Розв'язання тригонометричних рівнянь із тангенсом. Тригонометричні рівняння

Відеокурс «Отримай п'ятірку» включає всі теми, необхідні для успішної здачіЄДІ з математики на 60-65 балів. Цілком всі завдання 1-13 Профільного ЄДІпо математиці. Підходить також для здачі Базового ЄДІ з математики. Якщо ви хочете здати ЄДІ на 90-100 балів, вам треба вирішувати частину 1 за 30 хвилин і без помилок!

Курс підготовки до ЄДІ для 10-11 класів, а також для викладачів. Все необхідне, щоб вирішити частину 1 ЄДІ з математики (перші 12 завдань) та задачу 13 (тригонометрія). А це понад 70 балів на ЄДІ, і без них не обійтись ні стобальнику, ні гуманітарію.

Уся необхідна теорія. Швидкі способирішення, пастки та секрети ЄДІ. Розібрано всі актуальні завдання частини 1 із Банку завдань ФІПД. Курс повністю відповідає вимогам ЄДІ-2018.

Курс містить 5 великих тем, по 2,5 години кожна. Кожна тема дається з нуля, це просто і зрозуміло.

Сотні завдань ЄДІ. Текстові завдання та теорія ймовірностей. Прості і легко запам'ятовуються алгоритми розв'язання задач. Геометрія. Теорія, довідковий матеріал, аналіз всіх типів завдань ЄДІ. Стереометрія. Хитрі прийоми розв'язання, корисні шпаргалки, розвиток просторової уяви. Тригонометрія з нуля - до завдання 13. Розуміння замість зубріння. Наочне пояснення складних понять. Алгебра. Коріння, ступеня та логарифми, функція та похідна. База на вирішення складних завдань 2 частини ЄДІ.

Ви можете замовити докладне рішеннявашого завдання !!!

Рівність, що містить невідому під знаком тригонометричної функції (`sin x, cos x, tg x` або `ctg x`), називається тригонометричним рівнянням, саме їх формули ми й розглянемо далі.

Найпростішими називаються рівняння `sin x=a, cos x=a, tg x=a, ctg x=a`, де `x` - кут, який потрібно знайти, `a` - будь-яке число. Запишемо для кожного з них формули коріння.

1. Рівняння `sin x=a`.

При `|a|>1` немає рішень.

При `|a| \leq 1` має нескінченну кількість рішень.

Формула коренів: `x=(-1)^n arcsin a + \pi n, n \in Z`

2. Рівняння `cos x=a`

При `|a|>1` — як і у випадку із синусом, рішень серед дійсних чисел не має.

При `|a| \leq 1` має безліч рішень.

Формула коренів: x = p arccos a + 2 pi n, n in Z

Приватні випадки для синуса та косинуса у графіках.

3. Рівняння `tg x=a`

Має безліч рішень при будь-яких значеннях `a`.

Формула коренів: `x=arctg a + \pi n, n \in Z`

4. Рівняння `ctg x=a`

Також має безліч рішень при будь-яких значеннях `a`.

Формула коренів: `x=arcctg a + \pi n, n \in Z`

Формули коренів тригонометричних рівнянь у таблиці

Для синусу:
Для косинуса:
Для тангенсу та котангенсу:
Формули розв'язання рівнянь, що містять зворотні тригонометричні функції:

Методи розв'язання тригонометричних рівнянь

Розв'язання будь-якого тригонометричного рівняння складається з двох етапів:

  • за допомогою перетворити його до найпростішого;
  • вирішити отримане найпростіше рівняння, використовуючи вище написані формули коренів та таблиці.

Розглянемо на прикладах основні способи розв'язання.

Алгебраїчний метод.

У цьому вся методі робиться заміна змінної та її підстановка на рівність.

приклад. Розв'язати рівняння: `2cos^2(x+\frac \pi 6)-3sin(\frac \pi 3 - x)+1=0`

`2cos^2(x+frac \pi 6)-3cos(x+frac \pi 6)+1=0`,

робимо заміну: `cos(x+\frac \pi 6)=y`, тоді `2y^2-3y+1=0`,

знаходимо коріння: `y_1=1, y_2=1/2`, звідки випливають два випадки:

1. ` cos (x + frac \ pi 6) = 1 `, ` x + \ frac \ pi 6 = 2 \ pi n `, ` x_1 = - \ frac \ pi 6 +2 \ pi n `.

2. `cos(x+\frac \pi 6)=1/2`, `x+\frac \pi 6=\pm arccos 1/2+2\pi n`, `x_2=\pm \frac \pi 3- \frac \pi 6+2\pi n`.

