Приклад розв'язати систему лінійних рівнянь методом гауса. Метод Гауса: опис алгоритму розв'язання системи лінійних рівнянь, приклади, рішення

Нехай задана система лінійних алгебраїчних рівнянь, яку необхідно вирішити (знайти такі значення невідомих хi, що звертають кожне рівняння системи на рівність).

Ми знаємо, що система лінійних рівнянь алгебри може:

1) Не мати рішень (бути несумісний).
2) Мати безліч рішень.
3) Мати єдине рішення.

Як ми пам'ятаємо, правило Крамера і матричний метод непридатні у випадках, коли система має нескінченно багато рішень чи несовместна. Метод Гаусанайбільш потужний та універсальний інструмент для знаходження рішення будь-якої системи лінійних рівнянь , Котрий у кожному випадкуприведе нас до відповіді! Сам алгоритм методу у всіх трьох випадках працює однаково. Якщо в методах Крамера і матричному необхідні знання визначників, то для застосування методу Гауса необхідно знання лише арифметичних дій, що робить його доступним навіть для школярів початкових класів.

Перетворення розширеної матриці ( це матриця системи - матриця, складена тільки з коефіцієнтів при невідомих, плюс стовпець вільних членів)системи лінійних рівнянь алгебри в методі Гауса:

1) з трокиматриці можна, можливо переставлятимісцями.

2) якщо в матриці з'явилися (або є) пропорційні (як окремий випадок – однакові) рядки, слід вилучитиз матриці всі ці рядки крім одного.

3) якщо в матриці в ході перетворень з'явився нульовий рядок, то його слід також вилучити.

4) рядок матриці можна помножити (розділити)на будь-яке число, відмінне від нуля.

5) до рядка матриці можна додати інший рядок, помножений на число, відмінне від нуля.

У методі Гауса елементарні перетворення не змінюють розв'язання системи рівнянь.

Метод Гауса складається з двох етапів:

  1. "Прямий хід" - за допомогою елементарних перетворень привести розширену матрицю системи лінійних рівнянь алгебри до "трикутного" східчастого вигляду: елементи розширеної матриці, розташовані нижче головної діагоналі, дорівнюють нулю (хід «згори донизу»). Наприклад, до такого виду:

Для цього виконаємо такі дії:

1) Нехай ми розглядаємо перше рівняння системи лінійних рівнянь алгебри і коефіцієнт при х 1 дорівнює К. Друге, третє і т.д. рівняння перетворюємо наступним чином: кожне рівняння (коефіцієнти при невідомих, включаючи вільні члени) ділимо на коефіцієнт при невідомому х 1 , що стоїть у кожному рівнянні, і множимо на К. Після цього з другого рівняння (коефіцієнти при невідомих і вільні члени) віднімають Отримуємо при х 1 у другому рівнянні коефіцієнт 0. З третього перетвореного рівняння віднімаємо перше рівняння, так до тих пір, поки всі рівняння, крім першого, при невідомому х 1 не матимуть коефіцієнт 0.

2) Переходимо до наступного рівняння. Нехай це буде друге рівняння та коефіцієнт при х 2 дорівнює М. З усіма «нижчими» рівняннями чинимо так, як описано вище. Таким чином, «під» невідомої х 2 у всіх рівняннях будуть нулі.

3) Переходимо до наступного рівняння і так доти, доки не залишиться одна остання невідома і перетворений вільний член.

  1. «Зворотний хід» методу Гауса – отримання рішення системи лінійних рівнянь алгебри (хід «знизу-вгору»). З останнього «нижнього» рівняння отримуємо одне перше рішення – невідому х n . Для цього вирішуємо елементарне рівняння А * х n = В. У прикладі, наведеному вище, х 3 = 4. Підставляємо знайдене значення «верхнє» наступне рівняння і вирішуємо його щодо наступної невідомої. Наприклад, х 2 – 4 = 1, тобто. х 2 = 5. І так доти, доки не знайдемо всі невідомі.

приклад.

Вирішимо систему лінійних рівнянь методом Гауса, як радять деякі автори:

Запишемо розширену матрицю системи та за допомогою елементарних перетворень наведемо її до ступінчастого вигляду:

Дивимося на ліву верхню сходинку. Там у нас має бути одиниця. Проблема полягає в тому, що у першому стовпці одиниць немає взагалі, тому перестановкою рядків нічого не вирішити. У разі одиницю треба організувати з допомогою елементарного перетворення. Зазвичай це можна зробити кількома способами. Вчинимо так:
1 крок . До першого рядка додаємо другий рядок, помножений на -1. Тобто подумки помножили другий рядок на –1 і виконали додавання першого і другого рядка, при цьому другий рядок у нас не змінився.

Тепер ліворуч угорі «мінус один», що нас цілком влаштує. Хто хоче отримати +1, може виконати додаткову дію: помножити перший рядок на –1 (змінити знак).

2 крок . До другого рядка додали перший рядок, помножений на 5. До третього рядка додали перший рядок, помножений на 3.

3 крок . Перший рядок помножили на -1, в принципі це для краси. У третього рядка також змінили знак і переставили її на друге місце, таким чином, на другому сходинці у нас з'явилася потрібна одиниця.

4 крок . До третього рядка додали другий рядок, помножений на 2.

5 крок . Третій рядок поділили на 3.

