पृथ्वी का वातावरण। भूगोल विषय - वातावरण

- ग्लोब का वायु कवच जो पृथ्वी के साथ घूमता है। वायुमंडल की ऊपरी सीमा पारंपरिक रूप से 150-200 किमी की ऊंचाई पर की जाती है। निचली सीमा पृथ्वी की सतह है।

वायुमंडलीय वायु गैसों का मिश्रण है। सतही वायु परत में इसकी अधिकांश मात्रा नाइट्रोजन (78%) और ऑक्सीजन (21%) है। इसके अलावा, हवा में अक्रिय गैसें (आर्गन, हीलियम, नियॉन, आदि), कार्बन डाइऑक्साइड (0.03), जल वाष्प और विभिन्न ठोस कण (धूल, कालिख, नमक क्रिस्टल) होते हैं।

हवा रंगहीन है, और आकाश के रंग को प्रकाश तरंगों के प्रकीर्णन की ख़ासियत से समझाया गया है।

वायुमंडल में कई परतें होती हैं: क्षोभमंडल, समताप मंडल, मेसोस्फीयर और थर्मोस्फीयर।

वायु की निचली परत कहलाती है क्षोभ मंडल।विभिन्न अक्षांशों पर इसकी शक्ति समान नहीं होती है। क्षोभमंडल ग्रह के आकार को दोहराता है और अक्षीय घूर्णन में पृथ्वी के साथ मिलकर भाग लेता है। भूमध्य रेखा पर वायुमंडल की मोटाई 10 से 20 किमी के बीच होती है। भूमध्य रेखा पर यह अधिक होता है, और ध्रुवों पर यह कम होता है। क्षोभमंडल को हवा के अधिकतम घनत्व की विशेषता है, पूरे वायुमंडल के द्रव्यमान का 4/5 इसमें केंद्रित है। क्षोभमंडल मौसम की स्थिति को निर्धारित करता है: यहां विभिन्न वायु द्रव्यमान बनते हैं, बादल और वर्षा होती है, और तीव्र क्षैतिज और ऊर्ध्वाधर वायु गति होती है।

क्षोभमंडल के ऊपर 50 किमी की ऊंचाई तक स्थित है समताप मंडलयह हवा के कम घनत्व की विशेषता है, इसमें जल वाष्प नहीं है। समताप मंडल के निचले भाग में लगभग 25 किमी की ऊँचाई पर। एक "ओजोन स्क्रीन" है - ओजोन की उच्च सांद्रता वाले वातावरण की एक परत, जो पराबैंगनी विकिरण को अवशोषित करती है, जो जीवों के लिए घातक है।

50 से 80-90 किमी की ऊंचाई पर फैली हुई है मध्यमंडलजैसे-जैसे ऊंचाई बढ़ती है, तापमान (0.25-0.3)°/100 मीटर की औसत ऊर्ध्वाधर ढाल के साथ घटता है, और वायु घनत्व कम हो जाता है। मुख्य ऊर्जा प्रक्रिया उज्ज्वल गर्मी हस्तांतरण है। वायुमंडल की चमक रेडिकल, कंपन से उत्साहित अणुओं से जुड़ी जटिल फोटोकैमिकल प्रक्रियाओं के कारण होती है।

बाह्य वायुमंडल 80-90 से 800 किमी की ऊंचाई पर स्थित है। यहां वायु घनत्व न्यूनतम है, वायु आयनीकरण की डिग्री बहुत अधिक है। तापमान सूर्य की गतिविधि के आधार पर बदलता है। के सिलसिले में बड़ी मात्रायहाँ आवेशित कण ध्रुवीय प्रकाश और चुंबकीय तूफान देखे जाते हैं।

पृथ्वी की प्रकृति के लिए वायुमंडल का बहुत महत्व है।ऑक्सीजन के बिना जीवित जीव सांस नहीं ले सकते। इसकी ओजोन परत सभी जीवित चीजों को हानिकारक पराबैंगनी किरणों से बचाती है। वातावरण तापमान में उतार-चढ़ाव को सुचारू करता है: पृथ्वी की सतह रात में सुपरकूल नहीं होती है और दिन के दौरान ज़्यादा गरम नहीं होती है। वायुमंडलीय हवा की घनी परतों में, ग्रह की सतह तक नहीं पहुंचने पर, कांटों से उल्कापिंड जलते हैं।

वायुमंडल पृथ्वी के सभी कोशों के साथ परस्पर क्रिया करता है। इसकी मदद से समुद्र और जमीन के बीच गर्मी और नमी का आदान-प्रदान होता है। वायुमंडल के बिना बादल, वर्षा, हवाएँ नहीं होतीं।

वातावरण पर महत्वपूर्ण प्रतिकूल प्रभाव आर्थिक गतिविधिव्यक्ति। वायु प्रदूषण होता है, जिससे कार्बन मोनोऑक्साइड (सीओ 2) की सांद्रता में वृद्धि होती है। और यह ग्लोबल वार्मिंग में योगदान देता है और मजबूत करता है " ग्रीनहाउस प्रभाव". औद्योगिक कचरे और परिवहन के कारण पृथ्वी की ओजोन परत नष्ट हो रही है।

वातावरण को संरक्षित करने की जरूरत है। पर विकसित देशोंवायुमंडलीय वायु को प्रदूषण से बचाने के लिए कई उपाय किए जा रहे हैं।

क्या आपका कोई प्रश्न है? वातावरण के बारे में अधिक जानना चाहते हैं?
ट्यूटर की मदद लेने के लिए - रजिस्टर करें।

साइट, सामग्री की पूर्ण या आंशिक प्रतिलिपि के साथ, स्रोत के लिए एक लिंक आवश्यक है।

वायुमंडल(ग्रीक एटमॉस से - स्टीम और स्पैरिया - बॉल) - पृथ्वी का वायु खोल, इसके साथ घूमता है। वायुमंडल का विकास हमारे ग्रह पर होने वाली भूवैज्ञानिक और भू-रासायनिक प्रक्रियाओं के साथ-साथ जीवित जीवों की गतिविधियों के साथ निकटता से जुड़ा हुआ था।

वायुमंडल की निचली सीमा पृथ्वी की सतह से मेल खाती है, क्योंकि हवा मिट्टी के सबसे छोटे छिद्रों में प्रवेश करती है और पानी में भी घुल जाती है।

2000-3000 किमी की ऊंचाई पर ऊपरी सीमा धीरे-धीरे बाहरी अंतरिक्ष में चली जाती है।

ऑक्सीजन युक्त वातावरण पृथ्वी पर जीवन को संभव बनाता है। वायुमंडलीय ऑक्सीजन का उपयोग मनुष्यों, जानवरों और पौधों द्वारा सांस लेने की प्रक्रिया में किया जाता है।

यदि वायुमण्डल न होता तो पृथ्वी चन्द्रमा के समान शान्त होती। आखिरकार, ध्वनि वायु कणों का कंपन है। आकाश के नीले रंग की व्याख्या इस तथ्य से की जाती है कि सूर्य की किरणें, वातावरण से होकर गुजरती हैं, जैसे कि एक लेंस के माध्यम से, उनके घटक रंगों में विघटित हो जाती हैं। ऐसे में नीले और नीले रंग की किरणें सबसे ज्यादा बिखरती हैं।

वायुमंडल सूर्य से अधिकांश पराबैंगनी विकिरण को बरकरार रखता है, जिसका जीवित जीवों पर हानिकारक प्रभाव पड़ता है। यह पृथ्वी की सतह पर गर्मी भी रखता है, हमारे ग्रह को ठंडा होने से रोकता है।

वायुमंडल की संरचना

वातावरण में कई परतों को अलग किया जा सकता है, घनत्व और घनत्व में भिन्नता (चित्र 1)।

क्षोभ मंडल

क्षोभ मंडल- वायुमंडल की सबसे निचली परत, जिसकी ध्रुवों के ऊपर मोटाई 8-10 किमी, समशीतोष्ण अक्षांशों में - 10-12 किमी और भूमध्य रेखा के ऊपर - 16-18 किमी है।