Відповідь: `x_1=-\frac \pi 6+2\pi n`, `x_2=\pm \frac \pi 3-frac \pi 6+2\pi n`.

Розкладання на множники.

приклад. Розв'язати рівняння: `sin x+cos x=1`.

Рішення. Перенесемо вліво всі члени рівності: `sin x+cos x-1=0`. Використовуючи , перетворимо та розкладемо на множники ліву частину:

`sin x - 2sin^2 x/2=0`,

`2sin x/2 cos x/2-2sin^2 x/2=0`,

`2sin x/2 (cos x/2-sin x/2)=0`,

  1. ` sin x/2 = 0 `, ` x/2 = \ pi n `, ` x_1 = 2 \ pi n `.
  2. `cos x/2-sin x/2=0`, `tg x/2=1`, `x/2=arctg 1+ \pi n`, `x/2=\pi/4+ \pi n` , `x_2=pi/2+ 2pi n`.

Відповідь: `x_1=2\pi n`, `x_2=\pi/2+ 2\pi n`.

Приведення до однорідного рівняння

Спочатку потрібно це тригонометричне рівняння привести до одного з двох видів:

`a sin x+b cos x=0` ( однорідне рівнянняпершого ступеня) або `a sin^2 x + b sin x cos x + c cos^2 x = 0` (однорідне рівняння другого ступеня).

Потім розділити обидві частини на `cos x \ ne 0` - для першого випадку, і на ` cos ^ 2 x \ ne 0` - для другого. Отримаємо рівняння щодо `tg x`: `a tg x+b=0` та `a tg^2 x + b tg x +c =0`, які потрібно вирішити відомими способами.

приклад. Розв'язати рівняння: `2 sin ^ 2 x + sin x cos x - cos ^ 2 x = 1 `.

Рішення. Запишемо праву частинуяк `1=sin^2 x+cos^2 x`:

`2 sin^2 x+sin x cos x - cos^2 x=`` sin^2 x+cos^2 x`,

`2 sin^2 x+sin x cos x - cos^2 x - `` sin^2 x - cos^2 x=0`

` sin ^ 2 x + sin x cos x - 2 cos ^ 2 x = 0 `.

Це однорідне тригонометричне рівняння другого ступеня, розділимо його ліву та праву частини на `cos^2 x \ne 0`, отримаємо:

`\frac(sin^2 x)(cos^2 x)+\frac(sin x cos x)(cos^2 x) - \frac(2 cos^2 x)(cos^2 x)=0`

`tg^2 x + tg x - 2 = 0`. Введемо заміну `tg x=t`, в результаті `t^2 + t - 2=0`. Коріння цього рівняння: `t_1=-2` та `t_2=1`. Тоді:

  1. `tg x=-2`, `x_1=arctg (-2)+\pi n`, `n \in Z`
  2. `tg x=1`, `x=arctg 1+\pi n`, `x_2=\pi/4+\pi n`, `n \in Z`.

Відповідь. `x_1=arctg (-2)+\pi n`, `n \in Z`, `x_2=\pi/4+\pi n`, `n \in Z`.

Перехід до половинного кута

приклад. Розв'язати рівняння: `11 sin x - 2 cos x = 10`.

Рішення. Застосуємо формули подвійного кута, в результаті: `22 sin (x/2) cos (x/2) - ``2 cos^2 x/2 + 2 sin^2 x/2=``10 sin^2 x/2 +10 cos^2 x/2`

`4 tg^2 x/2 - 11 tg x/2 +6=0`

Застосувавши описаний вище метод алгебри, Отримаємо:

  1. `tg x/2=2`, `x_1=2 arctg 2+2\pi n`, `n \in Z`,
  2. `tg x/2=3/4`, `x_2=arctg 3/4+2\pi n`, `n \in Z`.

Відповідь. `x_1=2 arctg 2+2\pi n, n \in Z`, `x_2=arctg 3/4+2\pi n`, `n \in Z`.

Введення допоміжного кута

У тригонометричному рівнянні `a sin x + b cos x = c`, де a, b, c – коефіцієнти, а x – змінна, розділимо обидві частини на `sqrt (a^2+b^2)`:

`\frac a(sqrt (a^2+b^2)) sin x +` `\frac b(sqrt (a^2+b^2)) cos x =` `frac c(sqrt (a^2 +b^2))`.

