Як вирішуються найпростіші тригонометричні рівняння. Тригонометричні рівняння

Відеокурс «Отримай п'ятірку» включає всі теми, необхідні для успішної здачіЄДІ з математики на 60-65 балів. Цілком всі завдання 1-13 Профільного ЄДІз математики. Підходить також для здачі Базового ЄДІ з математики. Якщо ви хочете здати ЄДІ на 90-100 балів, вам треба вирішувати частину 1 за 30 хвилин і без помилок!

Курс підготовки до ЄДІ для 10-11 класів, а також для викладачів. Все необхідне, щоб вирішити частину 1 ЄДІ з математики (перші 12 завдань) та задачу 13 (тригонометрія). А це понад 70 балів на ЄДІ, і без них не обійтись ні стобальнику, ні гуманітарію.

Уся необхідна теорія. Швидкі способирішення, пастки та секрети ЄДІ. Розібрано всі актуальні завдання частини 1 із Банку завдань ФІПД. Курс повністю відповідає вимогам ЄДІ-2018.

Курс містить 5 великих тем, по 2,5 години кожна. Кожна тема дається з нуля, це просто і зрозуміло.

Сотні завдань ЄДІ. Текстові завдання та теорія ймовірностей. Прості і легко запам'ятовуються алгоритми розв'язання задач. Геометрія. Теорія, довідковий матеріал, аналіз всіх типів завдань ЄДІ. Стереометрія. Хитрі прийоми розв'язання, корисні шпаргалки, розвиток просторової уяви. Тригонометрія з нуля - до завдання 13. Розуміння замість зубріння. Наочне пояснення складних понять. Алгебра. Коріння, ступеня та логарифми, функція та похідна. База на вирішення складних завдань 2 частини ЄДІ.


Приклади:

\(2\sin(⁡x) = \sqrt(3)\)
tg\((3x)=-\) \(\frac(1)(\sqrt(3))\)
\(4\cos^2⁡x+4\sin⁡x-1=0\)
\(\cos⁡4x+3\cos⁡2x=1\)

Як вирішувати тригонометричні рівняння:

Будь-яке тригонометричне рівняння потрібно прагнути звести до одного з видів:

\(\sin⁡t=a\), \(\cos⁡t=a\), tg\(t=a\), ctg\(t=a\)

де \(t\) - вираз з іксом, \(a\) - число. Такі тригонометричні рівнянняназиваються найпростішими. Їх легко вирішувати за допомогою () або спеціальних формул:


приклад . Розв'яжіть тригонометричне рівняння \(\sin⁡x=-\)\(\frac(1)(2)\).
Рішення:

Відповідь: \(\left[ \begin(gathered)x=-\frac(π)(6)+2πk, \\ x=-\frac(5π)(6)+2πn, \end(gathered)\right.\) \(k, n∈Z\)

Що означає кожен символ у формулі коренів тригонометричних рівнянь дивись у .

Увага!Рівняння \(\sin⁡x=a\) та \(\cos⁡x=a\) не мають рішень, якщо \(a ϵ (-∞;-1)∪(1;∞)\). Тому що синус і косинус при будь-яких ікс більші або рівні \(-1\) і менше або рівні \(1\):

\(-1≤\sin x≤1\) \(-1≤\cos⁡x≤1\)

приклад . Розв'язати рівняння \(\cos⁡x=-1,1).
Рішення: \(-1,1<-1\), а значение косинуса не может быть меньше \(-1\). Значит у уравнения нет решения.
Відповідь : рішень немає.


приклад . Розв'яжіть тригонометричне рівняння tg\(⁡x=1\).
Рішення:

Розв'яжемо рівняння за допомогою числового кола. Для цього:
1) Побудуємо коло)
2) Побудуємо осі (x) і (y) і вісь тангенсів (вона проходить через точку ((0; 1)) паралельно осі (y)).
3) На осі тангенсів відзначимо точку (1).
4) З'єднаємо цю точку та початок координат – прямий.
5) Зазначимо точки перетину цього прямого та числового кола.
6)Підпишемо значення цих точок: \(\frac(π)(4)\) ,\(\frac(5π)(4)\)
7) Запишемо всі значення цих точок. Оскільки вони знаходяться одна від одної на відстані рівно в \(π\), то всі значення можна записати однією формулою:

Відповідь: \(x=\)\(\frac(π)(4)\) \(+πk\), \(k∈Z\).