चावल। 1. पृथ्वी के वायुमंडल की संरचना

क्षोभमंडल में हवा को पृथ्वी की सतह से, यानी जमीन और पानी से गर्म किया जाता है। इसलिए, इस परत में हवा का तापमान प्रत्येक 100 मीटर के लिए औसतन 0.6 डिग्री सेल्सियस की ऊंचाई के साथ कम हो जाता है। क्षोभमंडल की ऊपरी सीमा पर, यह -55 डिग्री सेल्सियस तक पहुंच जाता है। इसी समय, क्षोभमंडल की ऊपरी सीमा पर भूमध्य रेखा के क्षेत्र में, हवा का तापमान -70 ° है, और उत्तरी ध्रुव के क्षेत्र में -65 ° С है।

वायुमंडल के द्रव्यमान का लगभग 80% क्षोभमंडल में केंद्रित है, लगभग सभी जल वाष्प स्थित हैं, गरज, तूफान, बादल और वर्षा होती है, और ऊर्ध्वाधर (संवहन) और क्षैतिज (हवा) वायु गति होती है।

हम कह सकते हैं कि मौसम मुख्य रूप से क्षोभमंडल में बनता है।

स्ट्रैटोस्फियर

स्ट्रैटोस्फियर- क्षोभमंडल के ऊपर 8 से 50 किमी की ऊंचाई पर स्थित वायुमंडल की परत। इस परत में आकाश का रंग बैंगनी दिखाई देता है, जिसकी व्याख्या वायु के विरलण से होती है, जिसके कारण सूर्य की किरणें लगभग बिखरती नहीं हैं।

समताप मंडल में वायुमंडल के द्रव्यमान का 20% भाग होता है। इस परत में हवा दुर्लभ है, व्यावहारिक रूप से कोई जल वाष्प नहीं है, और इसलिए बादल और वर्षा लगभग नहीं बनते हैं। हालाँकि, समताप मंडल में स्थिर वायु धाराएँ देखी जाती हैं, जिनकी गति 300 किमी / घंटा तक पहुँच जाती है।

यह परत केंद्रित है ओजोन(ओजोन स्क्रीन, ओजोनोस्फीयर), एक परत जो पराबैंगनी किरणों को अवशोषित करती है, उन्हें पृथ्वी पर जाने से रोकती है और इस तरह हमारे ग्रह पर रहने वाले जीवों की रक्षा करती है। ओजोन के कारण समताप मंडल की ऊपरी सीमा पर हवा का तापमान -50 से 4-55 डिग्री सेल्सियस के बीच होता है।

मेसोस्फीयर और समताप मंडल के बीच एक संक्रमणकालीन क्षेत्र है - समताप मंडल।

मीसोस्फीयर

मीसोस्फीयर- 50-80 किमी की ऊंचाई पर स्थित वायुमंडल की एक परत। यहां हवा का घनत्व पृथ्वी की सतह से 200 गुना कम है। मध्यमंडल में आकाश का रंग काला दिखाई देता है, दिन के समय तारे दिखाई देते हैं। हवा का तापमान -75 (-90)°С तक गिर जाता है।

80 किमी की ऊंचाई पर शुरू होता है बाह्य वायुमंडल।इस परत में हवा का तापमान 250 मीटर की ऊंचाई तक तेजी से बढ़ता है, और फिर स्थिर हो जाता है: 150 किमी की ऊंचाई पर यह 220-240 डिग्री सेल्सियस तक पहुंच जाता है; 500-600 किमी की ऊंचाई पर यह 1500 डिग्री सेल्सियस से अधिक है।

मेसोस्फीयर और थर्मोस्फीयर में, कॉस्मिक किरणों की क्रिया के तहत, गैस के अणु परमाणुओं के आवेशित (आयनित) कणों में टूट जाते हैं, इसलिए वायुमंडल के इस हिस्से को कहा जाता है योण क्षेत्र- 50 से 1000 किमी की ऊंचाई पर स्थित बहुत दुर्लभ हवा की एक परत, जिसमें मुख्य रूप से आयनित ऑक्सीजन परमाणु, नाइट्रिक ऑक्साइड अणु और मुक्त इलेक्ट्रॉन होते हैं। इस परत की विशेषता उच्च विद्युतीकरण है, और लंबी और मध्यम रेडियो तरंगें इससे परावर्तित होती हैं, जैसे कि दर्पण से।

आयनमंडल में, अरोरा उत्पन्न होते हैं - सूर्य से उड़ने वाले विद्युत आवेशित कणों के प्रभाव में दुर्लभ गैसों की चमक - और चुंबकीय क्षेत्र में तेज उतार-चढ़ाव देखे जाते हैं।

बहिर्मंडल

बहिर्मंडल- वायुमंडल की बाहरी परत, 1000 किमी से ऊपर स्थित है। इस परत को प्रकीर्णन क्षेत्र भी कहा जाता है, क्योंकि गैस के कण यहां तेज गति से चलते हैं और बाहरी अंतरिक्ष में बिखर सकते हैं।

वायुमंडल की संरचना

वायुमंडल नाइट्रोजन (78.08%), ऑक्सीजन (20.95%), कार्बन डाइऑक्साइड (0.03%), आर्गन (0.93%), हीलियम, नियॉन, क्सीनन, क्रिप्टन (0.01%) की एक छोटी मात्रा से युक्त गैसों का मिश्रण है। ओजोन और अन्य गैसें, लेकिन उनकी सामग्री नगण्य है (तालिका 1)। आधुनिक रचनापृथ्वी की हवा एक सौ मिलियन से अधिक वर्ष पहले स्थापित की गई थी, लेकिन मानव उत्पादन गतिविधि में तेजी से वृद्धि ने फिर भी इसके परिवर्तन को जन्म दिया। वर्तमान में, CO2 की मात्रा में लगभग 10-12% की वृद्धि हुई है।

वातावरण बनाने वाली गैसें विभिन्न कार्यात्मक भूमिकाएँ निभाती हैं। हालांकि, इन गैसों का मुख्य महत्व मुख्य रूप से इस तथ्य से निर्धारित होता है कि वे बहुत दृढ़ता से उज्ज्वल ऊर्जा को अवशोषित करते हैं और इस प्रकार एक महत्वपूर्ण प्रभाव डालते हैं तापमान व्यवस्थापृथ्वी की सतह और वायुमंडल।

तालिका एक। रासायनिक संरचनापृथ्वी की सतह के पास शुष्क वायुमंडलीय हवा

वॉल्यूम एकाग्रता। %

आणविक भार, इकाइयाँ

ऑक्सीजन

कार्बन डाइआक्साइड

नाइट्रस ऑक्साइड

0 से 0.00001

सल्फर डाइऑक्साइड

गर्मियों में 0 से 0.000007 तक;

सर्दियों में 0 से 0.00002

0 से 0.00002 . तक

46,0055/17,03061

एज़ोग डाइऑक्साइड

कार्बन मोनोआक्साइड

नाइट्रोजन,वातावरण में सबसे आम गैस, रासायनिक रूप से कम सक्रिय।

ऑक्सीजननाइट्रोजन के विपरीत, रासायनिक रूप से बहुत सक्रिय तत्व है। ऑक्सीजन का विशिष्ट कार्य ऑक्सीकरण है कार्बनिक पदार्थज्वालामुखियों द्वारा वायुमंडल में उत्सर्जित विषमपोषी जीव, चट्टानें और अंडरऑक्सीडाइज्ड गैसें। ऑक्सीजन के बिना, मृत कार्बनिक पदार्थों का अपघटन नहीं होगा।