Коефіцієнти в лівій частині мають властивості синуса та косинуса, а саме сума їх квадратів дорівнює 1 та їх модулі не більше 1. Позначимо їх наступним чином: `\frac a(sqrt(a^2+b^2))=cos \varphi` , ` \frac b(sqrt (a^2+b^2)) =sin \varphi`, `\frac c(sqrt (a^2+b^2))=C`, тоді:

` cos \ varphi sin x + sin \ varphi cos x = C `.

Докладніше розглянемо на наступному прикладі:

приклад. Розв'язати рівняння: `3 sin x+4 cos x=2`.

Рішення. Розділимо обидві частини рівності на `sqrt (3^2+4^2)`, отримаємо:

`\frac (3 sin x) (sqrt (3^2+4^2))+``\frac(4 cos x)(sqrt (3^2+4^2))=` `frac 2(sqrt (3^2+4^2))`

`3/5 sin x+4/5 cos x=2/5`.

Позначимо `3/5 = cos \ varphi`, `4/5 = sin \ varphi`. Так як ` sin \ varphi> 0 `, ` cos \ varphi> 0 `, то як допоміжний кут візьмемо ` \ varphi = arcsin 4/5 `. Тоді нашу рівність запишемо у вигляді:

`cos \varphi sin x+sin \varphi cos x=2/5`

Застосувавши формулу суми кутів для синуса, запишемо нашу рівність у такому вигляді:

`sin (x+\varphi) = 2/5`,

`x+\varphi=(-1)^n arcsin 2/5+ \pi n`, `n \in Z`,

`x=(-1)^n arcsin 2/5-` `arcsin 4/5+ \pi n`, `n \in Z`.

Відповідь. `x=(-1)^n arcsin 2/5-` `arcsin 4/5+ \pi n`, `n \in Z`.

Дробно-раціональні тригонометричні рівняння

Це рівності з дробами, у чисельниках та знаменниках яких є тригонометричні функції.

приклад. Вирішити рівняння. frac (sin x) (1 + cos x) = 1-cos x `.

Рішення. Помножимо та розділимо праву частину рівності на `(1+cos x)`. В результаті отримаємо:

`\frac (sin x)(1+cos x)=``\frac ((1-cos x)(1+cos x))(1+cos x)`

`\frac (sin x)(1+cos x)=``\frac (1-cos^2 x)(1+cos x)`

`\frac (sin x)(1+cos x)=``\frac (sin^2 x)(1+cos x)`

`\frac (sin x)(1+cos x)-``\frac (sin^2 x)(1+cos x)=0`

`\frac (sin x-sin^2 x)(1+cos x)=0`

Враховуючи, що знаменник рівним бути нулю не може, отримаємо `1+cos x \ne 0`, `cos x \ne -1`, ` x \ne \pi+2\pi n, n \in Z`.

Прирівняємо до нуля чисельник дробу: `sin x-sin^2 x=0`, `sin x(1-sin x)=0`. Тоді `sin x=0` або `1-sin x=0`.

  1. `sin x=0`, `x=\pi n`, `n \in Z`
  2. `1-sin x=0`, `sin x=-1`, `x=\pi /2+2\pi n, n \in Z`.

Враховуючи, що ` x \ne \pi+2\pi n, n \in Z`, рішеннями будуть `x=2\pi n, n \in Z` та `x=\pi /2+2\pi n` , `n \ in Z`.

Відповідь. `x=2\pi n`, `n \in Z`, `x=\pi /2+2\pi n`, `n \in Z`.

Тригонометрія та тригонометричні рівняння зокрема застосовуються майже у всіх сферах геометрії, фізики, інженерії. Починається вивчення у 10 класі, обов'язково присутні завдання на ЄДІ, тому постарайтеся запам'ятати всі формули тригонометричних рівнянь- Вони вам знадобляться!

Втім, навіть запам'ятовувати їх не потрібно, головне зрозуміти суть і вміти вивести. Це не так складно, як здається. Переконайтеся, переглядаючи відео.

Найпростіші тригонометричні рівняння вирішуються, як правило, за формулами. Нагадаю, що найпростішими називаються такі тригонометричні рівняння:

sinx = а

cosx = а

tgx = а

ctgx = а

х - кут, який потрібно знайти,
а – будь-яке число.

А ось і формули, за допомогою яких можна одразу записати рішення цих найпростіших рівнянь.

Для синусу:


Для косинуса:

х = ± arccos a + 2π n, n ∈ Z


Для тангенсу:

х = arctg a + π n, n ∈ Z


Для котангенсу:

х = arcctg a + π n, n ∈ Z

Власне, це і є теоретична частина розв'язання найпростіших тригонометричних рівнянь. До того ж, вся!) Зовсім нічого. Проте, кількість помилок на цю тему просто зашкалює. Особливо при незначному відхиленні прикладу від шаблону. Чому?