приклад . Розв'яжіть тригонометричне рівняння \(\cos⁡(3x+\frac(π)(4))=0\).
Рішення:


Знову скористаємося числовим колом.
1) Побудуємо коло, осі (x) і (y).
2) На осі косінусів (вісь \(x\)) відзначимо \(0\).
3) Проведемо перпендикуляр до осі косінусів через цю точку.
4) Зазначимо точки перетину перпендикуляра та кола.
5) Підпишемо значення цих точок: \(-\) \(\frac(π)(2)\),\(\frac(π)(2)\).
6) Випишемо все значення цих точок і прирівняємо їх до косинуса (до того що всередині косинуса).

\(3x+\)\(\frac(π)(4)\) \(=±\)\(\frac(π)(2)\) \(+2πk\), \(k∈Z\)

\(3x+\)\(\frac(π)(4)\) \(=\)\(\frac(π)(2)\) \(+2πk\) \(3x+\)\(\frac( π)(4)\) \(=-\)\(\frac(π)(2)\) \(+2πk\)

8) Як завжди в рівняннях виражатимемо (x).
Не забувайте ставитися до чисел з (π), так само до (1), (2), (frac(1) (4)) і т.п. Це такі ж числа, як і решта. Жодної числової дискримінації!

\(3x=-\)\(\frac(π)(4)\) \(+\)\(\frac(π)(2)\) \(+2πk\) \(3x=-\)\ (\frac(π)(4)\) \(+\)\(\frac(π)(2)\) \(+2πk\)
\(3x=\)\(\frac(π)(4)\) \(+2πk\) \(|:3\) \(3x=-\)\(\frac(3π)(4)\) \(+2πk\) \(|:3\)
\(x=\)\(\frac(π)(12)\) \(+\)\(\frac(2πk)(3)\) \(x=-\)\(\frac(π)( 4)\) \(+\)\(\frac(2πk)(3)\)

Відповідь: \(x=\)\(\frac(π)(12)\) \(+\)\(\frac(2πk)(3)\) \(x=-\)\(\frac(π)( 4)\) \(+\)\(\frac(2πk)(3)\) , \(k∈Z\).

Зводити тригонометричні рівняння до найпростіших – завдання творче, тут потрібно використовувати і , і особливі методи розв'язків рівнянь:
- Метод (найпопулярніший в ЄДІ).
- Метод.
- метод допоміжних аргументів.


Розглянемо приклад розв'язання квадратно-тригонометричного рівняння

приклад . Розв'яжіть тригонометричне рівняння \(2\cos^2⁡x-5\cos⁡x+2=0\)
Рішення:

\(2\cos^2⁡x-5\cos⁡x+2=0\)

Зробимо заміну \(t=\cos⁡x).

Наше рівняння перетворилося на типове. Можна його вирішити за допомогою.

\ (D = 25-4 \ cdot 2 \ cdot 2 = 25-16 = 9 \)

\(t_1=\)\(\frac(5-3)(4)\) \(=\)\(\frac(1)(2)\) ; \(t_2=\)\(\frac(5+3)(4)\) \(=2\)

Робимо зворотну заміну.

\(\cos⁡x=\)\(\frac(1)(2)\); \(\cos⁡x=2\)

Перше рівняння вирішуємо за допомогою числового кола.
Друге рівняння немає рішень т.к. \(\cos⁡x∈[-1;1]\) і двом бути рівним не може ні за яких іксів.

Запишемо всі числа, що лежать у цих точках.

Відповідь: \(x=±\)\(\frac(π)(3)\) \(+2πk\), \(k∈Z\).

Приклад розв'язання тригонометричного рівняння з дослідженням ОДЗ:

Приклад(ЄДІ) . Розв'яжіть тригонометричне рівняння \(=0\)

\(\frac(2\cos^2⁡x-\sin(⁡2x))(ctg x)\)\(=0\)

Є дріб і є котангенс – отже треба записати. Нагадаю, що котангенс це фактично дріб:

ctg\(x=\)\(\frac(\cos⁡x)(\sin⁡x)\)

Тому ОДЗ для ctg\(x\): \(\sin⁡x≠0).

ОДЗ: ctg (x 0); \(\sin⁡x≠0\)

\(x≠±\)\(\frac(π)(2)\) \(+2πk\); \(x≠πn\); \(k, n∈Z\)

Зазначимо «нерішення» на числовому колі.