वातावरण में कार्बन डाइऑक्साइड की भूमिका असाधारण रूप से महान है। यह दहन, जीवित जीवों के श्वसन, क्षय की प्रक्रियाओं के परिणामस्वरूप वातावरण में प्रवेश करता है और सबसे पहले, मुख्य है निर्माण सामग्रीप्रकाश संश्लेषण के दौरान कार्बनिक पदार्थ बनाने के लिए। इसके अलावा, शॉर्ट-वेव सौर विकिरण को प्रसारित करने और थर्मल लॉन्ग-वेव विकिरण के हिस्से को अवशोषित करने के लिए कार्बन डाइऑक्साइड की संपत्ति का बहुत महत्व है, जो तथाकथित ग्रीनहाउस प्रभाव पैदा करेगा, जिसकी चर्चा नीचे की जाएगी।

वायुमंडलीय प्रक्रियाओं पर प्रभाव, विशेष रूप से समताप मंडल के ऊष्मीय शासन पर, द्वारा भी लगाया जाता है ओजोन।यह गैस सौर पराबैंगनी विकिरण, और अवशोषण के प्राकृतिक अवशोषक के रूप में कार्य करती है सौर विकिरणगर्म हवा की ओर जाता है। वायुमंडल में कुल ओजोन सामग्री का औसत मासिक मान क्षेत्र के अक्षांश और मौसम के आधार पर 0.23-0.52 सेमी (यह जमीन के दबाव और तापमान पर ओजोन परत की मोटाई है) के आधार पर भिन्न होता है। भूमध्य रेखा से ध्रुवों तक ओजोन की मात्रा में वृद्धि हुई है और पतझड़ में न्यूनतम और वसंत में अधिकतम के साथ वार्षिक भिन्नता है।

वातावरण की एक विशिष्ट संपत्ति को यह तथ्य कहा जा सकता है कि मुख्य गैसों (नाइट्रोजन, ऑक्सीजन, आर्गन) की सामग्री ऊंचाई के साथ थोड़ा बदल जाती है: वातावरण में 65 किमी की ऊंचाई पर, नाइट्रोजन की सामग्री 86%, ऑक्सीजन - 19, आर्गन - 0.91, 95 किमी की ऊँचाई पर - नाइट्रोजन 77, ऑक्सीजन - 21.3, आर्गन - 0.82%। इसके मिश्रण से वायुमंडलीय वायु के ऊर्ध्व तथा क्षैतिज संघटन की स्थिरता बनी रहती है।

गैसों के अलावा, वायु में होता है भापतथा ठोस कणों।उत्तरार्द्ध में प्राकृतिक और कृत्रिम (मानवजनित) दोनों मूल हो सकते हैं। ये फूल पराग, छोटे नमक क्रिस्टल, सड़क की धूल, एरोसोल अशुद्धियाँ हैं। जब सूरज की किरणें खिड़की में प्रवेश करती हैं, तो उन्हें नग्न आंखों से देखा जा सकता है।

शहरों और बड़े औद्योगिक केंद्रों की हवा में विशेष रूप से कई पार्टिकुलेट मैटर हैं, जहां हानिकारक गैसों के उत्सर्जन और ईंधन के दहन के दौरान बनने वाली उनकी अशुद्धियों को एरोसोल में जोड़ा जाता है।

वायुमंडल में एरोसोल की सांद्रता हवा की पारदर्शिता को निर्धारित करती है, जो पृथ्वी की सतह तक पहुंचने वाले सौर विकिरण को प्रभावित करती है। सबसे बड़े एरोसोल संघनन नाभिक हैं (अक्षांश से। संघनन- संघनन, मोटा होना) - जल वाष्प को पानी की बूंदों में बदलने में योगदान देता है।

जल वाष्प का मूल्य मुख्य रूप से इस तथ्य से निर्धारित होता है कि यह पृथ्वी की सतह के दीर्घ-तरंग तापीय विकिरण में देरी करता है; बड़े और छोटे नमी चक्रों की मुख्य कड़ी का प्रतिनिधित्व करता है; पानी के बिस्तर संघनित होने पर हवा का तापमान बढ़ाता है।

वायुमंडल में जलवाष्प की मात्रा समय और स्थान के अनुसार बदलती रहती है। इस प्रकार, पृथ्वी की सतह के पास जल वाष्प की सांद्रता उष्णकटिबंधीय में 3% से लेकर अंटार्कटिका में 2-10 (15)% तक होती है।

समशीतोष्ण अक्षांशों में वायुमंडल के ऊर्ध्वाधर स्तंभ में जल वाष्प की औसत सामग्री लगभग 1.6-1.7 सेमी (संघनित जल वाष्प की परत में इतनी मोटाई होगी)। वायुमंडल की विभिन्न परतों में जल वाष्प के बारे में जानकारी विरोधाभासी है। उदाहरण के लिए, यह मान लिया गया था कि 20 से 30 किमी की ऊंचाई पर, विशिष्ट आर्द्रता ऊंचाई के साथ दृढ़ता से बढ़ जाती है। हालांकि, बाद के माप समताप मंडल की अधिक शुष्कता का संकेत देते हैं। जाहिर है, समताप मंडल में विशिष्ट आर्द्रता ऊंचाई पर बहुत कम निर्भर करती है और मात्रा 2-4 मिलीग्राम/किलोग्राम होती है।

क्षोभमंडल में जल वाष्प सामग्री की परिवर्तनशीलता वाष्पीकरण, संघनन और क्षैतिज परिवहन की बातचीत से निर्धारित होती है। जलवाष्प के संघनन के परिणामस्वरूप बादल बनते हैं और वर्षा, ओलावृष्टि और हिमपात के रूप में अवक्षेपण होता है।

पानी के चरण संक्रमण की प्रक्रियाएं मुख्य रूप से क्षोभमंडल में आगे बढ़ती हैं, यही कारण है कि समताप मंडल में बादल (20-30 किमी की ऊंचाई पर) और मेसोस्फीयर (मेसोपॉज के पास), जिन्हें मदर-ऑफ-पर्ल और सिल्वर कहा जाता है, अपेक्षाकृत कम ही देखे जाते हैं। , जबकि ट्रोपोस्फेरिक बादल अक्सर पूरी पृथ्वी की सतह के लगभग 50% को कवर करते हैं।

हवा में निहित जल वाष्प की मात्रा हवा के तापमान पर निर्भर करती है।

-20 डिग्री सेल्सियस के तापमान पर हवा के 1 मीटर 3 में 1 ग्राम से अधिक पानी नहीं हो सकता है; 0 डिग्री सेल्सियस पर - 5 ग्राम से अधिक नहीं; +10 डिग्री सेल्सियस पर - 9 ग्राम से अधिक नहीं; +30 डिग्री सेल्सियस पर - 30 ग्राम से अधिक पानी नहीं।

निष्कर्ष:हवा का तापमान जितना अधिक होगा, उसमें उतनी ही अधिक जलवाष्प हो सकती है।

हवा हो सकती है धनीतथा संतृप्त नहींभाप। तो, अगर +30 डिग्री सेल्सियस के तापमान पर 1 मीटर 3 हवा में 15 ग्राम जल वाष्प होता है, तो हवा जल वाष्प से संतृप्त नहीं होती है; अगर 30 ग्राम - संतृप्त।

पूर्ण आर्द्रता- यह वायु के 1 मीटर 3 में निहित जल वाष्प की मात्रा है। इसे ग्राम में व्यक्त किया जाता है। उदाहरण के लिए, यदि वे कहते हैं "पूर्ण आर्द्रता 15 है", तो इसका मतलब है कि 1 एमएल में 15 ग्राम जल वाष्प होता है।

सापेक्षिक आर्द्रता- यह 1 मीटर 3 वायु में जल वाष्प की वास्तविक सामग्री का अनुपात (प्रतिशत में) जल वाष्प की मात्रा का है जो किसी दिए गए तापमान पर 1 मीटर एल में समाहित हो सकता है। उदाहरण के लिए, यदि रेडियो पर एक मौसम रिपोर्ट प्रसारित की जाती है कि सापेक्ष आर्द्रता 70% है, तो इसका मतलब है कि हवा में 70% जल वाष्प होता है जिसे वह किसी दिए गए तापमान पर धारण कर सकता है।