Ознакою, яка свідчить про помилку у обчисленнях (рідше – про друкарську помилку), є «поганий» нижній рядок. Тобто, якби в нас унизу вийшло щось на кшталт (0 0 11 |23) , і, відповідно, 11x 3 = 23, x 3 = 23/11, то з великою часткою ймовірності можна стверджувати, що допущена помилка в ході елементарних перетворень.

Виконуємо зворотний хід, в оформленні прикладів часто не переписують саму систему, а рівняння "беруть прямо з наведеної матриці". Зворотний хід, нагадую, працює «знизу нагору». У цьому прикладі вийшов подарунок:

x 3 = 1
x 2 = 3
x 1 + x 2 – x 3 = 1, отже x 1 + 3 – 1 = 1, x 1 = –1

Відповідь: x 1 = -1, x 2 = 3, x 3 = 1.

Вирішимо цю саму систему за запропонованим алгоритмом. Отримуємо

4 2 –1 1
5 3 –2 2
3 2 –3 0

Розділимо друге рівняння на 5, а третє – на 3. Отримаємо:

4 2 –1 1
1 0.6 –0.4 0.4
1 0.66 –1 0

Помножимо друге та третє рівняння на 4, отримаємо:

4 2 –1 1
4 2,4 –1.6 1.6
4 2.64 –4 0

Віднімемо з другого та третього рівнянь перше рівняння, маємо:

4 2 –1 1
0 0.4 –0.6 0.6
0 0.64 –3 –1

Розділимо третє рівняння на 0,64:

4 2 –1 1
0 0.4 –0.6 0.6
0 1 –4.6875 –1.5625

Помножимо третє рівняння на 0,4

4 2 –1 1
0 0.4 –0.6 0.6
0 0.4 –1.875 –0.625

Віднімемо з третього рівняння друге, отримаємо «ступінчасту» розширену матрицю:

4 2 –1 1
0 0.4 –0.6 0.6
0 0 –1.275 –1.225

Таким чином, так як у процесі обчислень накопичувалася похибка, отримуємо х 3 = 0,96 або приблизно 1.

х 2 = 3 та х 1 = -1.

Вирішуючи таким чином, Ви ніколи не заплутаєтеся у обчисленнях і не зважаючи на похибки обчислень, отримаєте результат.

Такий спосіб вирішення системи лінійних рівнянь алгебри легко програмуємо і не враховує специфічні особливостікоефіцієнтів за невідомих, адже на практиці (в економічних та технічних розрахунках) доводиться мати справу саме з нецілими коефіцієнтами.

Бажаю успіхів! До зустрічі на заняттях! Репетитор.

blog.сайт, при повному або частковому копіюванні матеріалу посилання на першоджерело обов'язкове.

Сьогодні розбираємося з методом Гауса для вирішення систем лінійних рівнянь алгебри. Про те, що це за системи, можна почитати у попередній статті, присвяченій рішенню тих самих СЛАУ методом Крамера. Метод Гауса не вимагає якихось специфічних знань, потрібна лише уважність та послідовність. Незважаючи на те, що з точки зору математики для його застосування вистачить і шкільної підготовки, у студентів освоєння цього методу часто викликає труднощі. У цій статті спробуємо звести їх нанівець!

Метод Гауса

М етод Гауса- Найбільш універсальний методрішення СЛАУ (за винятком ну вже дуже великих систем). На відміну від розглянутого раніше, він підходить не тільки для систем, що мають єдине рішення, але і для систем, у яких рішень безліч. Тут можливі три варіанти.

  1. Система має єдине рішення (визначник головної матриці системи не дорівнює нулю);
  2. Система має безліч рішень;
  3. Рішень немає, система несумісна.

Отже, ми маємо систему (нехай у неї буде одне рішення), і ми збираємося вирішувати її методом Гауса. Як це працює?

Метод Гауса складається з двох етапів – прямого та зворотного.

Прямий хід методу Гауса

Спочатку запишемо розширену матрицю системи. Для цього до головної матриці додаємо стовпець вільних членів.

Вся суть методу Гауса полягає в тому, щоб шляхом елементарних перетворень привести цю матрицю до ступінчастого (або як ще кажуть трикутного) вигляду. У такому вигляді під (або над) головною діагоналлю матриці мають бути одні нулі.

Що можна робити:

  1. Можна переставляти рядки матриці місцями;
  2. Якщо у матриці є однакові (або пропорційні) рядки, можна видалити їх усі, крім одного;
  3. Можна множити чи ділити рядок на будь-яке число (крім нуля);
  4. Нульові рядки видаляються;
  5. Можна додавати до рядка рядок, помножений на число, відмінне від нуля.

Зворотний хід методу Гауса

Після того як ми перетворимо систему таким чином, одна невідома Xn стає відома, і можна в зворотному порядку знайти всі невідомі, підставляючи вже відомі ікси в рівняння системи, аж до першого.

Коли інтернет завжди під рукою, можна вирішити систему рівнянь методом Гаусса онлайн.Достатньо лише вбити в онлайн-калькулятор коефіцієнти. Але погодьтеся, набагато приємніше усвідомлювати, що приклад вирішено не комп'ютерною програмою, а Вашим власним мозком.