\(\frac(2\cos^2⁡x-\sin(⁡2x))(ctg x)\)\(=0\)

Позбавимося рівняння від знаменника, помноживши його на ctg (x). Ми можемо це зробити, оскільки написали вище, що ctg\(x ≠0\).

\(2\cos^2⁡x-\sin⁡(2x)=0\)

Застосуємо формулу подвійного кута для синуса: \(\sin⁡(2x)=2\sin⁡x\cos⁡x\).

\(2\cos^2⁡x-2\sin⁡x\cos⁡x=0\)

Якщо у вас руки потягнулися поділити на косинус - обсмикніть їх! Ділити на вираз зі змінною можна, якщо воно точно не дорівнює нулю (наприклад, такі: \(x^2+1,5^x\)). Натомість винесемо \(\cos⁡x\) за дужки.

\(\cos⁡x (2\cos⁡x-2\sin⁡x)=0\)

«Розщепимо» рівняння на два.

\(\cos⁡x=0); \(2\cos⁡x-2\sin⁡x=0\)

Перше рівняння з розв'язком за допомогою числового кола. Друге рівняння поділимо на \(2\) і перенесемо \(\sin⁡x\) у праву частину.

\(x=±\)\(\frac(π)(2)\) \(+2πk\), \(k∈Z\). \(\cos⁡x=\sin⁡x\)

Коріння, яке вийшло не входить до ОДЗ. Тому їх у відповідь записувати не будемо.
Друге рівняння типове. Поділимо його на \(\sin⁡x\) (\(\sin⁡x=0\) не може бути рішенням рівняння тому що в цьому випадку \(\cos⁡x=1\) або \(\cos⁡ x = -1 \)).

Знову використовуємо коло.


\(x=\)\(\frac(π)(4)\) \(+πn\), \(n∈Z\)

Це коріння не виключається ОДЗ, тому можна його записувати у відповідь.

Відповідь: \(x=\)\(\frac(π)(4)\) \(+πn\), \(n∈Z\).

Колись я став свідком розмови двох абітурієнтів:

– Коли треба додати 2πn, а коли – πn? Ніяк не можу запам'ятати!

– І в мене така сама проблема.

Так і хотілося їм сказати: "Не запам'ятовувати треба, а розуміти!"

Ця стаття адресована передусім старшокласникам і, сподіваюся, допоможе їм із «розумінням» вирішувати найпростіші тригонометричні рівняння:

Числове коло

Поряд з поняттям числової прямої є ще й поняття числового кола. Як ми знаємо, у прямокутній системі координат коло, з центром у точці (0; 0) і радіусом 1, називається одиничною.Уявімо числову пряму тонкою ниткою і намотаємо її на це коло: початок відліку (точку 0), приставимо до «правої» точки одиничного кола, позитивну піввісь обмотаємо проти руху годинникової стрілки, а негативну – у напрямку (рис. 1). Таке одиничне коло називають числовим.

Властивості числового кола

  • Кожне дійсне число знаходиться на одній точці числового кола.
  • На кожній точці числового кола знаходяться безліч дійсних чисел. Оскільки довжина одиничного кола дорівнює 2π, то різниця між будь-якими двома числами на одній точці кола дорівнює одному з чисел ±2π ; ±4π; ±6π; …

Зробимо висновок: знаючи одне із чисел точки A, ми можемо знайти всі числа точки A.

Проведемо діаметр АС (рис. 2). Оскільки x_0 – одне із чисел точки А, то числа x_0±π ; x_0±3π; x_0±5π; … і тільки вони будуть числами точки C. Виберемо одне з цих чисел, скажімо, x_0+π, і запишемо з його допомогою всі числа точки C: x_C=x_0+π+2πk ,k∈Z. Зазначимо, що числа на точках A і C можна об'єднати в одну формулу: x_(A ; C)=x_0+πk ,k∈Z (при k = 0; ±2; ±4; … отримаємо числа точки A, а при k = ±1, ±3; ±5;… – числа точки C).

Зробимо висновок: знаючи одне з чисел на одній із точок A або C діаметра АС, ми можемо знайти всі числа на цих точках.

  • Два протилежні числа знаходяться на симетричних щодо осі абсцис точках кола.