Та тому, що маса народу записує ці літери, не розуміючи їхнього сенсу зовсім!З побоюванням записує, як би чого не вийшло... З цим треба розібратися. Тригонометрія для людей, або люди для тригонометрії, зрештою!?)

Розберемося?

Один кут у нас буде рівний arccos a, другий: -arccos a.

І так виходитиме завжди.За будь-якого а.

Якщо не вірите, наведіть курсор мишки на картинку, або торкніться малюнку на планшеті. Я змінив число а на якесь негативне. Все одно, один кут у нас вийшов arccos a, другий: -arccos a.

Отже, відповідь можна завжди записати у вигляді двох серій коріння:

х 1 = arccos a + 2π n, n ∈ Z

х 2 = - arccos a + 2π n, n ∈ Z

Об'єднуємо ці дві серії в одну:

х = ± arccos а + 2π n, n ∈ Z

І всі справи. Отримали загальну формулу для вирішення найпростішого тригонометричного рівняння з косинусом.

Якщо ви розумієте, що це не якась наднаукова мудрість, а просто скорочений запис двох серій відповідей,вам і завдання "С" будуть по плечу. З нерівностями, з відбором коренів із заданого інтервалу... Там відповідь із плюсом/мінусом не котить. А якщо поставитися до відповіді ділово, та розбити його на дві окремі відповіді, все і вирішується.) Власне, для цього й розуміємося. Що, як і звідки.

У найпростішому тригонометричному рівнянні

sinx = а

теж виходить дві серії коренів. Завжди. І ці дві серії також можна записати одним рядком. Тільки цей рядок хитрішим буде:

х = (-1) n arcsin a + π n, n ∈ Z

Але суть залишається незмінною. Математики просто сконструювали формулу, щоб замість двох записів серій коріння зробити одну. І все!

Перевіримо математиків? А то мало...)

У попередньому уроці докладно розібрано рішення (без будь-яких формул) тригонометричного рівняння із синусом:

У відповіді вийшло дві серії коренів:

х 1 = π /6 + 2π n, n ∈ Z

х 2 = 5π /6 + 2π n, n ∈ Z

Якщо ми вирішуватимемо це ж рівняння за формулою, отримаємо відповідь:

х = (-1) n arcsin 0,5 + π n, n ∈ Z

Взагалі, це недороблена відповідь.) Учень повинен знати, що arcsin 0,5 = π /6.Повноцінна відповідь буде:

х = (-1) n π /6+ π n, n ∈ Z

Тут виникає цікаве питання. Відповідь через х 1; х 2 (це правильна відповідь!) і через самотню х (і це правильна відповідь!) - одне й те саме, чи ні? Зараз дізнаємось.)

Підставляємо у відповідь з х 1 значення n =0; 1; 2; і т.д., вважаємо, отримуємо серію коренів:

х 1 = π/6; 13π/6; 25π/6 і так далі.

При такій же підстановці у відповідь х 2 , отримуємо:

х 2 = 5?/6; 17π/6; 29π/6 і так далі.

А тепер підставляємо значення n (0; 1; 2; 3; 4...) у загальну формулу для самотнього х . Тобто зводимо мінус один у нульовий ступінь, потім у першу, другу, і т.д. Ну і, зрозуміло, у другий доданок підставляємо 0; 1; 2 3; 4 і т.д. І рахуємо. Отримуємо серію:

х = π/6; 5π/6; 13π/6; 17π/6; 25π/6 і так далі.

Ось все і видно.) Загальна формула видає нам такі самі результати,що й дві відповіді окремо. Тільки все одразу, по порядку. Не обдурили математики.)

Формули для вирішення тригонометричних рівнянь із тангенсом та котангенсом теж можна перевірити. Але не будемо.) Вони й так простенькі.

Я розписав всю цю підстановку та перевірку спеціально. Тут важливо зрозуміти одну просту річ: формули для вирішення елементарних тригонометричних рівнянь є, лише короткий запис відповідей.Для цієї стислості довелося вставити плюс/мінус у рішення для косинуса та (-1) n у рішення для синуса.

Ці вставки ніяк не заважають завданням, де потрібно просто записати відповідь елементарного рівняння. Але якщо треба вирішувати нерівність, чи далі треба щось робити з відповіддю: відбирати коріння на інтервалі, перевіряти на ОДЗ тощо, ці вставочки можуть запросто вибити людину з колії.