हवा की सापेक्षिक आर्द्रता जितनी अधिक होगी, t. हवा संतृप्ति के जितनी करीब होगी, उसके गिरने की संभावना उतनी ही अधिक होगी।

भूमध्यरेखीय क्षेत्र में हमेशा उच्च (90% तक) सापेक्ष आर्द्रता देखी जाती है, क्योंकि पूरे वर्ष उच्च वायु तापमान होता है और महासागरों की सतह से एक बड़ा वाष्पीकरण होता है। समान उच्च सापेक्ष आर्द्रता ध्रुवीय क्षेत्रों में होती है, लेकिन केवल इसलिए कि कम तापमान पर जल वाष्प की थोड़ी मात्रा भी हवा को संतृप्त या संतृप्ति के करीब बनाती है। समशीतोष्ण अक्षांशों में, सापेक्ष आर्द्रता मौसमी रूप से भिन्न होती है - यह सर्दियों में अधिक और गर्मियों में कम होती है।

रेगिस्तान में हवा की सापेक्षिक आर्द्रता विशेष रूप से कम होती है: हवा के 1 मीटर 1 में किसी दिए गए तापमान पर संभव जल वाष्प की मात्रा से दो से तीन गुना कम होता है।

सापेक्षिक आर्द्रता को मापने के लिए, एक हाइग्रोमीटर का उपयोग किया जाता है (ग्रीक हाइग्रोस से - गीला और मेट्रेको - मैं मापता हूं)।

ठंडा होने पर, संतृप्त हवा अपने आप में जल वाष्प की समान मात्रा को बरकरार नहीं रख सकती है, यह कोहरे की बूंदों में बदलकर गाढ़ा (संघनित) हो जाती है। गर्मियों में एक स्पष्ट ठंडी रात में कोहरा देखा जा सकता है।

बादलों- यह वही कोहरा है, केवल यह पृथ्वी की सतह पर नहीं, बल्कि एक निश्चित ऊंचाई पर बनता है। जैसे ही हवा ऊपर उठती है, वह ठंडी हो जाती है और उसमें मौजूद जलवाष्प संघनित हो जाता है। परिणामस्वरूप पानी की छोटी-छोटी बूंदें बादल बनाती हैं।

बादलों के निर्माण में शामिल कणिका तत्वक्षोभमंडल में निलंबित।

बादल हो सकते हैं अलग आकार, जो उनके गठन की शर्तों पर निर्भर करता है (तालिका 14)।

सबसे कम और सबसे भारी बादल स्ट्रैटस हैं। वे पृथ्वी की सतह से 2 किमी की ऊंचाई पर स्थित हैं। 2 से 8 किमी की ऊंचाई पर अधिक सुरम्य मेघपुंज बादल देखे जा सकते हैं। सबसे ऊंचे और सबसे हल्के सिरस बादल हैं। वे पृथ्वी की सतह से 8 से 18 किमी की ऊंचाई पर स्थित हैं।

परिवारों

बादलों के प्रकार

दिखावट

ए ऊपरी बादल - 6 किमी . से ऊपर

मैं पिनाट

धागे जैसा, रेशेदार, सफेद

द्वितीय. पक्षाभ कपासी बादल

छोटे गुच्छे और कर्ल की परतें और लकीरें, सफेद

III. सिरोस्टरटस

पारदर्शी सफेद घूंघट

बी मध्यम परत के बादल - 2 किमी . से ऊपर

चतुर्थ। आल्टोक्यूम्यलस

सफेद और भूरे रंग की परतें और लकीरें

वी. आल्टोस्ट्रेटस

दूधिया धूसर रंग का चिकना घूंघट

बी निचले बादल - 2 किमी . तक

VI. निंबोस्ट्रेट्स

ठोस आकारहीन ग्रे परत

सातवीं। स्ट्रेटोक्यूमलस

अपारदर्शी परतें और धूसर रंग की लकीरें

आठवीं। बहुस्तरीय

प्रबुद्ध ग्रे घूंघट

डी। ऊर्ध्वाधर विकास के बादल - निचले से ऊपरी स्तर तक

IX. क्यूम्यलस

क्लब और गुंबद चमकीले सफेद, हवा में फटे किनारों के साथ

एक्स क्यूम्यलोनिम्बस

गहरे लेड रंग के शक्तिशाली मेघपुंज के आकार का द्रव्यमान

वायुमंडलीय सुरक्षा

मुख्य स्रोत हैं औद्योगिक उद्यमऔर कारें। पर बड़े शहरमुख्य परिवहन मार्गों में गैस संदूषण की समस्या बहुत विकट है। इसीलिए बहुतों में बड़े शहरहमारे देश सहित दुनिया भर में, कार निकास गैसों की विषाक्तता के पर्यावरण नियंत्रण की शुरुआत की। विशेषज्ञों के अनुसार, हवा में धुआं और धूल पृथ्वी की सतह पर सौर ऊर्जा के प्रवाह को आधा कर सकते हैं, जिससे प्राकृतिक परिस्थितियों में बदलाव आएगा।

पृथ्वी का वातावरण

वायुमंडल(से। अन्य यूनानीμός - भाप और αῖρα - गेंद) - गैससीप ( भूमंडल) ग्रह के आसपास धरती. इसकी भीतरी सतह ढकी हुई है हीड्रास्फीयरऔर आंशिक रूप से भौंकना, बाहरी एक बाहरी अंतरिक्ष के निकट-पृथ्वी भाग पर सीमा।

वातावरण का अध्ययन करने वाले भौतिकी और रसायन विज्ञान के वर्गों की समग्रता को सामान्यतः कहा जाता है वायुमंडलीय भौतिकी. माहौल तय करता है मौसमपृथ्वी की सतह पर, मौसम के अध्ययन में लगा हुआ है अंतरिक्ष-विज्ञान, और लंबी अवधि के बदलाव जलवायु - जलवायुविज्ञानशास्र.

वायुमंडल की संरचना

वायुमंडल की संरचना

क्षोभ मंडल

इसकी ऊपरी सीमा ध्रुवीय में 8-10 किमी, समशीतोष्ण में 10-12 किमी और उष्णकटिबंधीय अक्षांशों में 16-18 किमी की ऊंचाई पर है; गर्मियों की तुलना में सर्दियों में कम। वायुमंडल की निचली, मुख्य परत। इसमें वायुमंडलीय वायु के कुल द्रव्यमान का 80% से अधिक और वायुमंडल में मौजूद सभी जल वाष्प का लगभग 90% शामिल है। क्षोभमंडल में अत्यधिक विकसित अशांतितथा कंवेक्शन, उठना बादलों, विकास करना चक्रवाततथा प्रतिचक्रवात. औसत ऊर्ध्वाधर के साथ बढ़ती ऊंचाई के साथ तापमान घटता है ढाल 0.65°/100 वर्ग मीटर

पृथ्वी की सतह पर "सामान्य परिस्थितियों" के लिए लिया जाता है: घनत्व 1.2 किग्रा/एम3, बैरोमीटर का दबाव 101.35 केपीए, तापमान प्लस 20 डिग्री सेल्सियस और सापेक्षिक आर्द्रता 50%। इन सशर्त संकेतकों का विशुद्ध रूप से इंजीनियरिंग मूल्य है।

स्ट्रैटोस्फियर

11 से 50 किमी की ऊंचाई पर स्थित वायुमंडल की परत। 11-25 किमी परत (समताप मंडल की निचली परत) में तापमान में मामूली बदलाव और 25-40 किमी परत में -56.5 से 0.8 ° तक इसकी वृद्धि विशेषता है। से(ऊपरी समताप मंडल या क्षेत्र व्युत्क्रम) लगभग 40 किमी की ऊंचाई पर लगभग 273 के (लगभग 0 डिग्री सेल्सियस) के मान तक पहुंचने के बाद, तापमान लगभग 55 किमी की ऊंचाई तक स्थिर रहता है। स्थिर तापमान वाले इस क्षेत्र को कहा जाता है स्ट्रैटोपॉज़और समताप मंडल और . के बीच की सीमा है मीसोस्फीयर.