Проведемо вертикальну хорду АВ (рис. 2). Оскільки точки A і B симетричні щодо осі Ox, то число -x_0 знаходиться на точці B і, отже, усі числа точки B задаються формулою: x_B=-x_0+2πk ,k∈Z. Числа на точках A та B запишемо однією формулою: x_(A ; B)=±x_0+2πk ,k∈Z. Зробимо висновок: знаючи одне із чисел на одній із точок A або B вертикальної хорди АВ, ми можемо знайти всі числа на цих точках. Розглянемо горизонтальну хорду AD та знайдемо числа точки D (рис. 2). Оскільки BD – діаметр і число -x_0 належить точці, то -x_0 + π одне з чисел точки D і, отже, всі числа цієї точки задаються формулою x_D=-x_0+π+2πk ,k∈Z. Числа на точках A і D можна записати за допомогою однієї формули: x_(A ; D)=(-1)^k∙x_0+πk ,k∈Z . (при k = 0; ±2; ±4; … отримаємо числа точки A, а при k = ±1; ±3; ±5; … – числа точки D).

Зробимо висновок: знаючи одне з чисел на одній із точок A або D горизонтальної хорди AD, ми можемо знайти всі числа на цих точках.

Шістнадцять основних точок числового кола

Насправді рішення більшості найпростіших тригонометричних рівнянь пов'язані з шістнадцятьма точками кола (рис. 3). Що це за цятки? Червоні, сині та зелені точки ділять коло на 12 рівних частин. Оскільки довжина півкола дорівнює π, то довжина дуги A1A2 дорівнює π/2, довжина дуги A1B1 дорівнює π/6, а довжина дуги A1C1 дорівнює π/3.

Тепер можемо вказати по одному числу на точках:

π/3 на С1 та

Вершини помаранчевого квадрата – середини дуг кожної чверті, отже, довжина дуги A1D1 дорівнює π/4 і, отже, π/4 – одне із чисел точки D1. Скориставшись властивостями числового кола, ми можемо записати за допомогою формул усі числа на всіх зазначених точках нашого кола. На малюнку зазначені також координати цих точок (опустимо опис їх отримання).

Засвоївши вище сказане, ми маємо тепер достатню підготовку для вирішення окремих випадків (для дев'яти значень числа a)найпростіших рівнянь.

Розв'язати рівняння

1)sinx=1⁄(2).

– Що від нас вимагається?

Знайти всі числа x, синус яких дорівнює 1/2.

Згадаймо визначення синуса: sinx – ордината точки числового кола, де знаходиться число x. На колі маємо дві точки, ордината яких дорівнює 1/2. Це кінці горизонтальної хорди B1B2. Отже, вимога «розв'язати рівняння sinx=1⁄2» рівнозначна вимогі «знайти всі числа на точці B1 і всі числа на точці B2».

2)sinx=-√3⁄2 .

Нам треба знайти всі числа на точках C4 та C3.

3) sinx=1. На колі маємо лише одну точку з ординатою 1 – точка A2 і, отже, нам треба знайти лише усі числа цієї точки.

Відповідь: x=π/2+2πk, k∈Z.

4)sinx=-1 .

Лише точка A_4 має ординату -1. Всі числа цієї точки будуть конями рівняння.

Відповідь: x=-π/2+2πk, k∈Z.

5) sinx=0 .

На колі маємо дві точки з ординатою 0 – точки A1 та A3. Можна вказати числа кожної з точок окремо, але, враховуючи, що це точки діаметрально протилежні, краще об'єднати в одну формулу: x=πk ,k∈Z .

Відповідь: x=πk ,k∈Z .

6)cosx=√2⁄2 .

Згадаймо визначення косинуса: cosx - абсцис точки числового кола на якій знаходиться число x.На колі маємо дві точки з абсцисою √2⁄2 – кінці горизонтальної хорди D1D4. Нам потрібно знайти всі числа цих точках. Запишемо їх, поєднавши в одну формулу.

Відповідь: x=±π/4+2πk, k∈Z.

7) cosx=-1⁄2 .

Потрібно знайти числа на точках C_2 і C_3.

Відповідь: x=±2π/3+2πk , k∈Z .

10) cosx=0 .

Тільки точки A2 і A4 мають абсцису 0, отже, усі числа кожної з цих точках і будуть рішеннями рівняння.
.

Рішеннями рівняння системи є числа на точках B_3 і B_4.<0 удовлетворяют только числа b_3
Відповідь: x=-5π/6+2πk, k∈Z.

Зауважимо, що при будь-якому допустимому значенні x другий множник позитивний і, отже, рівняння рівносильне системі

Рішеннями рівняння системи є чила точок D_2 та D_3. Числа точки D_2 не задовольняють нерівності sinx≤0,5 а числа точки D_3-задовольняють.


blog.сайт, при повному або частковому копіюванні матеріалу посилання на першоджерело обов'язкове.