І що робити? Так або розписати відповідь через дві серії, або вирішувати рівняння/нерівність по тригонометричному колу. Тоді зникають ці вставочки і життя стає легшим.

Можна підбити підсумки.

Для вирішення найпростіших тригонометричних рівнянь є готові формули відповідей. Чотири штуки. Вони хороші для миттєвого запису рішення рівняння. Наприклад, треба розв'язати рівняння:


sinx = 0,3

Легко: х = (-1) n arcsin 0,3 + π n, n ∈ Z


cosx = 0,2

Без проблем: х = ± arccos 0,2 + 2π n, n ∈ Z


tgx = 1,2

Просто: х = arctg 1,2 + π n, n ∈ Z


ctgx = 3,7

Однією лівою: x= arcctg3,7 + π n, n ∈ Z

cos x = 1,8

Якщо ви, блищачи знаннями, миттєво пишете відповідь:

х= ± arccos 1,8 + 2π n, n ∈ Z

то блищате ви вже, це... того... з калюжі.) Правильна відповідь: рішень немає. Не розумієте чому? Прочитайте, що таке арккосинус. Крім того, якщо в правій частині вихідного рівняння стоять табличні значення синуса, косинуса, тангенсу, котангенсу, - 1; 0; √3; 1/2; √3/2 і т.п. - відповідь через арки буде недоробленою. Арки потрібно обов'язково перевести у радіани.

А якщо вам трапилася нерівність, типу

то відповідь у вигляді:

х πn, n ∈ Z

є рідкісна ахінея, так ...) Тут треба по тригонометричному колі вирішувати. Чим ми займемося у відповідній темі.

Для тих, хто героїчно дочитав до цих рядків. Я просто не можу не оцінити ваших титанічних зусиль. Вам бонус.)

Бонус:

При записі формул у тривожній бойовій обстановці, навіть загартовані навчанням ботаны часто плутаються, де πn, а де 2π n. Ось вам простий приймач. У всіхформулах варто πn. Крім єдиної формули з арккосинусом. Там стоїть 2πn. Двапіен. Ключове слово - два.У цій самій єдиній формулі стоять двазнак на початку. Плюс і мінус. І там і там - два.

Так що якщо ви написали двазнака перед арккосинусом, легше згадати, що в кінці буде двапіен. А ще навпаки. Пропустить людина знак ± , дістанеться кінця, напише правильно двапіен, та й схаменеться. Попереду двазнаку! Повернеться людина до початку, та помилку і виправить! Ось так.)

Якщо Вам подобається цей сайт...

До речі, у мене є ще кілька цікавих сайтів для Вас.)

Можна потренуватися у вирішенні прикладів та дізнатися свій рівень. Тестування з миттєвою перевіркою. Вчимося – з інтересом!)

можна познайомитися з функціями та похідними.

Колись я став свідком розмови двох абітурієнтів:

– Коли треба додати 2πn, а коли – πn? Ніяк не можу запам'ятати!

– І в мене така сама проблема.

Так і хотілося їм сказати: "Не запам'ятовувати треба, а розуміти!"

Ця стаття адресована передусім старшокласникам і, сподіваюся, допоможе їм із «розумінням» вирішувати найпростіші тригонометричні рівняння:

Числове коло

Поряд з поняттям числової прямої є ще й поняття числового кола. Як ми знаємо, у прямокутній системі координат коло, з центром у точці (0; 0) і радіусом 1, називається одиничною.Уявімо числову пряму тонкою ниткою і намотаємо її на це коло: початок відліку (точку 0), приставимо до «правої» точки одиничного кола, позитивну піввісь обмотаємо проти руху годинникової стрілки, а негативну – у напрямку (рис. 1). Таке одиничне коло називають числовим.

Властивості числового кола

  • Кожне дійсне число знаходиться на одній точці числового кола.
  • На кожній точці числового кола знаходяться безліч дійсних чисел. Оскільки довжина одиничного кола дорівнює 2π, то різниця між будь-якими двома числами на одній точці кола дорівнює одному з чисел ±2π ; ±4π; ±6π; …

Зробимо висновок: знаючи одне із чисел точки A, ми можемо знайти всі числа точки A.