Приклад розв'язання системи рівнянь методом Гаусс

А тепер – приклад, щоб усе стало наочно та зрозуміло. Нехай дана система лінійних рівнянь і потрібно вирішити її методом Гауса:

Спочатку запишемо розширену матрицю:

Тепер займемося перетвореннями. Пам'ятаємо, що нам потрібно досягти трикутного вигляду матриці. Помножимо 1-ий рядок на (3). Помножимо 2-й рядок на (-1). Додамо 2-й рядок до 1-го і отримаємо:

Потім помножимо 3-й рядок на (-1). Додамо 3-й рядок до 2-го:

Помножимо 1-ий рядок на (6). Помножимо 2-й рядок на (13). Додамо 2-й рядок до 1-го:

Вуаля – система наведена до відповідного виду. Залишилось знайти невідомі:

Система у цьому прикладі має єдине рішення. Вирішення систем з безліччю рішень ми розглянемо в окремій статті. Можливо, спочатку Ви не знатимете, з чого почати перетворення матриці, але після відповідної практики наб'єте руку і клацатимете СЛАУ методом Гауса як горішки. А якщо Ви раптом зіткнетеся зі СЛАУ, яка виявиться занадто міцним горішком, звертайтесь до наших авторів! ви можете, залишивши заявку у Заочнику. Разом ми вирішимо будь-яке завдання!

Ще з початку XVI-XVIII століть математики посилено почали вивчати функції, завдяки яким так багато в нашому житті змінилося. Комп'ютерна техніка без цих знань просто не існувала. Для вирішення складних завдань, лінійних рівнянь та функцій були створені різні концепції, теореми та методики розв'язання. Одним з таких універсальних та раціональних способів та методик розв'язання лінійних рівнянь та їх систем став і метод Гаусса. Матриці, їхній ранг, детермінант - все можна порахувати, не використовуючи складних операцій.

Що являє собою СЛАУ

У математиці існує поняття СЛАУ - система лінійних рівнянь алгебри. Що ж вона є? Це набір m рівнянь з шуканими n невідомими величинами, які зазвичай позначаються як x, y, z, або x 1 , x 2 … x n, або іншими символами. Вирішити методом Гауса цю систему - означає знайти всі шукані невідомі. Якщо система має однакову кількість невідомих і рівнянь, вона називається системою n-го порядку.

Найбільш популярні методи вирішення СЛАУ

У навчальних закладахсередньої освіти вивчають різноманітні методики вирішення таких систем. Найчастіше це прості рівняння, що складаються з двох невідомих, тому будь-який існуючий метод для пошуку відповіді на них не триватиме багато часу. Це може бути як метод підстановки, коли з одного рівняння виводиться інше та підставляється у початкове. Або метод почленного віднімання та додавання. Але найлегшим та універсальним вважається метод Гауса. Він дозволяє вирішувати рівняння з будь-якою кількістю невідомих. Чому саме ця методика вважається раціональною? Все просто. Матричний спосібхороший тим, що тут не потрібно кілька разів переписувати непотрібні символи у вигляді невідомих, достатньо зробити арифметичні операції над коефіцієнтами - і вийде достовірний результат.

Де використовуються СЛАУ на практиці

Рішенням СЛАУ є точки перетину прямих графіків функцій. У наш високотехнологічний комп'ютерний вік людям, які тісно пов'язані з розробкою ігор та інших програм, необхідно знати, як вирішувати такі системи, що вони представляють і як перевірити правильність результату. Найчастіше програмісти розробляють спеціальні програми-обчислювачі лінійної алгебри, сюди входить і система лінійних рівнянь. Метод Гауса дозволяє вирахувати всі існуючі рішення. Також використовуються й інші спрощені формули та методики.

Критерій сумісності СЛАУ

Таку систему можна вирішити лише у тому випадку, якщо вона сумісна. Для зрозумілості представимо СЛАУ як Ax=b. Вона має рішення, якщо rang(A) дорівнює rang(A,b). І тут (A,b) - це матриця розширеного виду, яку можна одержати з матриці А, переписавши її з вільними членами. Виходить, що розв'язати лінійні рівняння методом Гауса досить легко.

Можливо, деякі позначення не зовсім зрозумілі, тому треба розглянути все на прикладі. Допустимо, є система: x + y = 1; 2x-3y = 6. Вона складається з двох рівнянь, у яких 2 невідомі. Система матиме рішення тільки в тому випадку, якщо ранг її матриці дорівнюватиме рангу розширеної матриці. Що таке ранг? Це число незалежних рядків системи. У нашому випадку ранг матриці 2. Матриця А складатиметься з коефіцієнтів, що знаходяться біля невідомих, а в розширену матрицю вписуються і коефіцієнти, що перебувають за знаком «=».

Чому СЛАУ можна уявити в матричному вигляді

Виходячи з критерію сумісності по доведеній теоремі Кронекера-Капеллі, систему лінійних рівнянь алгебри можна представити в матричному вигляді. Застосовуючи каскадний метод Гауса, можна вирішити матрицю та отримати єдину достовірну відповідь на всю систему. Якщо ранг звичайної матриці дорівнює рангу її розширеної матриці, але при цьому менше від кількості невідомих, тоді система має нескінченну кількість відповідей.