При вирішенні багатьох математичних завдань, особливо тих, що зустрічаються до 10 класу, порядок виконуваних дій, що призведуть до мети, визначено однозначно. До таких завдань можна віднести, наприклад, лінійні та квадратні рівняння, лінійні та квадратні нерівності, дробові рівняння та рівняння, що зводяться до квадратних. Принцип успішного вирішення кожної із згаданих завдань полягає в наступному: треба встановити, до якого типу належить розв'язувана задача, згадати необхідну послідовність дій, які призведуть до потрібного результату, тобто. відповіді, та виконати ці дії.

Очевидно, що успіх чи неуспіх у вирішенні того чи іншого завдання залежить головним чином від того, наскільки правильно визначено тип рівняння, що вирішується, наскільки правильно відтворена послідовність всіх етапів його вирішення. Зрозуміло, у своїй необхідно володіти навичками виконання тотожних перетворень і обчислень.

Інша ситуація виходить з тригонометричними рівняннями.Встановити факт те, що рівняння є тригонометричним, дуже неважко. Складнощі з'являються щодо послідовності дій, які призвели до правильної відповіді.

На вигляд рівняння часом буває важко визначити його тип. А не знаючи типу рівняння, майже неможливо вибрати із кількох десятків тригонометричних формул потрібну.

Щоб розв'язати тригонометричне рівняння, треба спробувати:

1. привести всі функції, що входять до рівняння до «однакових кутів»;
2. привести рівняння до «однакових функцій»;
3. розкласти ліву частину рівняння на множники тощо.

Розглянемо основні методи розв'язання тригонометричних рівнянь

I. Приведення до найпростіших тригонометричних рівнянь

Схема розв'язання

Крок 1.Виразити тригонометричну функцію через відомі компоненти.

Крок 2Знайти аргумент функції за формулами:

cos x = a; x = ± arccos a + 2πn, n ЄZ.

sin x = a; x = (-1) n arcsin a + πn, n Є Z.

tg x = a; x = arctg a + πn, n Є Z.

ctg x = a; x = arcctg a + πn, n Є Z.

Крок 3Знайти невідому змінну.

приклад.

2 cos(3x – π/4) = -√2.

Рішення.

1) cos(3x – π/4) = -√2/2.

2) 3x – π/4 = ±(π – π/4) + 2πn, n Є Z;

3x – π/4 = ±3π/4 + 2πn, n Є Z.

3) 3x = ±3π/4 + π/4 + 2πn, n Є Z;

x = ±3π/12 + π/12 + 2πn/3, n Є Z;

x = ±π/4 + π/12 + 2πn/3, n Є Z.

Відповідь: ±π/4 + π/12 + 2πn/3, n Є Z.

ІІ. Заміна змінної

Схема розв'язання

Крок 1.Привести рівняння до виду алгебри щодо однієї з тригонометричних функцій.

Крок 2Позначити отриману функцію змінної t (якщо необхідно ввести обмеження на t).

Крок 3Записати та вирішити отримане рівняння алгебри.

Крок 4.Зробити зворотну заміну.

Крок 5.Вирішити найпростіше тригонометричне рівняння.

приклад.

2cos 2 (x/2) - 5sin (x/2) - 5 = 0.

Рішення.

1) 2(1 – sin 2 (x/2)) – 5sin (x/2) – 5 = 0;

2sin 2 (x/2) + 5sin (x/2) + 3 = 0.

2) Нехай sin (x/2) = t, де | t | ≤ 1.

3) 2t 2 + 5t + 3 = 0;

t = 1 чи е = -3/2, не задовольняє умові |t| ≤ 1.

4) sin(x/2) = 1.

5) x/2 = π/2 + 2πn, n Є Z;

x = π + 4πn, n Є Z.

Відповідь: x = π + 4πn, n Є Z.

ІІІ. Метод зниження порядку рівняння

Схема розв'язання

Крок 1.Замінити дане рівняння лінійним, використовуючи при цьому формули зниження ступеня:

sin 2 x = 1/2 · (1 - cos 2x);

cos 2 x = 1/2 · (1 + cos 2x);

tg 2 x = (1 - cos 2x) / (1 + cos 2x).

Крок 2Вирішити отримане рівняння за допомогою методів І та ІІ.