Проведемо діаметр АС (рис. 2). Оскільки x_0 – одне із чисел точки А, то числа x_0±π ; x_0±3π; x_0±5π; … і тільки вони будуть числами точки C. Виберемо одне з цих чисел, скажімо, x_0+π, і запишемо з його допомогою всі числа точки C: x_C=x_0+π+2πk ,k∈Z. Зазначимо, що числа на точках A і C можна об'єднати в одну формулу: x_(A ; C)=x_0+πk ,k∈Z (при k = 0; ±2; ±4; … отримаємо числа точки A, а при k = ±1, ±3; ±5;… – числа точки C).

Зробимо висновок: знаючи одне з чисел на одній із точок A або C діаметра АС, ми можемо знайти всі числа на цих точках.

  • Два протилежні числа знаходяться на симетричних щодо осі абсцис точках кола.

Проведемо вертикальну хорду АВ (рис. 2). Оскільки точки A і B симетричні щодо осі Ox, то число -x_0 знаходиться на точці B і, отже, усі числа точки B задаються формулою: x_B=-x_0+2πk ,k∈Z. Числа на точках A та B запишемо однією формулою: x_(A ; B)=±x_0+2πk ,k∈Z. Зробимо висновок: знаючи одне із чисел на одній із точок A або B вертикальної хорди АВ, ми можемо знайти всі числа на цих точках. Розглянемо горизонтальну хорду AD та знайдемо числа точки D (рис. 2). Оскільки BD – діаметр і число -x_0 належить точці, то -x_0 + π одне з чисел точки D і, отже, всі числа цієї точки задаються формулою x_D=-x_0+π+2πk ,k∈Z. Числа на точках A і D можна записати за допомогою однієї формули: x_(A ; D)=(-1)^k∙x_0+πk ,k∈Z . (при k = 0; ±2; ±4; … отримаємо числа точки A, а при k = ±1; ±3; ±5; … – числа точки D).

Зробимо висновок: знаючи одне з чисел на одній із точок A або D горизонтальної хорди AD, ми можемо знайти всі числа на цих точках.

Шістнадцять основних точок числового кола

Насправді рішення більшості найпростіших тригонометричних рівнянь пов'язані з шістнадцятьма точками кола (рис. 3). Що це за цятки? Червоні, сині та зелені точки ділять коло на 12 рівних частин. Оскільки довжина півкола дорівнює π, то довжина дуги A1A2 дорівнює π/2, довжина дуги A1B1 дорівнює π/6, а довжина дуги A1C1 дорівнює π/3.

Тепер можемо вказати по одному числу на точках:

π/3 на С1 та

Вершини помаранчевого квадрата – середини дуг кожної чверті, отже, довжина дуги A1D1 дорівнює π/4 і, отже, π/4 – одне із чисел точки D1. Скориставшись властивостями числового кола, ми можемо записати за допомогою формул усі числа на всіх зазначених точках нашого кола. На малюнку зазначені також координати цих точок (опустимо опис їх отримання).

Засвоївши вище сказане, ми маємо тепер достатню підготовку для вирішення окремих випадків (для дев'яти значень числа a)найпростіших рівнянь.

Розв'язати рівняння

1)sinx=1⁄(2).

– Що від нас вимагається?

Знайти всі числа x, синус яких дорівнює 1/2.

Згадаймо визначення синуса: sinx – ордината точки числового кола, де знаходиться число x. На колі маємо дві точки, ордината яких дорівнює 1/2. Це кінці горизонтальної хорди B1B2. Отже, вимога «розв'язати рівняння sinx=1⁄2» рівнозначна вимогі «знайти всі числа на точці B1 і всі числа на точці B2».

2)sinx=-√3⁄2 .

Нам треба знайти всі числа на точках C4 та C3.

3) sinx=1. На колі маємо лише одну точку з ординатою 1 – точка A2 і, отже, нам треба знайти лише усі числа цієї точки.

Відповідь: x=π/2+2πk, k∈Z.

4)sinx=-1 .

Лише точка A_4 має ординату -1. Всі числа цієї точки будуть конями рівняння.

Відповідь: x=-π/2+2πk, k∈Z.

5) sinx=0 .

На колі маємо дві точки з ординатою 0 – точки A1 та A3. Можна вказати числа кожної з точок окремо, але, враховуючи, що це точки діаметрально протилежні, краще об'єднати в одну формулу: x=πk ,k∈Z .

Відповідь: x=πk ,k∈Z .

6)cosx=√2⁄2 .

Згадаймо визначення косинуса: cosx - абсцис точки числового кола на якій знаходиться число x.На колі маємо дві точки з абсцисою √2⁄2 – кінці горизонтальної хорди D1D4. Нам потрібно знайти всі числа цих точках. Запишемо їх, поєднавши в одну формулу.