स्ट्रैटोपॉज़

समताप मंडल और मध्यमंडल के बीच वायुमंडल की सीमा परत। ऊर्ध्वाधर तापमान वितरण (लगभग 0 डिग्री सेल्सियस) में अधिकतम होता है।

मीसोस्फीयर

पृथ्वी का वातावरण

मीसोस्फीयर 50 किमी की ऊंचाई से शुरू होती है और 80-90 किमी तक फैली हुई है। तापमान (0.25-0.3)°/100 मीटर की औसत ऊर्ध्वाधर ढाल के साथ ऊंचाई के साथ घटता है। मुख्य ऊर्जा प्रक्रिया उज्ज्वल गर्मी हस्तांतरण है। जटिल फोटोकैमिकल प्रक्रियाएं शामिल हैं मुक्त कणकंपन से उत्तेजित अणु आदि वातावरण की चमक को निर्धारित करते हैं।

मेसोपॉज़

मेसोस्फीयर और थर्मोस्फीयर के बीच संक्रमणकालीन परत। ऊर्ध्वाधर तापमान वितरण (लगभग -90 डिग्री सेल्सियस) में न्यूनतम है।

कर्मन रेखा

समुद्र तल से ऊँचाई, जिसे पारंपरिक रूप से पृथ्वी के वायुमंडल और अंतरिक्ष के बीच की सीमा के रूप में स्वीकार किया जाता है।

बाह्य वायुमंडल

मुख्य लेख: बाह्य वायुमंडल

ऊपरी सीमा लगभग 800 किमी है। तापमान 200-300 किमी की ऊँचाई तक बढ़ जाता है, जहाँ यह 1500 K के क्रम के मूल्यों तक पहुँच जाता है, जिसके बाद यह ऊँचाई तक लगभग स्थिर रहता है। पराबैंगनी और एक्स-रे सौर विकिरण और ब्रह्मांडीय विकिरण के प्रभाव में, वायु आयनीकरण होता है (" औरोरस") - मुख्य क्षेत्रों योण क्षेत्रथर्मोस्फीयर के अंदर झूठ। 300 किमी से ऊपर की ऊंचाई पर, परमाणु ऑक्सीजन प्रबल होती है।

120 किमी . की ऊंचाई तक वायुमंडलीय परतें

एक्सोस्फीयर (बिखरने वाला क्षेत्र)

बहिर्मंडल- प्रकीर्णन क्षेत्र, थर्मोस्फीयर का बाहरी भाग, 700 किमी से ऊपर स्थित है। एक्सोस्फीयर में गैस बहुत दुर्लभ होती है, और इसलिए इसके कण इंटरप्लेनेटरी स्पेस में लीक हो जाते हैं ( अपव्यय).

100 किमी की ऊंचाई तक, वातावरण गैसों का एक सजातीय, अच्छी तरह मिश्रित मिश्रण है। उच्च परतों में, ऊंचाई में गैसों का वितरण उनके आणविक द्रव्यमान पर निर्भर करता है, भारी गैसों की सांद्रता पृथ्वी की सतह से दूरी के साथ तेजी से घटती है। गैस घनत्व में कमी के कारण समताप मंडल में तापमान 0°C से गिरकर मध्यमंडल में -110°C हो जाता है। हालांकि, 200-250 किमी की ऊंचाई पर अलग-अलग कणों की गतिज ऊर्जा ~ 1500 डिग्री सेल्सियस के तापमान से मेल खाती है। 200 किमी से ऊपर, तापमान और गैस घनत्व में महत्वपूर्ण उतार-चढ़ाव समय और स्थान में देखे जाते हैं।

लगभग 2000-3000 किमी की ऊंचाई पर, एक्सोस्फीयर धीरे-धीरे तथाकथित . में गुजरता है अंतरिक्ष वैक्यूम के पास, जो अंतरग्रहीय गैस के अत्यधिक दुर्लभ कणों से भरा होता है, मुख्यतः हाइड्रोजन परमाणु। लेकिन यह गैस अंतरग्रहीय पदार्थ का ही हिस्सा है। दूसरा भाग धूमकेतु और उल्कापिंड मूल के धूल जैसे कणों से बना है। अत्यंत दुर्लभ धूल जैसे कणों के अलावा, सौर और गांगेय मूल के विद्युत चुम्बकीय और कणिका विकिरण इस अंतरिक्ष में प्रवेश करते हैं।

क्षोभमंडल वायुमंडल के द्रव्यमान का लगभग 80% हिस्सा है, समताप मंडल लगभग 20% है; मेसोस्फीयर का द्रव्यमान 0.3% से अधिक नहीं है, थर्मोस्फीयर वायुमंडल के कुल द्रव्यमान का 0.05% से कम है। वायुमंडल में विद्युत गुणों के आधार पर, न्यूट्रोस्फीयर और आयनोस्फीयर को प्रतिष्ठित किया जाता है। वर्तमान में यह माना जाता है कि वातावरण 2000-3000 किमी की ऊंचाई तक फैला हुआ है।

वायुमंडल में गैस की संरचना के आधार पर, वे उत्सर्जित करते हैं होमोस्फीयरतथा हेटरोस्फीयर. हेटरोस्फीयर - यह एक ऐसा क्षेत्र है जहां गुरुत्वाकर्षण गैसों के पृथक्करण को प्रभावित करता है, क्योंकि इतनी ऊंचाई पर उनका मिश्रण नगण्य होता है। इसलिए हेटरोस्फीयर की परिवर्तनशील संरचना का अनुसरण करता है। इसके नीचे वायुमंडल का एक मिश्रित, सजातीय हिस्सा है, जिसे कहा जाता है होमोस्फीयर. इन परतों के बीच की सीमा कहलाती है टर्बोपॉज़, यह लगभग 120 किमी की ऊंचाई पर स्थित है।

भौतिक गुण

वायुमंडल की मोटाई पृथ्वी की सतह से लगभग 2000 - 3000 किमी दूर है। कुल द्रव्यमान वायु- (5.1-5.3) × 10 18 किलो। दाढ़ जनस्वच्छ शुष्क हवा 28.966 है। दबावसमुद्र तल पर 0 डिग्री सेल्सियस पर 101.325 किलो पास्कल; क्रांतिक तापमान-140.7 डिग्री सेल्सियस; महत्वपूर्ण दबाव 3.7 एमपीए; सी पी 1.0048×10 3 जे/(किलो के) (0 डिग्री सेल्सियस पर), सी वी 0.7159×10 3 जे/(किलो के) (0 डिग्री सेल्सियस पर)। पानी में हवा की घुलनशीलता 0 डिग्री सेल्सियस - 0.036%, 25 डिग्री सेल्सियस - 0.22% पर।

वातावरण के शारीरिक और अन्य गुण

पहले से ही समुद्र तल से 5 किमी की ऊंचाई पर, एक अप्रशिक्षित व्यक्ति विकसित होता है ऑक्सीजन भुखमरीऔर अनुकूलन के बिना, मानव प्रदर्शन काफी कम हो जाता है। यहीं पर वातावरण का शारीरिक क्षेत्र समाप्त होता है। 15 किमी की ऊंचाई पर मानव सांस लेना असंभव हो जाता है, हालांकि लगभग 115 किमी तक वातावरण में ऑक्सीजन होती है।

वातावरण हमें वह ऑक्सीजन प्रदान करता है जिसकी हमें सांस लेने की आवश्यकता होती है। हालाँकि, वायुमंडल के कुल दबाव में कमी के कारण, जैसे-जैसे कोई ऊँचाई पर जाता है, ऑक्सीजन का आंशिक दबाव भी उसी के अनुसार कम होता जाता है।