приклад.

cos 2x + cos 2 x = 5/4.

Рішення.

1) cos 2x + 1/2 · (1 + cos 2x) = 5/4.

2) cos 2x + 1/2 + 1/2 · cos 2x = 5/4;

3/2 · cos 2x = 3/4;

2x = ±π/3 + 2πn, n Є Z;

x = ±π/6 + πn, n Є Z.

Відповідь: x = ±π/6 + πn, n Є Z.

IV. Однорідні рівняння

Схема розв'язання

Крок 1.Привести це рівняння до виду

a) a sin x + b cos x = 0 (однорідне рівняння першого ступеня)

або на вигляд

б) a sin 2 x + b sin x · cos x + c cos 2 x = 0 (однорідне рівняння другого ступеня).

Крок 2Розділити обидві частини рівняння на

а) cos x ≠ 0;

б) cos 2 x ≠ 0;

і отримати рівняння щодо tg x:

а) a tg x + b = 0;

б) a tg 2 x + b arctg x + c = 0.

Крок 3Вирішити рівняння відомими способами.

приклад.

5sin 2 x + 3sin x · cos x - 4 = 0.

Рішення.

1) 5sin 2 x + 3sin x · cos x - 4 (sin 2 x + cos 2 x) = 0;

5sin 2 x + 3sin x · cos x – 4sin² x – 4cos 2 x = 0;

sin 2 x + 3 sin x · cos x – 4cos 2 x = 0/cos 2 x ≠ 0.

2) tg 2 x + 3tg x - 4 = 0.

3) Нехай tg x = t, тоді

t 2 + 3t - 4 = 0;

t = 1 або t = -4, отже

tg x = 1 або tg x = -4.

З першого рівняння x = π/4 + πn, n º Z; з другого рівняння x = -arctg 4 + πk, k Є Z.

Відповідь: x = π/4 + πn, n Є Z; x = -arctg 4 + πk, k Є Z.

V. Метод перетворення рівняння за допомогою тригонометричних формул

Схема розв'язання

Крок 1.Використовуючи всілякі тригонометричні формули, привести дане рівняння до рівняння, яке вирішується методами I, II, III, IV.

Крок 2Вирішити отримане рівняння відомими методами.

приклад.

sin x + sin 2x + sin 3x = 0.

Рішення.

1) (sin x + sin 3x) + sin 2x = 0;

2sin 2x · cos x + sin 2x = 0.

2) sin 2x · (2cos x + 1) = 0;

sin 2x = 0 або 2cos x + 1 = 0;

З першого рівняння 2x = π/2 + πn, n Є Z; із другого рівняння cos x = -1/2.

Маємо х = π/4 + πn/2, n Є Z; із другого рівняння x = ±(π – π/3) + 2πk, k Є Z.

Через війну х = π/4 + πn/2, n Є Z; x = ±2π/3 + 2πk, k Є Z.

Відповідь: х = π/4 + πn/2, n Є Z; x = ±2π/3 + 2πk, k Є Z.

Вміння та навички вирішувати тригонометричні рівняння є дуже важливими, їхній розвиток потребує значних зусиль, як з боку учня, так і з боку вчителя.

З рішенням тригонометричних рівнянь пов'язані багато завдань стереометрії, фізики, та інших. Процес розв'язання таких завдань хіба що містить у собі багато знання й уміння, які набувають щодо елементів тригонометрії.

Тригонометричні рівняння займають важливе місце у процесі навчання математики та розвитку особистості загалом.

Залишились питання? Не знаєте, як розв'язувати тригонометричні рівняння?
Щоб отримати допомогу репетитора – .
Перший урок – безкоштовно!

blog.сайт, при повному або частковому копіюванні матеріалу посилання на першоджерело обов'язкове.

Урок та презентація на тему: "Рішення найпростіших тригонометричних рівнянь"

Додаткові матеріали
Шановні користувачі, не забувайте залишати свої коментарі, відгуки, побажання! Усі матеріали перевірені антивірусною програмою.

Посібники та тренажери в інтернет-магазині "Інтеграл" для 10 класу від 1С
Вирішуємо задачі з геометрії. Інтерактивні завдання на побудову у просторі
Програмне середовище "1С: Математичний конструктор 6.1"

Що вивчатимемо:
1. Що таке тригонометричні рівняння?

3. Два основні методи розв'язання тригонометричних рівнянь.
4. Однорідні тригонометричні рівняння.
5. Приклади.