Відповідь: x=±π/4+2πk, k∈Z.

7) cosx=-1⁄2 .

Потрібно знайти числа на точках C_2 і C_3.

Відповідь: x=±2π/3+2πk , k∈Z .

10) cosx=0 .

Тільки точки A2 і A4 мають абсцису 0, отже, усі числа кожної з цих точках і будуть рішеннями рівняння.
.

Рішеннями рівняння системи є числа на точках B_3 і B_4.<0 удовлетворяют только числа b_3
Відповідь: x=-5π/6+2πk, k∈Z.

Зауважимо, що при будь-якому допустимому значенні x другий множник позитивний і, отже, рівняння рівносильне системі

Рішеннями рівняння системи є чила точок D_2 та D_3. Числа точки D_2 не задовольняють нерівності sinx≤0,5 а числа точки D_3-задовольняють.


blog.сайт, при повному або частковому копіюванні матеріалу посилання на першоджерело обов'язкове.

При вирішенні багатьох математичних завдань, особливо тих, що зустрічаються до 10 класу, порядок виконуваних дій, що призведуть до мети, визначено однозначно. До таких завдань можна віднести, наприклад, лінійні та квадратні рівняння, лінійні та квадратні нерівності, дробові рівняння та рівняння, що зводяться до квадратних. Принцип успішного вирішення кожної із згаданих завдань полягає в наступному: треба встановити, до якого типу належить розв'язувана задача, згадати необхідну послідовність дій, які призведуть до потрібного результату, тобто. відповіді, та виконати ці дії.

Очевидно, що успіх чи неуспіх у вирішенні того чи іншого завдання залежить головним чином від того, наскільки правильно визначено тип рівняння, що вирішується, наскільки правильно відтворена послідовність всіх етапів його вирішення. Зрозуміло, у своїй необхідно володіти навичками виконання тотожних перетворень і обчислень.

Інша ситуація виходить з тригонометричними рівняннями.Встановити факт те, що рівняння є тригонометричним, дуже неважко. Складнощі з'являються щодо послідовності дій, які призвели до правильної відповіді.

На вигляд рівняння часом буває важко визначити його тип. А не знаючи типу рівняння, майже неможливо вибрати із кількох десятків тригонометричних формул потрібну.

Щоб розв'язати тригонометричне рівняння, треба спробувати:

1. привести всі функції, що входять до рівняння до «однакових кутів»;
2. привести рівняння до «однакових функцій»;
3. розкласти ліву частину рівняння на множники тощо.

Розглянемо основні методи розв'язання тригонометричних рівнянь

I. Приведення до найпростіших тригонометричних рівнянь

Схема розв'язання

Крок 1.Виразити тригонометричну функцію через відомі компоненти.

Крок 2Знайти аргумент функції за формулами:

cos x = a; x = ± arccos a + 2πn, n ЄZ.

sin x = a; x = (-1) n arcsin a + πn, n Є Z.

tg x = a; x = arctg a + πn, n Є Z.

ctg x = a; x = arcctg a + πn, n Є Z.

Крок 3Знайти невідому змінну.

приклад.

2 cos(3x – π/4) = -√2.

Рішення.

1) cos(3x – π/4) = -√2/2.

2) 3x – π/4 = ±(π – π/4) + 2πn, n Є Z;

3x – π/4 = ±3π/4 + 2πn, n Є Z.

3) 3x = ±3π/4 + π/4 + 2πn, n Є Z;

x = ±3π/12 + π/12 + 2πn/3, n Є Z;

x = ±π/4 + π/12 + 2πn/3, n Є Z.

Відповідь: ±π/4 + π/12 + 2πn/3, n Є Z.

ІІ. Заміна змінної

Схема розв'язання

Крок 1.Привести рівняння до виду алгебри щодо однієї з тригонометричних функцій.

Крок 2Позначити отриману функцію змінної t (якщо необхідно ввести обмеження на t).

Крок 3Записати та вирішити отримане рівняння алгебри.

Крок 4.Зробити зворотну заміну.

Крок 5.Вирішити найпростіше тригонометричне рівняння.

приклад.

2cos 2 (x/2) - 5sin (x/2) - 5 = 0.

Рішення.

1) 2(1 – sin 2 (x/2)) – 5sin (x/2) – 5 = 0;

2sin 2 (x/2) + 5sin (x/2) + 3 = 0.

2) Нехай sin (x/2) = t, де | t | ≤ 1.

3) 2t 2 + 5t + 3 = 0;

t = 1 чи е = -3/2, не задовольняє умові |t| ≤ 1.

