64 = log5 8 - बस आधार से वर्ग निकाल लिया और लघुगणक का तर्क। समान आधार से घातों को गुणा करने के नियमों को देखते हुए, हम प्राप्त करते हैं:

अगर किसी को पता नहीं है, तो यह एकीकृत राज्य परीक्षा से एक वास्तविक कार्य था

लघुगणक इकाई और लघुगणक शून्य

अंत में, मैं दो पहचान दूंगा जिन्हें गुणों को कॉल करना मुश्किल है - बल्कि, ये लॉगरिदम की परिभाषा से परिणाम हैं। वे लगातार समस्याओं में पाए जाते हैं और आश्चर्यजनक रूप से, "उन्नत" छात्रों के लिए भी समस्याएं पैदा करते हैं।

  1. लोगा = 1 है। एक बार और सभी के लिए याद रखें: किसी भी आधार के लिए लघुगणक उस आधार से ही एक के बराबर होता है।
  2. लॉगा 1 = 0 है। आधार a कुछ भी हो सकता है, लेकिन यदि तर्क एक है, तो लघुगणक शून्य है! क्योंकि a0 = 1 परिभाषा का प्रत्यक्ष परिणाम है।

वह सब गुण है। उन्हें अभ्यास में लाने का अभ्यास करना सुनिश्चित करें! पाठ की शुरुआत में चीट शीट डाउनलोड करें, उसका प्रिंट आउट लें और समस्याओं का समाधान करें।

यह सभी देखें:

संख्या b का आधार a का लघुगणक व्यंजक को दर्शाता है। लघुगणक की गणना करने का अर्थ है ऐसी घात x () ज्ञात करना जिस पर समानता सत्य हो

लघुगणक के मूल गुण

उपरोक्त गुणों को जानने की आवश्यकता है, क्योंकि उनके आधार पर लगभग सभी समस्याओं और उदाहरणों को लघुगणक के आधार पर हल किया जाता है। शेष विदेशी गुण इन सूत्रों के साथ गणितीय जोड़तोड़ द्वारा प्राप्त किए जा सकते हैं

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.

योग और लघुगणक (3.4) के अंतर के सूत्रों की गणना करते समय अक्सर सामना किया जाता है। बाकी कुछ जटिल हैं, लेकिन कई कार्यों में वे जटिल अभिव्यक्तियों को सरल बनाने और उनके मूल्यों की गणना के लिए अनिवार्य हैं।

लघुगणक के सामान्य मामले

कुछ सामान्य लघुगणक वे हैं जिनमें आधार सम भी दस, घातांक या ड्यूस है।
आधार दस लघुगणक को आमतौर पर आधार दस लघुगणक कहा जाता है और इसे केवल lg(x) के रूप में दर्शाया जाता है।

रिकॉर्ड से यह देखा जा सकता है कि मूल बातें रिकॉर्ड में नहीं लिखी गई हैं। उदाहरण के लिए

प्राकृतिक लघुगणक वह लघुगणक है जिसका आधार घातांक (निरूपित ln(x)) है।

घातांक 2.718281828…. प्रतिपादक को याद करने के लिए, आप नियम का अध्ययन कर सकते हैं: प्रतिपादक 2.7 है और लियो टॉल्स्टॉय के जन्म के वर्ष का दोगुना है। इस नियम को जानकर आप घातांक का सही मूल्य और लियो टॉल्स्टॉय की जन्म तिथि दोनों को जान जाएंगे।

और दूसरा महत्वपूर्ण आधार दो लघुगणक है

फ़ंक्शन के लघुगणक का व्युत्पन्न चर द्वारा विभाजित एक के बराबर है

अभिन्न या प्रतिपक्षी लघुगणक निर्भरता द्वारा निर्धारित किया जाता है

उपरोक्त सामग्री आपके लिए लघुगणक और लघुगणक से संबंधित समस्याओं की एक विस्तृत श्रेणी को हल करने के लिए पर्याप्त है। सामग्री को समझने के लिए, मैं केवल कुछ सामान्य उदाहरण दूंगा स्कूल के पाठ्यक्रमऔर विश्वविद्यालय।

लघुगणक के उदाहरण

व्यंजकों का लघुगणक लें

उदाहरण 1
एक)। x=10ac^2 (ए>0, सी>0)।

गुण 3,5 से हम गणना करते हैं

2.
लघुगणक के अंतर गुण से, हमारे पास है

3.
गुण 3.5 का उपयोग करके हम पाते हैं

4. कहाँ पे .