मानव फेफड़ों में लगातार लगभग 3 लीटर वायुकोशीय वायु होती है। आंशिक दबावसामान्य वायुमंडलीय दाब पर वायुकोशीय वायु में ऑक्सीजन 110 mm Hg होती है। कला।, कार्बन डाइऑक्साइड का दबाव - 40 मिमी एचजी। कला।, और जल वाष्प - 47 मिमी एचजी। कला। बढ़ती ऊंचाई के साथ, ऑक्सीजन का दबाव कम हो जाता है, और फेफड़ों में जल वाष्प और कार्बन डाइऑक्साइड का कुल दबाव लगभग स्थिर रहता है - लगभग 87 मिमी एचजी। कला। जब आसपास की हवा का दबाव इस मान के बराबर हो जाएगा तो फेफड़ों में ऑक्सीजन का प्रवाह पूरी तरह से बंद हो जाएगा।

लगभग 19-20 किमी की ऊंचाई पर, वायुमंडलीय दबाव 47 मिमी एचजी तक गिर जाता है। कला। इसलिए इस ऊंचाई पर मानव शरीर में पानी और बीचवाला द्रव उबलने लगता है। इन ऊंचाईयों पर दबाव वाले केबिन के बाहर, मृत्यु लगभग तुरंत हो जाती है। इस प्रकार, मानव शरीर क्रिया विज्ञान के दृष्टिकोण से, "अंतरिक्ष" पहले से ही 15-19 किमी की ऊंचाई पर शुरू होता है।

हवा की घनी परतें - क्षोभमंडल और समताप मंडल - हमें विकिरण के हानिकारक प्रभावों से बचाते हैं। हवा के पर्याप्त विरलीकरण के साथ, 36 किमी से अधिक की ऊंचाई पर, आयनीकरण द्वारा शरीर पर एक तीव्र प्रभाव डाला जाता है। विकिरण- प्राथमिक ब्रह्मांडीय किरणें; 40 किमी से अधिक की ऊंचाई पर, सौर स्पेक्ट्रम का पराबैंगनी भाग, जो मनुष्यों के लिए खतरनाक है, संचालित होता है।

जैसे-जैसे हम पृथ्वी की सतह से अधिक ऊँचाई तक बढ़ते हैं, धीरे-धीरे कमजोर होते जाते हैं, और फिर पूरी तरह से गायब हो जाते हैं, ऐसी घटनाएँ जो हमें परिचित हैं, वातावरण की निचली परतों में देखी जाती हैं, जैसे ध्वनि का प्रसार, वायुगतिकीय का उद्भव भारोत्तोलन बलऔर प्रतिरोध, गर्मी हस्तांतरण कंवेक्शनऔर आदि।

हवा की दुर्लभ परतों में, प्रसार ध्वनिअसंभव हो जाता है। 60-90 किमी की ऊंचाई तक, नियंत्रित वायुगतिकीय उड़ान के लिए वायु प्रतिरोध और लिफ्ट का उपयोग करना अभी भी संभव है। लेकिन 100-130 किमी की ऊंचाई से शुरू होकर, हर पायलट से परिचित अवधारणाएँ नंबर एमतथा ध्वनि अवरोधअपना अर्थ खो देते हैं, सशर्त पास हो जाते हैं कर्मन रेखाजिसके आगे विशुद्ध रूप से बैलिस्टिक उड़ान का क्षेत्र शुरू होता है, जिसे केवल प्रतिक्रियाशील बलों का उपयोग करके नियंत्रित किया जा सकता है।

100 किमी से ऊपर की ऊंचाई पर, वातावरण एक और उल्लेखनीय संपत्ति से वंचित है - संवहन द्वारा थर्मल ऊर्जा को अवशोषित करने, संचालित करने और स्थानांतरित करने की क्षमता (यानी, वायु मिश्रण के माध्यम से)। इसका मतलब यह है कि कक्षीय अंतरिक्ष स्टेशन के उपकरण के विभिन्न तत्वों को बाहर से ठंडा नहीं किया जा सकेगा, जैसा कि आमतौर पर एक हवाई जहाज पर किया जाता है - एयर जेट और एयर रेडिएटर की मदद से। इतनी ऊंचाई पर, जैसा कि सामान्य रूप से अंतरिक्ष में होता है, गर्मी को स्थानांतरित करने का एकमात्र तरीका है ऊष्मीय विकिरण.

वायुमंडल की संरचना

शुष्क हवा की संरचना

पृथ्वी के वायुमंडल में मुख्य रूप से गैसें और विभिन्न अशुद्धियाँ (धूल, पानी की बूंदें, बर्फ के क्रिस्टल, समुद्री लवण, दहन उत्पाद) शामिल हैं।

पानी (एच 2 ओ) और कार्बन डाइऑक्साइड (सीओ 2) के अपवाद के साथ, वातावरण बनाने वाली गैसों की एकाग्रता लगभग स्थिर है।

शुष्क हवा की संरचना

नाइट्रोजन

ऑक्सीजन

आर्गन

पानी

कार्बन डाइआक्साइड

नीयन

हीलियम

मीथेन

क्रीप्टोण

हाइड्रोजन

क्सीनन

नाइट्रस ऑक्साइड

तालिका में दर्शाई गई गैसों के अलावा, वायुमंडल में SO 2, NH 3, CO, ओजोन, हाइड्रोकार्बन, एचसीएल, एचएफ, जोड़े एचजी, मैं 2 , और नाऔर कई अन्य गैसें मामूली मात्रा में। क्षोभमंडल में लगातार बड़ी संख्या में निलंबित ठोस और तरल कण होते हैं ( स्प्रे कैन).

वायुमंडल के निर्माण का इतिहास

सबसे सामान्य सिद्धांत के अनुसार, समय के साथ पृथ्वी का वायुमंडल चार अलग-अलग रचनाओं में रहा है। प्रारंभ में, इसमें हल्की गैसें शामिल थीं ( हाइड्रोजनतथा हीलियम) इंटरप्लेनेटरी स्पेस से कैप्चर किया गया। यह तथाकथित प्राथमिक वातावरण(लगभग चार अरब साल पहले)। अगले चरण में, सक्रिय ज्वालामुखीय गतिविधि के कारण हाइड्रोजन के अलावा अन्य गैसों के साथ वातावरण की संतृप्ति हुई (कार्बन डाइऑक्साइड, अमोनिया, भाप) इस तरह से माध्यमिक वातावरण(हमारे दिनों से लगभग तीन अरब साल पहले)। यह माहौल सुकून देने वाला था। इसके अलावा, वायुमंडल के निर्माण की प्रक्रिया निम्नलिखित कारकों द्वारा निर्धारित की गई थी:

    में प्रकाश गैसों (हाइड्रोजन और हीलियम) का रिसाव ग्रहों के बीच का स्थान;

    पराबैंगनी विकिरण, बिजली के निर्वहन और कुछ अन्य कारकों के प्रभाव में वातावरण में होने वाली रासायनिक प्रतिक्रियाएं।

धीरे-धीरे, इन कारकों के कारण गठन हुआ तृतीयक वातावरण, हाइड्रोजन की बहुत कम सामग्री और नाइट्रोजन और कार्बन डाइऑक्साइड की बहुत अधिक सामग्री (अमोनिया और हाइड्रोकार्बन से रासायनिक प्रतिक्रियाओं के परिणामस्वरूप गठित) की विशेषता है।

नाइट्रोजन

एन 2 की एक बड़ी मात्रा का गठन आणविक ओ 2 द्वारा अमोनिया-हाइड्रोजन वातावरण के ऑक्सीकरण के कारण होता है, जो 3 अरब साल पहले प्रकाश संश्लेषण के परिणामस्वरूप ग्रह की सतह से आना शुरू हुआ था। नाइट्रेट्स और अन्य नाइट्रोजन युक्त यौगिकों के विकृतीकरण के परिणामस्वरूप एन 2 भी वायुमंडल में छोड़ा जाता है। ऊपरी वायुमंडल में नाइट्रोजन को ओजोन द्वारा NO में ऑक्सीकृत किया जाता है।