4) sin(x/2) = 1.

5) x/2 = π/2 + 2πn, n Є Z;

x = π + 4πn, n Є Z.

Відповідь: x = π + 4πn, n Є Z.

ІІІ. Метод зниження порядку рівняння

Схема розв'язання

Крок 1.Замінити дане рівняння лінійним, використовуючи при цьому формули зниження ступеня:

sin 2 x = 1/2 · (1 - cos 2x);

cos 2 x = 1/2 · (1 + cos 2x);

tg 2 x = (1 - cos 2x) / (1 + cos 2x).

Крок 2Вирішити отримане рівняння за допомогою методів І та ІІ.

приклад.

cos 2x + cos 2 x = 5/4.

Рішення.

1) cos 2x + 1/2 · (1 + cos 2x) = 5/4.

2) cos 2x + 1/2 + 1/2 · cos 2x = 5/4;

3/2 · cos 2x = 3/4;

2x = ±π/3 + 2πn, n Є Z;

x = ±π/6 + πn, n Є Z.

Відповідь: x = ±π/6 + πn, n Є Z.

IV. Однорідні рівняння

Схема розв'язання

Крок 1.Привести це рівняння до виду

a) a sin x + b cos x = 0 (однорідне рівняння першого ступеня)

або на вигляд

б) a sin 2 x + b sin x · cos x + c cos 2 x = 0 (однорідне рівняння другого ступеня).

Крок 2Розділити обидві частини рівняння на

а) cos x ≠ 0;

б) cos 2 x ≠ 0;

і отримати рівняння щодо tg x:

а) a tg x + b = 0;

б) a tg 2 x + b arctg x + c = 0.

Крок 3Вирішити рівняння відомими способами.

приклад.

5sin 2 x + 3sin x · cos x - 4 = 0.

Рішення.

1) 5sin 2 x + 3sin x · cos x - 4 (sin 2 x + cos 2 x) = 0;

5sin 2 x + 3sin x · cos x – 4sin² x – 4cos 2 x = 0;

sin 2 x + 3 sin x · cos x – 4cos 2 x = 0/cos 2 x ≠ 0.

2) tg 2 x + 3tg x - 4 = 0.

3) Нехай tg x = t, тоді

t 2 + 3t - 4 = 0;

t = 1 або t = -4, отже

tg x = 1 або tg x = -4.

З першого рівняння x = π/4 + πn, n º Z; з другого рівняння x = -arctg 4 + πk, k Є Z.

Відповідь: x = π/4 + πn, n Є Z; x = -arctg 4 + πk, k Є Z.

V. Метод перетворення рівняння за допомогою тригонометричних формул

Схема розв'язання

Крок 1.Використовуючи всілякі тригонометричні формули, привести дане рівняння до рівняння, яке вирішується методами I, II, III, IV.

Крок 2Вирішити отримане рівняння відомими методами.

приклад.

sin x + sin 2x + sin 3x = 0.

Рішення.

1) (sin x + sin 3x) + sin 2x = 0;

2sin 2x · cos x + sin 2x = 0.

2) sin 2x · (2cos x + 1) = 0;

sin 2x = 0 або 2cos x + 1 = 0;

З першого рівняння 2x = π/2 + πn, n Є Z; із другого рівняння cos x = -1/2.

Маємо х = π/4 + πn/2, n Є Z; із другого рівняння x = ±(π – π/3) + 2πk, k Є Z.

Через війну х = π/4 + πn/2, n Є Z; x = ±2π/3 + 2πk, k Є Z.

Відповідь: х = π/4 + πn/2, n Є Z; x = ±2π/3 + 2πk, k Є Z.

Вміння та навички вирішувати тригонометричні рівняння є дуже важливими, їхній розвиток потребує значних зусиль, як з боку учня, так і з боку вчителя.

З рішенням тригонометричних рівнянь пов'язані багато завдань стереометрії, фізики, та інших. Процес розв'язання таких завдань хіба що містить у собі багато знання й уміння, які набувають щодо елементів тригонометрії.

Тригонометричні рівняння займають важливе місце у процесі навчання математики та розвитку особистості загалом.

Залишились питання? Не знаєте, як розв'язувати тригонометричні рівняння?
Щоб отримати допомогу репетитора – зареєструйтесь.
Перший урок – безкоштовно!

сайт, при повному або частковому копіюванні матеріалу посилання на першоджерело обов'язкове.

Поділіться з друзями або збережіть для себе:

Завантаження...