Перетворення матриць

Перш ніж переходити до рішення матриць, необхідно знати, які дії можна проводити над їх елементами. Існує кілька елементарних перетворень:

  • Переписуючи систему в матричний вигляд і здійснюючи її рішення, можна множити всі елементи ряду на той самий коефіцієнт.
  • Для того щоб перетворити матрицю на канонічний вигляд, можна міняти місцями два паралельні ряди. Канонічний вигляд має на увазі, що всі елементи матриці, які розташовані по головній діагоналі, стають одиницями, а решта - нулями.
  • Відповідні елементи паралельних рядів матриці можна додавати один до одного.

Метод Жордана-Гаусса

Суть вирішення систем лінійних однорідних та неоднорідних рівняньметодом Гауса у тому, щоб поступово виключити невідомі. Припустимо, у нас є система із двох рівнянь, у яких дві невідомі. Щоб їх знайти, необхідно перевірити систему на сумісність. Рівняння методом Гауса вирішується дуже просто. Необхідно виписати коефіцієнти, що знаходяться біля кожного невідомого у матричний вигляд. Для вирішення системи потрібно виписати розширену матрицю. Якщо одне з рівнянь містить меншу кількість невідомих, тоді місце пропущеного елемента необхідно поставити «0». До матриці застосовуються всі відомі методиперетворення: множення, розподіл на число, додавання відповідних елементів рядів один до одного та інші. Виходить, що у кожному ряду потрібно залишити одну змінну зі значенням «1», інші призвести до нульового вигляду. Для більш точного розуміння слід розглянути метод Гаусса на прикладах.

Простий приклад вирішення системи 2х2

Для початку візьмемо просту систему алгебраїчних рівнянь, в якій буде 2 невідомих.

Перепишемо її у розширену матрицю.

Щоб вирішити цю систему лінійних рівнянь, потрібно зробити лише дві операції. Нам необхідно привести матрицю до канонічного вигляду, щоби по головній діагоналі стояли одиниці. Так, переводячи з матричного виду назад у систему, ми отримаємо рівняння: 1x+0y=b1 і 0x+1y=b2, де b1 і b2 - відповіді, що вийшли в процесі рішення.

  1. Перша дія при вирішенні розширеної матриці буде такою: перший ряд необхідно помножити на -7 і додати відповідно відповідні елементи до другого рядка, щоб позбавитися одного невідомого в другому рівнянні.
  2. Оскільки рішення рівнянь методом Гауса передбачає приведення матриці до канонічного виду, тоді необхідно і з першим рівнянням зробити ті ж операції і прибрати другу змінну. Для цього другий рядок віднімаємо від першого та отримуємо необхідну відповідь – рішення СЛАУ. Або, як показано на малюнку, другий рядок множимо на коефіцієнт -1 і додаємо до першого рядка елементи другого ряду. Це одне і теж.

Як бачимо, нашу систему вирішено методом Жордана-Гаусса. Переписуємо її у необхідну форму: x=-5, y=7.

Приклад рішення СЛАУ 3х3

Припустимо, що у нас є складніша система лінійних рівнянь. Метод Гауса дає можливість вирахувати відповідь навіть для самої, здавалося б, заплутаної системи. Тому, щоб глибше вникнути в методику розрахунку, можна переходити до більш складним прикладоміз трьома невідомими.

Як і в колишньому прикладі, переписуємо систему у вигляді розширеної матриці і починаємо приводити її до канонічного вигляду.

Для вирішення цієї системи знадобиться зробити набагато більше дій, ніж у попередньому прикладі.

  1. Спочатку потрібно створити в першому стовпці один одиничний елемент та інші нулі. Для цього множимо перше рівняння на -1 і додаємо до нього друге рівняння. Важливо запам'ятати, що перший рядок ми переписуємо у первісному вигляді, а другий - вже зміненому.
  2. Далі прибираємо цю саму першу невідому з третього рівняння. Для цього елементи першого рядка множимо на -2 і додаємо їх до третього ряду. Тепер перший і другий рядки переписуються у первісному вигляді, а третій - вже із змінами. Як бачимо за результатом, ми отримали першу одиницю на початку головної діагоналі матриці та інші нулі. Ще кілька дій і система рівнянь методом Гауса буде достовірно вирішена.
  3. Тепер необхідно виконати операції над іншими елементами рядів. Третя і четверта дія можна об'єднати в одну. Потрібно розділити другий і третій рядок на -1, щоб позбавитися від мінусових одиниць по діагоналі. Третій рядок ми вже привели до необхідного вигляду.
  4. Далі наведемо до канонічного вигляду другий рядок. Для цього елементи третього ряду множимо на -3 і додаємо їх до другого рядка матриці. З результату видно, що другий рядок теж наведено до необхідної форми. Залишилося зробити ще кілька операцій та прибрати коефіцієнти невідомих із першого рядка.
  5. Щоб з другого елемента рядка зробити 0, необхідно помножити третій рядок -3 і додати його до першого ряду.
  6. Наступним вирішальним етапом буде додавання до першого рядка необхідні елементи другого ряду. Так ми отримуємо канонічний вид матриці, а відповідно і відповідь.

Як видно, розв'язання рівнянь методом Гауса досить просте.

Приклад розв'язання системи рівнянь 4х4

Деякі складніші системи рівнянь можна вирішити методом Гаусса за допомогою комп'ютерних програм. Необхідно вбити в існуючі порожні комірки коефіцієнти за невідомих, і програма сама покроково розрахує необхідний результат, докладно описуючи кожну дію.

Нижче описано покрокова інструкціярішення такого прикладу.