नियमों की एक श्रृंखला का उपयोग करके प्रतीत होने वाली जटिल अभिव्यक्ति को फॉर्म में सरल बनाया गया है

लघुगणक मान ढूँढना

उदाहरण 2 x ज्ञात कीजिए यदि

समाधान। गणना के लिए, हम गुण 5 और 13 को अंतिम पद तक लागू करते हैं

रिकॉर्ड में स्थानापन्न करें और शोक करें

चूँकि आधार समान हैं, हम व्यंजकों को समान करते हैं

लघुगणक। प्रथम स्तर।

मान लीजिए लघुगणक का मान दिया गया है

लॉग (x) की गणना करें यदि

हल: पदों के योग से लघुगणक लिखने के लिए चर का लघुगणक लें


यह लघुगणक और उनके गुणों से परिचित होने की शुरुआत है। गणना का अभ्यास करें, अपने व्यावहारिक कौशल को समृद्ध करें - लॉगरिदमिक समीकरणों को हल करने के लिए आपको जल्द ही अर्जित ज्ञान की आवश्यकता होगी। ऐसे समीकरणों को हल करने के लिए बुनियादी तरीकों का अध्ययन करने के बाद, हम आपके ज्ञान का विस्तार किसी और के लिए कम नहीं करेंगे महत्वपूर्ण विषय- लघुगणक असमानताएँ ...

लघुगणक के मूल गुण

लॉगरिदम, किसी भी संख्या की तरह, हर संभव तरीके से जोड़ा, घटाया और परिवर्तित किया जा सकता है। लेकिन चूंकि लॉगरिदम बिल्कुल सामान्य संख्या नहीं हैं, इसलिए यहां नियम हैं, जिन्हें कहा जाता है बुनियादी गुण.

इन नियमों को अवश्य जानना चाहिए - इनके बिना कोई भी गंभीर लघुगणकीय समस्या हल नहीं हो सकती है। इसके अलावा, उनमें से बहुत कम हैं - एक दिन में सब कुछ सीखा जा सकता है। तो चलो शुरू करते है।

लघुगणक का जोड़ और घटाव

समान आधार वाले दो लघुगणक पर विचार करें: लघुगणक और लघुगणक। फिर उन्हें जोड़ा और घटाया जा सकता है, और:

  1. लॉगैक्स + लोगे = लॉग (एक्स वाई);
  2. लघुगणक - लघुगणक = लघुगणक (x: y)।

तो, लघुगणक का योग उत्पाद के लघुगणक के बराबर है, और अंतर भागफल का लघुगणक है। कृपया ध्यान दें: यहाँ मुख्य बिंदु है - एक ही आधार. यदि आधार भिन्न हैं, तो ये नियम काम नहीं करते हैं!

ये सूत्र लघुगणक व्यंजक की गणना करने में मदद करेंगे, भले ही इसके अलग-अलग हिस्सों पर विचार न किया गया हो (पाठ "एक लघुगणक क्या है" देखें)। उदाहरणों पर एक नज़र डालें और देखें:

एक कार्य। व्यंजक का मान ज्ञात कीजिए: log6 4 + log6 9.

चूंकि लघुगणक के आधार समान हैं, इसलिए हम योग सूत्र का उपयोग करते हैं:
log6 4 + log6 9 = log6 (4 9) = log6 36 = 2।

एक कार्य। व्यंजक का मान ज्ञात कीजिए: log2 48 - log2 3.

आधार समान हैं, हम अंतर सूत्र का उपयोग करते हैं:
log2 48 - log2 3 = log2 (48: 3) = log2 16 = 4।

एक कार्य। व्यंजक का मान ज्ञात कीजिए: log3 135 - log3 5.