Що таке тригонометричні рівняння?

Хлопці, ми з вами вивчили вже арксинуса, арккосинус, арктангенс та арккотангенс. Тепер давайте подивимося на тригонометричні рівняння загалом.

Тригонометричні рівняння – рівняння у якому змінна міститься під знаком тригонометричної функції.

Повторимо вид розв'язання найпростіших тригонометричних рівнянь:

1) Якщо |а|≤ 1, то рівняння cos(x) = a має розв'язок:

X = ± arccos(a) + 2πk

2) Якщо |а|≤ 1, то рівняння sin(x) = a має розв'язок:

3) Якщо |а| > 1, то рівняння sin(x) = a і cos(x) = a немає рішень 4) Рівняння tg(x)=a має розв'язання: x=arctg(a)+ πk

5) Рівняння ctg(x)=a має рішення: x=arcctg(a)+ πk

Для всіх формул k-ціле число

Найпростіші тригонометричні рівняння мають вигляд: Т(kx+m)=a, T-яка чи тригонометрична функція.

приклад.

Розв'язати рівняння: а) sin(3x)= √3/2

Рішення:

А) Позначимо 3x=t, тоді наше рівняння перепишемо як:

Розв'язання цього рівняння буде: t=((-1)^n)arcsin(√3 /2)+ πn.

З таблиці значень отримуємо: t=((-1)^n)×π/3+ πn.

Повернімося до нашої змінної: 3x =((-1)^n)×π/3+ πn,

Тоді x=((-1)^n)×π/9+ πn/3

Відповідь: x=((-1)^n)×π/9+ πn/3, де n-ціле число. (-1) ^ n – мінус один у ступені n.

Ще приклади тригонометричних рівнянь.

Розв'язати рівняння: а) cos(x/5)=1 б)tg(3x- π/3)= √3

Рішення:

А) На цей раз перейдемо безпосередньо до обчислення коренів рівняння відразу:

X/5= ± arccos(1) + 2πk. Тоді x/5= πk => x=5πk

Відповідь: x=5πk, де k – ціле число.

Б) Запишемо як: 3x- π/3=arctg(√3)+ πk. Ми знаємо що: arctg(√3)= π/3

3x- π/3= π/3+ πk => 3x=2π/3 + πk => x=2π/9 + πk/3

Відповідь: x=2π/9 + πk/3, де k – ціле число.

Розв'язати рівняння: cos(4x)= √2/2. І знайти все коріння на відрізку.

Рішення:

Вирішимо в загальному виглядінаше рівняння: 4x= ± arccos(√2/2) + 2πk

4x= ± π/4 + 2πk;

X= ± π/16+ πk/2;

Тепер давайте подивимося яке коріння потраплять на наш відрізок. При k При k=0, x= π/16 ми потрапили в заданий відрізок .
При к=1, x= π/16+ π/2=9π/16, знову потрапили.
При k = 2, x = π / 16 + π = 17π / 16, а тут ось вже не потрапили, а значить при великих k теж свідомо не потраплятимемо.

Відповідь: x= π/16, x= 9π/16

Два основні методи вирішення.

Ми розглянули найпростіші тригонометричні рівняння, але є й складніші. Для їх вирішення застосовують метод введення нової змінної та метод розкладання на множники. Давайте розглянемо приклади.

Розв'яжемо рівняння:

Рішення:
Для вирішення нашого рівняння скористаємося методом уведення нової змінної, позначимо: t=tg(x).

В результаті заміни отримаємо: t 2 + 2t -1 = 0

Знайдемо коріння квадратного рівняння: t=-1 та t=1/3

Тоді tg(x)=-1 і tg(x)=1/3, отримали найпростіше тригонометричне рівняння, знайдемо його коріння.

X=arctg(-1) +πk= -π/4+πk; x=arctg(1/3) + πk.

Відповідь: x=-π/4+πk; x=arctg(1/3) + πk.

Приклад вирішення рівняння

Розв'язати рівнянь: 2sin 2(x) + 3 cos(x) = 0

Рішення:

Скористаємося тотожністю: sin 2(x) + cos 2(x)=1

Наше рівняння набуде вигляду:2-2cos 2(x) + 3 cos(x) = 0

2 cos 2(x) - 3 cos(x) -2 = 0

Введемо заміну t=cos(x): 2t 2 -3t - 2 = 0

Рішенням нашого квадратного рівняння є коріння: t=2 та t=-1/2

Тоді cos(x)=2 та cos(x)=-1/2.