У першій дії в порожні комірки вписуються вільні коефіцієнти та числа при невідомих. Таким чином, виходить така сама розширена матриця, яку ми пишемо вручну.

І виконуються всі необхідні арифметичні операції, щоб привести розширену матрицю до канонічного вигляду. Необхідно розуміти, що не завжди відповідь на систему рівнянь – це цілі числа. Іноді рішення може бути із дробових чисел.

Перевірка правильності рішення

Метод Жордана-Гаусса передбачає перевірку правильності результату. Для того щоб дізнатися, чи правильно пораховані коефіцієнти, необхідно всього лише підставити результат у початкову систему рівнянь. Ліва сторона рівняння повинна відповідати правій стороні, яка перебуває за знаком "рівно". Якщо відповіді не збігаються, тоді необхідно перераховувати заново систему або спробувати застосувати до неї інший відомий вам метод рішення СЛАУ, такий як підстановка або почленное віднімання та додавання. Адже математика – це наука, яка має величезну кількість різних методик розв'язання. Але пам'ятайте: результат повинен бути завжди той самий, незалежно від того, який метод рішення ви використовували.

Метод Гауса: найпоширеніші помилки при вирішенні СЛАУ

Під час розв'язання лінійних систем рівнянь найчастіше виникають такі помилки, як неправильне перенесення коефіцієнтів у матричний вигляд. Бувають системи, в яких відсутні в одному з рівнянь деякі невідомі, тоді переносячи дані в розширену матрицю, їх можна втратити. У результаті під час вирішення цієї системи результат може відповідати дійсному.

Ще однією з головних помилок може бути неправильне виписування кінцевого результату. Потрібно чітко розуміти, що перший коефіцієнт відповідатиме першому невідомому із системи, другий - другому і так далі.

Метод Гаусса докладно визначає рішення лінійних рівнянь. Завдяки йому легко зробити необхідні операції та знайти правильний результат. Крім того, це універсальний засіб для пошуку достовірної відповіді на рівняння будь-якої складності. Можливо, тому його часто використовують при вирішенні СЛАУ.

Одним із універсальних та ефективних методів вирішення лінійних алгебраїчних систем є метод Гауса , що перебуває у послідовному виключенні невідомих.

Нагадаємо, дві системи називаються еквівалентними (рівносильними), якщо множини їх рішень збігаються. Іншими словами, системи еквівалентні, якщо кожне рішення однієї з них є рішенням іншої та навпаки. Еквівалентні системи виходять при елементарні перетворення рівнянь системи:

    множення обох частин рівняння на число відмінне від нуля;

    додавання до деякого рівняння відповідних частин іншого рівняння, помножених на число відмінне від нуля;

    перестановка двох рівнянь.

Нехай дана система рівнянь

Процес вирішення цієї системи за методом Гауса складається із двох етапів. На першому етапі (прямий хід) система за допомогою елементарних перетворень наводиться до східчастому , або трикутному виду, але в другому етапі (зворотний хід) йде послідовне, починаючи з останнього за номером змінного, визначення невідомих з отриманої ступінчастої системи.

Припустимо, що коефіцієнт цієї системи
, в іншому випадку в системі перший рядок можна поміняти місцями з будь-яким іншим рядком так, щоб коефіцієнт при був відмінний від нуля.

Перетворимо систему, виключивши невідоме у всіх рівняннях, крім першого. Для цього помножимо обидві частини першого рівняння на і складемо почленно з другим рівнянням системи. Потім помножимо обидві частини першого рівняння на та складемо з третім рівнянням системи. Продовжуючи цей процес, отримаємо еквівалентну систему

Тут
– нові значення коефіцієнтів та вільних членів, які виходять після першого кроку.

Аналогічно, вважаючи головним елементом
, виключимо невідоме із усіх рівнянь системи, крім першого та другого. Продовжимо цей процес, поки це можливо, в результаті отримаємо східчасту систему

,

де ,
,…,- Головні елементи системи
.

Якщо в процесі приведення системи до ступінчастого вигляду з'являться рівняння, тобто рівності виду
, їх відкидають, тому що їм задовольняють будь-які набори чисел
. Якщо ж при
з'явиться рівняння виду, яке має рішень, це свідчить про несумісності системи.

При зворотному ході із останнього рівняння перетвореної ступінчастої системи виражається перше невідоме через решту невідомих
, які називають вільними . Потім вираз змінної з останнього рівняння системи підставляється в передостаннє рівняння та з нього виражається змінна
. Аналогічно послідовно визначаються змінні
. Змінні
, виражені через вільні змінні, називаються базисними (Залежними). В результаті виходить загальне рішення системи лінійних рівнянь.

Щоб знайти приватне рішення системи, вільним невідомим
в загальному рішеннінадаються довільні значення та обчислюються значення змінних
.

Технічно зручніше піддавати елементарним перетворенням не самі рівняння системи, а розширену матрицю системи

.

Метод Гауса - універсальний метод, який дозволяє вирішувати не лише квадратні, а й прямокутні системи, у яких кількість невідомих
не дорівнює числу рівнянь
.

Перевага цього методу полягає також у тому, що в процесі рішення ми одночасно досліджуємо систему на спільність, оскільки, навівши розширену матрицю
до ступінчастого вигляду, легко визначити ранги матриці та розширеної матриці
та застосувати теорему Кронекера - Капеллі .