फिर से, आधार समान हैं, इसलिए हमारे पास है:
log3 135 - log3 5 = log3 (135: 5) = log3 27 = 3।

जैसा कि आप देख सकते हैं, मूल भाव "खराब" लघुगणक से बने होते हैं, जिन्हें अलग से नहीं माना जाता है। लेकिन परिवर्तनों के बाद काफी सामान्य संख्याएँ निकलती हैं। कई परीक्षण इस तथ्य पर आधारित हैं। हां, नियंत्रण - पूरी गंभीरता से समान भाव (कभी-कभी - वस्तुतः कोई बदलाव नहीं) परीक्षा में पेश किए जाते हैं।

घातांक को लघुगणक से हटाना

अब कार्य को थोड़ा जटिल करते हैं। क्या होगा यदि लघुगणक के आधार या तर्क में कोई डिग्री हो? तब इस डिग्री के घातांक को निम्न नियमों के अनुसार लघुगणक के चिह्न से निकाला जा सकता है:

यह देखना आसान है कि अंतिम नियम उनके पहले दो का अनुसरण करता है। लेकिन इसे वैसे भी याद रखना बेहतर है - कुछ मामलों में यह गणना की मात्रा को काफी कम कर देगा।

बेशक, ये सभी नियम समझ में आते हैं यदि ओडीजेड लॉगरिदम मनाया जाता है: ए> 0, ए ≠ 1, एक्स> 0. और एक और बात: न केवल बाएं से दाएं, बल्कि इसके विपरीत भी सभी सूत्रों को लागू करना सीखें, यानी। आप लघुगणक के चिह्न से पहले संख्याओं को लघुगणक में ही दर्ज कर सकते हैं।

लघुगणक कैसे हल करें

यह वही है जो सबसे अधिक बार आवश्यक होता है।

एक कार्य। व्यंजक का मान ज्ञात कीजिए: log7 496।

आइए पहले सूत्र के अनुसार तर्क में डिग्री से छुटकारा पाएं:
log7 496 = 6 log7 49 = 6 2 = 12

एक कार्य। व्यंजक का मान ज्ञात कीजिए:

ध्यान दें कि हर एक लघुगणक है जिसका आधार और तर्क सटीक शक्तियाँ हैं: 16 = 24; 49 = 72. हमारे पास है:

मुझे लगता है कि अंतिम उदाहरण को स्पष्टीकरण की आवश्यकता है। लघुगणक कहाँ चले गए हैं? अंतिम क्षण तक, हम केवल हर के साथ काम करते हैं। उन्होंने वहां खड़े लघुगणक के आधार और तर्क को डिग्री के रूप में प्रस्तुत किया और संकेतक निकाले - उन्हें "तीन मंजिला" अंश मिला।

अब आइए मुख्य अंश को देखें। अंश और हर की संख्या समान है: log2 7. चूंकि log2 7 0, हम भिन्न को कम कर सकते हैं - 2/4 हर में रहेगा। अंकगणित के नियमों के अनुसार, चार को अंश में स्थानांतरित किया जा सकता है, जो किया गया था। परिणाम उत्तर है: 2.

एक नई नींव में संक्रमण

लॉगरिदम जोड़ने और घटाने के नियमों के बारे में बोलते हुए, मैंने विशेष रूप से जोर दिया कि वे केवल एक ही आधार के साथ काम करते हैं। क्या होगा यदि आधार अलग हैं? क्या होगा यदि वे एक ही संख्या की सटीक शक्तियां नहीं हैं?

एक नए आधार पर संक्रमण के लिए सूत्र बचाव के लिए आते हैं। हम उन्हें एक प्रमेय के रूप में तैयार करते हैं:

बता दें कि लघुगणक लघुगणक दिया जाता है। फिर किसी भी संख्या c जैसे कि c > 0 और c ≠ 1 के लिए, समानता सत्य है:

विशेष रूप से, यदि हम c = x रखते हैं, तो हमें प्राप्त होता है:

यह दूसरे सूत्र से इस प्रकार है कि आधार और लघुगणक के तर्क को आपस में बदलना संभव है, लेकिन इस मामले में पूरी अभिव्यक्ति "उलट" है, अर्थात। लघुगणक हर में है।

ये सूत्र सामान्य संख्यात्मक अभिव्यक्तियों में बहुत कम पाए जाते हैं। यह मूल्यांकन करना संभव है कि लॉगरिदमिक समीकरणों और असमानताओं को हल करते समय ही वे कितने सुविधाजनक होते हैं।

हालाँकि, ऐसे कार्य हैं जिन्हें एक नई नींव में जाने के अलावा हल नहीं किया जा सकता है। आइए इनमें से कुछ पर विचार करें:

एक कार्य। व्यंजक का मान ज्ञात कीजिए: log5 16 log2 25.