Т.к. косинус не може набувати значення більше одиниці, то cos(x)=2 не має коріння.

Для cos(x)=-1/2: x=± arccos(-1/2) + 2πk; x= ±2π/3 + 2πk

Відповідь: x= ±2π/3 + 2πk

Однорідні тригонометричні рівняння.

Визначення: Рівняння виду a sin(x)+b cos(x) називаються однорідними тригонометричними рівняннями першого ступеня.

Рівняння виду

однорідними тригонометричними рівняннями другого ступеня.

Для вирішення однорідного тригонометричного рівняння першого ступеня розділимо його на cos(x): Ділити на косинус не можна якщо він дорівнює нулю, давайте переконаємося, що це не так:
Нехай cos(x)=0, тоді asin(x)+0=0 => sin(x)=0, але синус і косинус одночасно не дорівнюють нулю, отримали протиріччя, тому можна сміливо ділити на нуль.

Вирішити рівняння:
Приклад: cos 2(x) + sin(x) cos(x) = 0

Рішення:

Винесемо загальний множник: cos(x)(c0s(x) + sin(x)) = 0

Тоді нам треба вирішити два рівняння:

Cos(x)=0 та cos(x)+sin(x)=0

Cos(x)=0 при x= π/2 + πk;

Розглянемо рівняння cos(x)+sin(x)=0 Розділимо наше рівняння cos(x):

1+tg(x)=0 => tg(x)=-1 => x=arctg(-1) +πk= -π/4+πk

Відповідь: x= π/2 + πk і x=-π/4+πk

Як розв'язувати однорідні тригонометричні рівняння другого ступеня?
Діти, дотримуйтесь цих правил завжди!

1. Подивитися чому дорівнює коефіцієнт а, якщо а=0 то тоді наше рівняння набуде вигляду cos(x)(bsin(x)+ccos(x)), приклад розв'язання якого на попередньому слайді

2. Якщо a≠0, потрібно поділити обидві частини рівняння на косинус у квадраті, отримаємо:


Робимо заміну змінної t=tg(x) отримуємо рівняння:

Вирішити приклад №:3

Вирішити рівняння:
Рішення:

Розділимо обидві частини рівняння на косинус квадрат:

Робимо заміну змінної t = tg (x): t 2 + 2 t - 3 = 0

Знайдемо коріння квадратного рівняння: t=-3 та t=1

Тоді: tg(x)=-3 => x=arctg(-3) + πk=-arctg(3) + πk

Tg(x)=1 => x= π/4+ πk

Відповідь: x=-arctg(3) + πk і x= π/4+ πk

Вирішити приклад №:4

Вирішити рівняння:

Рішення:
Перетворимо наш вираз:


Вирішувати такі рівняння ми вміємо: x= - π/4 + 2πk та x=5π/4 + 2πk

Відповідь: x= - π/4 + 2πk та x=5π/4 + 2πk

Вирішити приклад №:5

Вирішити рівняння:

Рішення:
Перетворимо наш вираз:


Введемо заміну tg(2x)=t:2 2 - 5t + 2 = 0

Рішенням нашого квадратного рівняння буде коріння: t=-2 і t=1/2

Тоді отримуємо: tg(2x)=-2 та tg(2x)=1/2
2x=-arctg(2)+ πk => x=-arctg(2)/2 + πk/2

2x= arctg(1/2) + πk => x=arctg(1/2)/2+ πk/2

Відповідь: x=-arctg(2)/2 + πk/2 і x=arctg(1/2)/2+ πk/2

Завдання для самостійного вирішення.

1) Розв'язати рівняння

А) sin(7x)= 1/2 б) cos(3x)= √3/2 в) cos(-x) = -1 г) tg(4x) = √3 д) ctg(0.5x) = -1.7

2) Розв'язати рівняння: sin(3x)= √3/2. І знайти все коріння на відрізку [π/2; π].

3) Розв'язати рівняння: ctg 2(x) + 2ctg(x) + 1 =0

4) Розв'язати рівняння: 3 sin 2(x) + √3sin(x) cos(x) = 0

5) Розв'язати рівняння:3sin 2 (3x) + 10 sin(3x)cos(3x) + 3 cos 2 (3x) =0

6)Вирішити рівняння:cos 2 (2x) -1 - cos(x) =√3/2 -sin 2 (2x)

Поділіться з друзями або збережіть для себе:

Завантаження...