Приклад 2.1Методом Гауса вирішити систему

Рішення. Число рівнянь
та кількість невідомих
.

Складемо розширену матрицю системи, приписавши праворуч від матриці коефіцієнтів стовпець вільних членів .

Наведемо матрицю до трикутного вигляду; для цього отримуватимемо «0» нижче елементів, що стоять на головній діагоналі за допомогою елементарних перетворень.

Щоб отримати «0» у другій позиції першого стовпця, помножимо перший рядок на (-1) і додамо до другого рядка.

Це перетворення запишемо числом (-1) проти першого рядка і позначимо стрілкою, що йде від першого рядка до другого рядка.

Для отримання «0» у третій позиції першого стовпця, помножимо перший рядок на (-3) і додамо до третього рядка; покажемо цю дію за допомогою стрілки, що йде від першого рядка до третього.




.

В отриманій матриці, записаній другий у ланцюжку матриць, отримаємо «0» у другому стовпці третьої позиції. Для цього помножили другий рядок на (-4) і додали до третього. В отриманій матриці другий рядок помножимо на (-1), а третій - розділимо на (-8). Всі елементи цієї матриці, що лежать нижче за діагональні елементи - нулі.

Так як , система є спільною та певною.

Відповідна останній матриці система рівнянь має трикутний вигляд:

З останнього (третього) рівняння
. Підставимо у друге рівняння та отримаємо
.

Підставимо
і
у перше рівняння, знайдемо


.

Метод Гауса, званий також методом послідовного виключенняневідомих, полягає у наступному. За допомогою елементарних перетворень систему лінійних рівнянь призводять до такого виду, щоб її матриця з коефіцієнтів виявилася трапецієподібної (те ж саме, що трикутної або ступінчастої) або близькою до трапецієподібної (прямий хід методу Гаусса, далі – просто прямий хід). Приклад такої системи та її рішення – на малюнку зверху.

У такій системі останнє рівняння містить лише одну змінну та її значення можна однозначно знайти. Потім значення цієї змінної підставлять у попереднє рівняння ( зворотний хід методу Гауса , Далі - просто зворотний хід), з якого знаходять попередню змінну, і так далі.

У трапецієподібній (трикутній) системі, як бачимо, третє рівняння вже не містить змінних yі x, а друге рівняння - змінною x .

Після того, як матриця системи набула трапецієподібної форми, вже не важко розібратися в питанні про спільність системи, визначити число рішень і знайти самі рішення.

Переваги методу:

  1. при вирішенні систем лінійних рівнянь з числом рівнянь і невідомих більше трьох метод Гауса не такий громіздкий, як метод Крамера, оскільки при вирішенні методом Гауса необхідно менше обчислень;
  2. методом Гауса можна вирішувати невизначені системи лінійних рівнянь, тобто мають спільне рішення (і ми розберемо їх на цьому уроці), а, використовуючи метод Крамера, можна лише констатувати, що система невизначена;
  3. можна вирішувати системи лінійних рівнянь, у яких число невідомих не дорівнює кількості рівнянь (також розберемо їх на цьому уроці);
  4. метод заснований на елементарних (шкільних) методах – методі підстановки невідомих та методі складання рівнянь, яких ми торкнулися у відповідній статті.

Щоб всі перейнялися простотою, з якою вирішуються трапецієподібні (трикутні, ступінчасті) системи лінійних рівнянь, наведемо рішення такої системи із застосуванням зворотного ходу. Швидке рішення цієї системи було показано на зображенні на початку уроку.

приклад 1.Розв'язати систему лінійних рівнянь, застосовуючи зворотний хід:

Рішення. У цій трапецієподібній системі змінна zоднозначно з третього рівняння. Підставляємо її значення у друге рівняння та отримуємо значення зміною y:

Тепер нам відомі значення вже двох змінних - zі y. Підставляємо їх у перше рівняння та отримуємо значення змінної x:

Із попередніх кроків виписуємо рішення системи рівнянь:

Щоб отримати таку трапецієподібну систему лінійних рівнянь, яку ми вирішили дуже просто, потрібно застосовувати прямий хід, пов'язаний з елементарними перетвореннямисистеми лінійних рівнянь Це також не дуже складно.

Елементарні перетворення системи лінійних рівнянь

Повторюючи шкільний метод алгебраїчного складання рівнянь системи, ми з'ясували, що одного з рівнянь системи можна додавати інше рівняння системи, причому кожне з рівнянь може бути помножено деякі числа. В результаті отримуємо систему лінійних рівнянь, еквівалентну даній. У ній вже одне рівняння містило лише одну змінну, підставляючи значення якої інші рівнянь, ми приходимо до рішення. Таке додавання - одне із видів елементарного перетворення системи. При використанні методу Гауса можемо користуватися кількома видами перетворень.

На анімації вище показано, як система рівнянь поступово перетворюється на трапецієподібну. Тобто таку, яку ви бачили на першій анімації і самі переконалися в тому, що з неї просто знайти значення всіх невідомих. Про те, як виконати таке перетворення і, звичайно, приклади, йтиметься далі.