नाइट्रोजन एन 2 केवल विशिष्ट परिस्थितियों में प्रतिक्रियाओं में प्रवेश करता है (उदाहरण के लिए, बिजली के निर्वहन के दौरान)। विद्युत निर्वहन के दौरान ओजोन द्वारा आणविक नाइट्रोजन के ऑक्सीकरण का उपयोग नाइट्रोजन उर्वरकों के औद्योगिक उत्पादन में किया जाता है। इसे कम ऊर्जा खपत के साथ ऑक्सीकरण किया जा सकता है और जैविक रूप से सक्रिय रूप में परिवर्तित किया जा सकता है सायनोबैक्टीरिया (नीला-हरा शैवाल)और नोड्यूल बैक्टीरिया जो राइजोबियल बनाते हैं सिम्बायोसिससाथ फलियांपौधे, तथाकथित। हरी खाद।

ऑक्सीजन

के आगमन के साथ वातावरण की संरचना में मौलिक परिवर्तन होने लगा जीवित प्राणी, नतीजतन प्रकाश संश्लेषणऑक्सीजन की रिहाई और कार्बन डाइऑक्साइड के अवशोषण के साथ। प्रारंभ में, ऑक्सीजन कम यौगिकों के ऑक्सीकरण पर खर्च किया गया था - अमोनिया, हाइड्रोकार्बन, ऑक्साइड रूप ग्रंथिइस चरण के अंत में, वातावरण में ऑक्सीजन की मात्रा बढ़ने लगी। धीरे-धीरे, ऑक्सीकरण गुणों वाला एक आधुनिक वातावरण बन गया। चूंकि इससे में होने वाली कई प्रक्रियाओं में गंभीर और अचानक परिवर्तन हुए वायुमंडल, स्थलमंडलतथा बीओस्फिअ, इस घटना को कहा जाता है ऑक्सीजन आपदा.

दौरान फैनेरोज़ोइकवातावरण की संरचना और ऑक्सीजन सामग्री में परिवर्तन हुआ। वे मुख्य रूप से कार्बनिक तलछटी चट्टानों के जमाव की दर से संबंधित हैं। इसलिए, कोयले के संचय की अवधि के दौरान, वातावरण में ऑक्सीजन की मात्रा, जाहिरा तौर पर, आधुनिक स्तर से अधिक हो गई।

कार्बन डाइआक्साइड

वायुमंडल में CO2 की सामग्री ज्वालामुखीय गतिविधि और पृथ्वी के गोले में रासायनिक प्रक्रियाओं पर निर्भर करती है, लेकिन सबसे अधिक - जैवसंश्लेषण की तीव्रता और कार्बनिक पदार्थों के अपघटन पर निर्भर करती है। बीओस्फिअ धरती. ग्रह का लगभग संपूर्ण वर्तमान बायोमास (लगभग 2.4 × 10 12 टन .) ) वायुमंडलीय हवा में निहित कार्बन डाइऑक्साइड, नाइट्रोजन और जल वाष्प के कारण बनता है। दफ़न है सागर, में दलदलोंऔर में जंगलोंकार्बनिक पदार्थ बन जाता है कोयला, तेलतथा प्राकृतिक गैस. (सेमी। कार्बन का भू-रासायनिक चक्र)

उत्कृष्ट गैस

अक्रिय गैसों का स्रोत - आर्गन, हीलियमतथा क्रीप्टोण- ज्वालामुखी विस्फोट और रेडियोधर्मी तत्वों का क्षय। संपूर्ण पृथ्वी और विशेष रूप से वायुमंडल में अंतरिक्ष की तुलना में अक्रिय गैसों की कमी है। ऐसा माना जाता है कि इसका कारण अंतरग्रहीय अंतरिक्ष में गैसों का निरंतर रिसाव है।

वायु प्रदुषण

हाल ही में, वातावरण का विकास किसके द्वारा प्रभावित होना शुरू हुआ? मानव. उनकी गतिविधियों का परिणाम पिछले भूवैज्ञानिक युगों में जमा हाइड्रोकार्बन ईंधन के दहन के कारण वातावरण में कार्बन डाइऑक्साइड की सामग्री में लगातार उल्लेखनीय वृद्धि थी। प्रकाश संश्लेषण के दौरान भारी मात्रा में CO2 का उपभोग किया जाता है और दुनिया के महासागरों द्वारा अवशोषित किया जाता है। यह गैस कार्बोनेट चट्टानों और पौधों और जानवरों की उत्पत्ति के कार्बनिक पदार्थों के अपघटन के साथ-साथ ज्वालामुखी और मानव उत्पादन गतिविधियों के कारण वातावरण में प्रवेश करती है। पिछले 100 वर्षों में, वायुमंडल में CO2 की सामग्री में 10% की वृद्धि हुई है, जिसका मुख्य भाग (360 बिलियन टन) ईंधन के दहन से आता है। यदि ईंधन के दहन की वृद्धि दर जारी रहती है, तो अगले 50-60 वर्षों में वातावरण में CO2 की मात्रा दोगुनी हो जाएगी और इसका परिणाम हो सकता है वैश्विक जलवायु परिवर्तन.

ईंधन का दहन दोनों प्रदूषक गैसों का मुख्य स्रोत है ( इसलिए, ना, इसलिए 2 ) सल्फर डाइऑक्साइड को वायुमंडलीय ऑक्सीजन द्वारा ऑक्सीकृत किया जाता है इसलिए 3 ऊपरी वायुमंडल में, जो बदले में जल वाष्प और अमोनिया के साथ परस्पर क्रिया करता है, और परिणामी सल्फ्यूरिक एसिड (एच 2 इसलिए 4 ) तथा अमोनियम सल्फेट ((NH .) 4 ) 2 इसलिए 4 ) तथाकथित के रूप में पृथ्वी की सतह पर लौटते हैं। अम्ल वर्षा। प्रयोग अंतः दहन इंजिननाइट्रोजन ऑक्साइड, हाइड्रोकार्बन और लेड यौगिकों के साथ महत्वपूर्ण वायु प्रदूषण की ओर जाता है ( टेट्राएथिल लेड Pb (CH .) 3 चौधरी 2 ) 4 ) ).

वायुमंडल का एरोसोल प्रदूषण प्राकृतिक कारणों (ज्वालामुखी विस्फोट, धूल भरी आंधी, समुद्री जल की बूंदों और पौधों के पराग, आदि का प्रवेश) और मानव आर्थिक गतिविधि (अयस्कों और निर्माण सामग्री का खनन, ईंधन दहन, सीमेंट उत्पादन, आदि) के कारण होता है। ।) वायुमंडल में ठोस कणों का बड़े पैमाने पर निष्कासन ग्रह पर जलवायु परिवर्तन के संभावित कारणों में से एक है।

वायुमंडल का सटीक आकार अज्ञात है, क्योंकि इसकी ऊपरी सीमा स्पष्ट रूप से दिखाई नहीं देती है। हालांकि, वायुमंडल की संरचना का पर्याप्त अध्ययन किया गया है ताकि सभी को अंदाजा हो सके कि हमारे ग्रह का गैसीय खोल कैसे व्यवस्थित है।

वायुमंडलीय भौतिकी वैज्ञानिक इसे पृथ्वी के चारों ओर के क्षेत्र के रूप में परिभाषित करते हैं जो ग्रह के साथ घूमता है। एफएआई निम्नलिखित देता है: परिभाषा:

  • अंतरिक्ष और वायुमंडल के बीच की सीमा कर्मण रेखा के साथ चलती है। इसी संगठन की परिभाषा के अनुसार यह रेखा समुद्र तल से 100 किमी की ऊँचाई पर स्थित ऊँचाई है।

इस रेखा के ऊपर जो कुछ भी है वह बाह्य स्थान है। वायुमंडल धीरे-धीरे अंतरग्रहीय अंतरिक्ष में चला जाता है, यही वजह है कि इसके आकार के बारे में अलग-अलग विचार हैं।