ध्यान दें कि दोनों लघुगणक के तर्क सटीक घातांक हैं। आइए संकेतक निकालें: log5 16 = log5 24 = 4log5 2; log2 25 = log2 52 = 2log2 5;

अब दूसरा लघुगणक पलटें:

चूंकि उत्पाद कारकों के क्रमपरिवर्तन से नहीं बदलता है, हमने शांति से चार और दो को गुणा किया, और फिर लघुगणक का पता लगाया।

एक कार्य। व्यंजक का मान ज्ञात कीजिए: log9 100 lg 3.

पहले लघुगणक का आधार और तर्क सटीक शक्तियाँ हैं। आइए इसे लिख लें और संकेतकों से छुटकारा पाएं:

आइए अब एक नए आधार पर जाकर दशमलव लघुगणक से छुटकारा पाएं:

मूल लघुगणकीय पहचान

अक्सर हल करने की प्रक्रिया में किसी दिए गए आधार के लिए एक संख्या को लघुगणक के रूप में प्रस्तुत करना आवश्यक होता है। इस मामले में, सूत्र हमारी मदद करेंगे:

पहले मामले में, संख्या n तर्क में घातांक बन जाती है। संख्या n बिल्कुल कुछ भी हो सकती है, क्योंकि यह केवल लघुगणक का मान है।

दूसरा सूत्र वास्तव में एक व्याख्यात्मक परिभाषा है। इसे इस तरह कहा जाता है:

वास्तव में, क्या होगा यदि संख्या b को इस हद तक बढ़ा दिया जाए कि इस अंश की संख्या b संख्या a दे दे? यह सही है: यह वही संख्या है a. इस पैराग्राफ को फिर से ध्यान से पढ़ें - बहुत से लोग इसे "लटका" देते हैं।

नए आधार रूपांतरण फ़ार्मुलों की तरह, मूल लघुगणकीय पहचान कभी-कभी एकमात्र संभव समाधान होता है।

एक कार्य। व्यंजक का मान ज्ञात कीजिए:

ध्यान दें कि log25 64 = log5 8 - बस आधार से वर्ग निकाल लिया और लघुगणक का तर्क। समान आधार से घातों को गुणा करने के नियमों को देखते हुए, हम प्राप्त करते हैं:

अगर किसी को पता नहीं है, तो यह एकीकृत राज्य परीक्षा से एक वास्तविक कार्य था

लघुगणक इकाई और लघुगणक शून्य

अंत में, मैं दो पहचान दूंगा जिन्हें गुणों को कॉल करना मुश्किल है - बल्कि, ये लॉगरिदम की परिभाषा से परिणाम हैं। वे लगातार समस्याओं में पाए जाते हैं और आश्चर्यजनक रूप से, "उन्नत" छात्रों के लिए भी समस्याएं पैदा करते हैं।

  1. लोगा = 1 है। एक बार और सभी के लिए याद रखें: किसी भी आधार के लिए लघुगणक उस आधार से ही एक के बराबर होता है।
  2. लॉगा 1 = 0 है। आधार a कुछ भी हो सकता है, लेकिन यदि तर्क एक है, तो लघुगणक शून्य है! क्योंकि a0 = 1 परिभाषा का प्रत्यक्ष परिणाम है।

वह सब गुण है। उन्हें अभ्यास में लाने का अभ्यास करना सुनिश्चित करें! पाठ की शुरुआत में चीट शीट डाउनलोड करें, उसका प्रिंट आउट लें और समस्याओं का समाधान करें।

हम सभी समीकरणों से परिचित हैं। प्राथमिक स्कूल. वहां भी हमने सरलतम उदाहरणों को हल करना सीखा, और यह स्वीकार किया जाना चाहिए कि वे उच्च गणित में भी अपना आवेदन पाते हैं। समीकरणों के साथ सब कुछ सरल है, जिसमें वर्ग भी शामिल हैं। यदि आपको इस विषय से कोई समस्या है, तो हम दृढ़ता से अनुशंसा करते हैं कि आप इसे पुनः प्रयास करें।

लघुगणक आप शायद पहले ही पारित कर चुके हैं। फिर भी, हम यह बताना महत्वपूर्ण समझते हैं कि यह उन लोगों के लिए क्या है जो अभी तक नहीं जानते हैं। लॉगरिदम उस शक्ति के बराबर होता है जिसके लिए लॉगरिदम के चिह्न के दाईं ओर संख्या प्राप्त करने के लिए आधार को ऊपर उठाया जाना चाहिए। आइए एक उदाहरण देते हैं, जिसके आधार पर आपके लिए सब कुछ स्पष्ट हो जाएगा।