При вирішенні систем лінійних рівнянь з будь-яким числом рівнянь та невідомих у системі рівнянь та у розширеній матриці системи можна, можливо:

  1. переставляти місцями рядки (це і було згадано на початку цієї статті);
  2. якщо внаслідок інших перетворень з'явилися рівні або пропорційні рядки, їх можна видалити, крім одного;
  3. видаляти "нульові" рядки, де всі коефіцієнти дорівнюють нулю;
  4. будь-який рядок множити чи ділити на деяке число;
  5. до будь-якого рядка додавати інший рядок, помножений на деяке число.

В результаті перетворень отримуємо систему лінійних рівнянь, еквівалентну даній.

Алгоритм та приклади вирішення методом Гауса системи лінійних рівнянь із квадратною матрицею системи

Розглянемо спочатку рішення систем лінійних рівнянь, у яких число невідомих дорівнює кількості рівнянь. Матриця такої системи - квадратна, тобто в ній число рядків дорівнює числу стовпців.

приклад 2.Розв'язати методом Гауса систему лінійних рівнянь

Вирішуючи системи лінійних рівнянь шкільними методами, ми почленно множили одне з рівнянь на деяке число, те щоб коефіцієнти за першої змінної у двох рівняннях були протилежними числами. При додаванні рівнянь відбувається виключення цієї змінної. Аналогічно діє метод Гауса.

Для спрощення зовнішнього виглядурішення складемо розширену матрицю системи:

У цій матриці зліва до вертикальної межі розташовані коефіцієнти при невідомих, а праворуч після вертикальної межі - вільні члени.

Для зручності розподілу коефіцієнтів при змінних (щоб отримати розподіл на одиницю) переставимо місцями перший і другий рядки матриці системи. Отримаємо систему, еквівалентну даній, оскільки в системі лінійних рівнянь можна переставляти місцями рівняння:

За допомогою нового першого рівняння виключимо змінну xз другого та всіх наступних рівнянь. Для цього до другого рядка матриці додамо перший рядок, помножений на (у нашому випадку на ), до третього рядка – перший рядок, помножений на (у нашому випадку на ).

Це можливо, оскільки

Якби в нашій системі рівнянь було більше трьох, то слід додавати і до всіх наступних рівнянь перший рядок, помножений на відношення відповідних коефіцієнтів, взятих зі знаком мінус.

В результаті отримаємо матрицю еквівалентну даній системі нової системи рівнянь, в якій усі рівняння, починаючи з другого не містять змінну x :

Для спрощення другого рядка отриманої системи помножимо її і отримаємо знову матрицю системи рівнянь, еквівалентної даній системі:

Тепер, зберігаючи перше рівняння отриманої системи без змін, за допомогою другого рівняння виключаємо змінну y із усіх наступних рівнянь. Для цього до третього рядка матриці системи додамо другий рядок, помножений на (у нашому випадку на ).

Якби в нашій системі рівнянь було більше трьох, то слід додавати і до всіх наступних рівнянь другий рядок, помножений на відношення відповідних коефіцієнтів, взятих зі знаком мінус.

В результаті знову отримаємо матрицю системи, еквівалентної даній системі лінійних рівнянь:

Ми отримали еквівалентну дану трапецієподібну систему лінійних рівнянь:

Якщо кількість рівнянь і змінних більше, ніж у прикладі, процес послідовного виключення змінних триває до того часу, поки матриця системи стане трапецієподібної, як і нашому демо-примере.

Рішення знайдемо "з кінця" - зворотний хід. Для цього з останнього рівняння визначимо z:
.
Підставивши це значення у попереднє рівняння, знайдемо y:

З першого рівняння знайдемо x:

Відповідь: розв'язання даної системи рівнянь - .

: у цьому випадку буде видана та сама відповідь, якщо система має однозначне рішення. Якщо ж система має безліч рішень, то такою буде і відповідь, і це вже предмет п'ятої частини цього уроку.

Вирішити систему лінійних рівнянь методом Гауса самостійно, а потім переглянути рішення

Перед нами знову приклад спільної та певної системи лінійних рівнянь, у якій число рівнянь дорівнює числу невідомих. Відмінність від нашого демо-прикладу з алгоритму - тут уже чотири рівняння та чотири невідомі.

приклад 4.Розв'язати систему лінійних рівнянь методом Гауса:

Тепер потрібно за допомогою другого рівняння виключити змінну з наступних рівнянь. Проведемо підготовчі роботи. Щоб було зручніше з відношенням коефіцієнтів, потрібно отримати одиницю у другому стовпці другого рядка. Для цього з другого рядка віднімемо третій, а отриманий в результаті другий рядок помножимо на -1.

Проведемо тепер власне виняток змінної з третього та четвертого рівнянь. Для цього до третього рядка додамо другий, помножений на , а до четвертого - другий, помножений на .

Тепер за допомогою третього рівняння виключимо змінну із четвертого рівняння. Для цього до четвертого рядка додамо третій, помножений на . Отримуємо розширену матрицю трапецієподібної форми.

Отримали систему рівнянь, якою еквівалентна задана система:

Отже, отримана та дана системи є спільними та певними. Остаточне рішення знаходимо «з кінця». З четвертого рівняння безпосередньо можемо виразити значення змінної "ікс четверте":

Це значення підставляємо у третє рівняння системи та отримуємо

,

,

Зрештою, підстановка значень

У перше рівняння дає

,

звідки знаходимо "ікс перше":

Відповідь: дана система рівнянь має єдине рішення .

Перевірити рішення системи можна і на калькуляторі, що вирішує методом Крамера: у цьому випадку буде видана та сама відповідь, якщо система має однозначне рішення.

Рішення методом Гауса прикладних задач на прикладі задачі на сплави

Системи лінійних рівнянь використовуються для моделювання реальних об'єктів фізичного світу. Вирішимо одне з таких завдань – на сплави. Аналогічні завдання - завдання на суміші, вартість або питома вага окремих товарів у групі товарів тощо.

Приклад 5.Три шматки сплаву мають загальну масу 150 кг. Перший сплав містить 60% міді, другий – 30%, третій – 10%. При цьому у другому та третьому сплавах разом узятих міді на 28,4 кг менше, ніж у першому сплаві, а у третьому сплаві міді на 6,2 кг менше, ніж у другому. Знайти масу кожного шматка металу.

Рішення. Складаємо систему лінійних рівнянь:

Помножуємо друге та третє рівняння на 10, отримуємо еквівалентну систему лінійних рівнянь:

Складаємо розширену матрицю системи:

Увага, прямий перебіг. Шляхом додавання (у нашому випадку - віднімання) одного рядка, помноженого на число (застосовуємо двічі) з розширеною матрицею системи відбуваються наступні перетворення:

Прямий хід завершився. Отримали розширену матрицю трапецієподібної форми.

Застосовуємо зворотний перебіг. Знаходимо рішення з кінця. Бачимо, що .

З другого рівняння знаходимо

Із третього рівняння -

Перевірити рішення системи можна і на калькуляторі, що вирішує методом Крамера : у цьому випадку буде видана відповідь, якщо система має однозначне рішення.

Про простоту методу Гауса говорить хоча б той факт, що німецькому математику Карлу Фрідріху Гауссу на його винахід знадобилося лише 15 хвилин. Крім методу його імені з творчості Гауса відомо вислів "Не слід змішувати те, що нам здається неймовірним і неприродним, з абсолютно неможливим" - свого роду коротка інструкція щодо здійснення відкриттів.

У багатьох прикладних завданнях може і не бути третього обмеження, тобто третього рівняння, тоді доводиться вирішувати методом Гауса систему двох рівнянь із трьома невідомими, або ж навпаки – невідомих менше, ніж рівнянь. Вирішення таких систем рівнянь ми зараз і приступимо.

За допомогою методу Гауса можна встановити, спільна чи несумісна будь-яка система nлінійних рівнянь з nзмінними.

Метод Гауса і системи лінійних рівнянь, що мають безліч рішень

Наступний приклад - спільна, але невизначена система лінійних рівнянь, тобто має безліч рішень.

Після виконання перетворень у розширеній матриці системи (перестановки рядків, множення та поділу рядків на деяке число, додатку до одного рядка інший) могли з'явитися рядки виду

Якщо у всіх рівняннях мають вигляд

Вільні члени рівні нулю, це означає, що система невизначена, тобто має безліч рішень, а рівняння цього виду – «зайві» та їх виключаємо з системи.

Приклад 6.

Рішення. Складемо розширену матрицю системи. Потім за допомогою першого рівняння виключимо змінну наступних рівнянь. Для цього до другого, третього та четвертого рядків додамо перший, помножений відповідно на :

Тепер другий рядок додамо до третього та четвертого.

В результаті приходимо до системи

Останні два рівняння перетворилися на рівняння виду. Ці рівняння задовольняються за будь-яких значень невідомих і їх можна відкинути.

Щоб задовольнити друге рівняння, ми можемо і вибрати довільні значення , тоді значення для визначиться вже однозначно: . З першого рівняння значення також знаходиться однозначно: .

Як задана, і остання системи спільні, але невизначені, і формули

за довільних і дають нам всі рішення заданої системи.

Метод Гауса та системи лінійних рівнянь, які не мають рішень

Наступний приклад - несумісна система лінійних рівнянь, тобто така, що не має рішень. Відповідь такі завдання так і формулюється: система немає рішень.

Як уже говорилося у зв'язку з першим прикладом, після виконання перетворень у розширеній матриці системи могли з'явитися рядки виду

відповідні рівняння виду

Якщо серед них є хоча б одне рівняння з відмінним від нуля вільним членом (тобто ), то дана система рівнянь є несумісною, тобто немає рішень і на цьому її рішення закінчено.

Приклад 7.Розв'язати методом Гауса систему лінійних рівнянь:

Рішення. Складаємо розширену матрицю системи. За допомогою першого рівняння виключаємо з наступних рівнянь змінну. Для цього до другого рядка додаємо перший, помножений на , до третього рядка - перший, помножений на , до четвертого - перший, помножений на .

Тепер потрібно за допомогою другого рівняння виключити змінну з наступних рівнянь. Щоб отримати цілі відносини коефіцієнтів, поміняємо місцями другий і третій рядки розширеної матриці системи.

Для виключення з третього і четвертого рівняння до третього рядка додамо другий, помножений на , а до четвертого - другий, помножений на .

Тепер за допомогою третього рівняння виключимо змінну із четвертого рівняння. Для цього до четвертого рядка додамо третій, помножений на .

Задана системаеквівалентна таким чином наступній:

Отримана система несумісна, оскільки її останнє рівняння може бути задоволене ніякими значеннями невідомих. Отже, ця система не має рішень.

Поділіться з друзями або збережіть для себе:

Завантаження...