यदि आप 3 को चौथी घात तक बढ़ाते हैं, तो आपको 81 मिलता है। अब सादृश्य द्वारा संख्याओं को प्रतिस्थापित करें, और आप अंत में समझ जाएंगे कि लघुगणक कैसे हल किए जाते हैं। अब यह केवल दो मानी गई अवधारणाओं को मिलाने के लिए बनी हुई है। प्रारंभ में, स्थिति बेहद कठिन लगती है, लेकिन करीब से जांच करने पर, वजन कम हो जाता है। हमें यकीन है कि इस संक्षिप्त लेख के बाद आपको परीक्षा के इस भाग में कोई समस्या नहीं होगी।

आज, ऐसी संरचनाओं को हल करने के कई तरीके हैं। हम यूएसई कार्यों के मामले में सबसे सरल, सबसे प्रभावी और सबसे अधिक लागू होने के बारे में बात करेंगे। लॉगरिदमिक समीकरणों को हल करना शुरू से ही शुरू होना चाहिए। एक साधारण उदाहरण. सबसे सरल लघुगणकीय समीकरणों में एक फ़ंक्शन और उसमें एक चर होता है।

यह ध्यान रखना महत्वपूर्ण है कि x तर्क के अंदर है। ए और बी संख्याएं होनी चाहिए। इस मामले में, आप केवल एक घात में संख्या के रूप में फ़ंक्शन को व्यक्त कर सकते हैं। यह इस तरह दिख रहा है।

बेशक, इस तरह से एक लघुगणकीय समीकरण को हल करने से आपको सही उत्तर मिल जाएगा। लेकिन इस मामले में अधिकांश छात्रों की समस्या यह है कि उन्हें समझ में नहीं आता कि यह क्या और कहां से आता है। नतीजतन, आपको गलतियों का सामना करना पड़ता है और वांछित अंक प्राप्त नहीं करना पड़ता है। सबसे आपत्तिजनक गलती तब होगी जब आप अक्षरों को जगह-जगह मिला दें। इस तरह से समीकरण को हल करने के लिए, आपको इस मानक स्कूल फॉर्मूले को याद रखना होगा, क्योंकि इसे समझना मुश्किल है।

इसे आसान बनाने के लिए, आप दूसरी विधि का सहारा ले सकते हैं - विहित रूप। विचार अत्यंत सरल है। कार्य पर फिर से ध्यान दें। याद रखें कि अक्षर a एक संख्या है, न कि कोई फ़ंक्शन या एक चर। A एक के बराबर नहीं है और शून्य से बड़ा है। बी पर कोई प्रतिबंध नहीं है। अब सभी सूत्रों में से हम एक को याद करते हैं। बी को निम्नानुसार व्यक्त किया जा सकता है।

इससे यह निष्कर्ष निकलता है कि लघुगणक वाले सभी मूल समीकरणों को इस प्रकार दर्शाया जा सकता है:

अब हम लघुगणक को त्याग सकते हैं। परिणाम एक साधारण निर्माण है, जिसे हम पहले ही देख चुके हैं।

इस सूत्र की सुविधा इस तथ्य में निहित है कि इसका उपयोग विभिन्न मामलों में किया जा सकता है, न कि केवल सरलतम डिजाइनों के लिए।

ओओएफ के बारे में चिंता मत करो!

कई अनुभवी गणितज्ञों ने देखा होगा कि हमने परिभाषा के क्षेत्र पर ध्यान नहीं दिया है। नियम इस तथ्य पर उबलता है कि F(x) अनिवार्य रूप से 0 से बड़ा है। नहीं, हमने इस बिंदु को नहीं छोड़ा है। अब हम विहित रूप के एक और गंभीर लाभ के बारे में बात कर रहे हैं।

यहां कोई अतिरिक्त जड़ें नहीं होंगी। यदि चर केवल एक ही स्थान पर होगा, तो गुंजाइश आवश्यक नहीं है। यह स्वचालित रूप से चलता है। इस निर्णय को सत्यापित करने के लिए, कुछ सरल उदाहरणों को हल करने पर विचार करें।

विभिन्न आधारों के साथ लघुगणकीय समीकरणों को कैसे हल करें

ये पहले से ही जटिल लघुगणकीय समीकरण हैं, और उनके समाधान के लिए दृष्टिकोण विशेष होना चाहिए। यहां खुद को कुख्यात विहित रूप तक सीमित रखना शायद ही संभव हो। आइए शुरू करते हैं हमारी विस्तृत कहानी। हमारे पास निम्नलिखित निर्माण है।

अंश पर ध्यान दें। इसमें लघुगणक है। यदि आप इसे कार्य में देखते हैं, तो यह एक दिलचस्प चाल याद रखने योग्य है।

इसका क्या मतलब है? प्रत्येक लघुगणक को सुविधाजनक आधार के साथ दो लघुगणक के भागफल के रूप में व्यक्त किया जा सकता है। और इस सूत्र का एक विशेष मामला है जो इस उदाहरण पर लागू होता है (हमारा मतलब है अगर c=b)।

यह वही है जो हम अपने उदाहरण में देखते हैं। इस तरह।

वास्तव में, उन्होंने भिन्न को पलट दिया और अधिक सुविधाजनक व्यंजक प्राप्त किया। इस एल्गोरिथ्म को याद रखें!

अब हमें चाहिए कि लघुगणक समीकरण में अलग-अलग आधार न हों। आइए आधार को भिन्न के रूप में निरूपित करें।

गणित में एक नियम होता है, जिसके आधार पर आप आधार से डिग्री निकाल सकते हैं। यह निम्नलिखित निर्माण निकला।

ऐसा लगता है कि अब हमें अपनी अभिव्यक्ति को विहित रूप में बदलने और इसे मूल रूप से हल करने से क्या रोकता है? इतना आसान नहीं। लघुगणक से पहले कोई अंश नहीं होना चाहिए। आइए इस स्थिति को ठीक करें! अंश को अंश के रूप में निकालने की अनुमति है।

क्रमश।

यदि आधार समान हैं, तो हम लघुगणक को हटा सकते हैं और व्यंजकों को स्वयं समान कर सकते हैं। तो स्थिति पहले से कई गुना आसान हो जाएगी। एक प्राथमिक समीकरण होगा जिसे हम में से प्रत्येक 8वीं या 7वीं कक्षा में हल करना जानता था। गणना आप स्वयं कर सकते हैं।

हमें इस लघुगणकीय समीकरण का एकमात्र वास्तविक मूल प्राप्त हुआ है। एक लघुगणकीय समीकरण को हल करने के उदाहरण काफी सरल हैं, है ना? अब आप परीक्षा की तैयारी और उत्तीर्ण करने के लिए सबसे कठिन कार्यों को भी स्वतंत्र रूप से करने में सक्षम होंगे।

इसका परिणाम क्या है?

किसी भी लघुगणकीय समीकरण के मामले में, हम एक बहुत से शुरू करते हैं महत्वपूर्ण नियम. अभिव्यक्ति को अधिकतम करने के लिए इस तरह से कार्य करना आवश्यक है सादे दृष्टि. इस मामले में, आपके पास न केवल समस्या को सही ढंग से हल करने के लिए, बल्कि इसे सबसे सरल और सबसे तार्किक तरीके से करने के लिए भी अधिक अवसर होंगे। इसी तरह गणितज्ञ हमेशा काम करते हैं।

हम दृढ़ता से अनुशंसा नहीं करते हैं कि आप कठिन रास्तों की तलाश करें, खासकर इस मामले में। कुछ याद रखें सरल नियम, जो आपको किसी भी अभिव्यक्ति को बदलने की अनुमति देगा। उदाहरण के लिए, एक ही आधार पर दो या तीन लघुगणक लाएँ, या आधार से एक शक्ति लें और उस पर जीत हासिल करें।

यह भी याद रखने योग्य है कि लॉगरिदमिक समीकरणों को हल करने में आपको लगातार प्रशिक्षित करने की आवश्यकता होती है। धीरे-धीरे, आप अधिक से अधिक जटिल संरचनाओं की ओर बढ़ेंगे, और यह आपको इस ओर ले जाएगा आश्वस्त निर्णयपरीक्षा में कार्यों के लिए सभी विकल्प। अपनी परीक्षा के लिए पहले से तैयारी करें, और शुभकामनाएँ!

दोस्तों के साथ शेयर करें या अपने लिए सेव करें:

लोड हो रहा है...