वायुमंडल की निचली सीमा के साथ, सब कुछ बहुत सरल है - यह सतह से होकर गुजरता है पृथ्वी की पपड़ीऔर पृथ्वी की जल सतह - जलमंडल। उसी समय, सीमा, कोई कह सकता है, पृथ्वी और पानी की सतहों के साथ विलीन हो जाती है, क्योंकि हवा के कण भी वहां घुल जाते हैं।

वायुमंडल की कौन सी परतें पृथ्वी के आकार में शामिल हैं

दिलचस्प तथ्य: सर्दियों में यह कम होता है, गर्मियों में यह अधिक होता है।

यह इस परत में है कि अशांति, प्रतिचक्रवात और चक्रवात उत्पन्न होते हैं, बादल बनते हैं। यह वह क्षेत्र है जो मौसम के निर्माण के लिए जिम्मेदार है, सभी वायु द्रव्यमान का लगभग 80% इसमें स्थित है।

ट्रोपोपॉज वह परत है जिसमें ऊंचाई के साथ तापमान कम नहीं होता है। ट्रोपोपॉज़ के ऊपर, 11 से ऊपर और 50 किमी तक की ऊँचाई पर स्थित है। समताप मंडल में ओजोन की एक परत होती है, जो ग्रह को पराबैंगनी किरणों से बचाने के लिए जानी जाती है। इस परत में हवा निकलती है, इन्हें विशेषता द्वारा समझाया गया है बैंगनी रंगआकाश। यहां हवा की धाराओं की गति 300 किमी/घंटा तक पहुंच सकती है। समताप मंडल और मेसोस्फीयर के बीच समताप मंडल है - सीमा क्षेत्र, जिसमें तापमान अधिकतम होता है।

अगली परत है। यह 85-90 किलोमीटर की ऊंचाई तक फैला हुआ है। मध्यमंडल में आकाश का रंग काला है, इसलिए तारों को सुबह और दोपहर में भी देखा जा सकता है। सबसे जटिल फोटोकैमिकल प्रक्रियाएं वहां होती हैं, जिसके दौरान वायुमंडलीय चमक होती है।

मेसोस्फीयर और अगली परत के बीच मेसोपॉज़ है। इसे एक संक्रमण परत के रूप में परिभाषित किया जाता है जिसमें न्यूनतम तापमान देखा जाता है। ऊपर, समुद्र तल से 100 किलोमीटर की ऊँचाई पर, कर्मन रेखा है। इस रेखा के ऊपर थर्मोस्फीयर (ऊंचाई सीमा 800 किमी) और एक्सोस्फीयर है, जिसे "फैलाव क्षेत्र" भी कहा जाता है। लगभग 2-3 हजार किलोमीटर की ऊंचाई पर, यह निकट अंतरिक्ष निर्वात में गुजरता है।

यह देखते हुए कि वायुमंडल की ऊपरी परत स्पष्ट रूप से दिखाई नहीं दे रही है, इसके सटीक आकार की गणना नहीं की जा सकती है। इसके अलावा, में विभिन्न देशऐसे संगठन हैं जो अलग अलग रायइस खाते पर। इस बात पे ध्यान दिया जाना चाहिए कि कर्मन रेखासीमा के रूप में देखा जा सकता है पृथ्वी का वातावरणकेवल सशर्त रूप से, क्योंकि विभिन्न स्रोतविभिन्न सीमा मार्करों का उपयोग करें। तो, कुछ स्रोतों में आप जानकारी पा सकते हैं कि ऊपरी सीमा 2500-3000 किमी की ऊंचाई पर गुजरती है।

नासा गणना के लिए 122 किलोमीटर के निशान का उपयोग करता है। बहुत पहले नहीं, प्रयोग किए गए थे जो सीमा को लगभग 118 किमी पर स्थित के रूप में स्पष्ट करते थे।

मौसम विज्ञान, और दीर्घकालिक विविधताओं में लगे - जलवायु विज्ञान।

वायुमंडल की मोटाई पृथ्वी की सतह से 1500 किमी दूर है। वायु का कुल द्रव्यमान अर्थात् गैसों का मिश्रण जो वायुमंडल का निर्माण करता है, 5.1-5.3 * 10 ^ 15 टन है। स्वच्छ शुष्क हवा का आणविक भार 29 है। समुद्र तल पर 0 ° C पर दबाव 101,325 है पा, या 760 मिमी। आर टी. कला।; महत्वपूर्ण तापमान - 140.7 डिग्री सेल्सियस; महत्वपूर्ण दबाव 3.7 एमपीए। 0 डिग्री सेल्सियस पर पानी में हवा की घुलनशीलता 0.036%, 25 डिग्री सेल्सियस - 0.22% पर होती है।

वातावरण की भौतिक स्थिति निर्धारित होती है। वायुमंडल के मुख्य पैरामीटर: वायु घनत्व, दबाव, तापमान और संरचना। जैसे-जैसे ऊंचाई बढ़ती है, हवा का घनत्व कम होता जाता है। ऊंचाई में बदलाव के साथ तापमान भी बदलता है। ऊर्ध्वाधर विभिन्न तापमान और विद्युत गुणों, विभिन्न वायु स्थितियों की विशेषता है। वातावरण में तापमान के आधार पर, निम्नलिखित मुख्य परतों को प्रतिष्ठित किया जाता है: क्षोभमंडल, समताप मंडल, मेसोस्फीयर, थर्मोस्फीयर, एक्सोस्फीयर (बिखरने वाला क्षेत्र)। आसन्न गोले के बीच वातावरण के संक्रमणकालीन क्षेत्रों को क्रमशः ट्रोपोपॉज़, स्ट्रैटोपॉज़ आदि कहा जाता है।

क्षोभ मंडल- निचला, मुख्य, सबसे अधिक अध्ययन, 8-10 किमी के ध्रुवीय क्षेत्रों में ऊंचाई के साथ, समशीतोष्ण अक्षांशों में 10-12 किमी तक, भूमध्य रेखा पर - 16-18 किमी। वायुमंडल के कुल द्रव्यमान का लगभग 80-90% और लगभग सभी जल वाष्प क्षोभमंडल में केंद्रित हैं। हर 100 मीटर पर बढ़ने पर, क्षोभमंडल में तापमान औसतन 0.65 डिग्री सेल्सियस कम हो जाता है और ऊपरी हिस्से में -53 डिग्री सेल्सियस तक पहुंच जाता है। क्षोभमंडल की इस ऊपरी परत को ट्रोपोपॉज कहते हैं। क्षोभमंडल में, अशांति और संवहन अत्यधिक विकसित होते हैं, प्रमुख भाग केंद्रित होता है, बादल उठते हैं, विकसित होते हैं।

स्ट्रैटोस्फियर- 11-50 किमी की ऊंचाई पर स्थित वायुमंडल की परत। 11-25 किमी परत (समताप मंडल की निचली परत) में तापमान में मामूली बदलाव और 25-40 किमी परत में इसकी वृद्धि -56.5 से 0.8 डिग्री सेल्सियस (समताप मंडल की ऊपरी परत या उलटा क्षेत्र) हैं। ठेठ। लगभग 40 किमी की ऊंचाई पर 273 के (0 डिग्री सेल्सियस) के मान तक पहुंचने के बाद, तापमान 55 किमी की ऊंचाई तक स्थिर रहता है। स्थिर तापमान के इस क्षेत्र को समताप मंडल कहा जाता है और समताप मंडल और मध्यमंडल के बीच की सीमा है।

यह समताप मंडल में है कि परत स्थित है ओजोनमंडल("ओजोन परत", 15-20 से 55-60 किमी की ऊंचाई पर), जो जीवन की ऊपरी सीमा को निर्धारित करता है। समताप मंडल और मेसोस्फीयर का एक महत्वपूर्ण घटक ओजोन है, जो कि 30 किमी की ऊंचाई पर सबसे अधिक तीव्रता से फोटोकैमिकल प्रतिक्रियाओं के परिणामस्वरूप बनता है। सामान्य दबाव पर ओजोन का कुल द्रव्यमान 1.7-4 मिमी मोटी परत होगी, लेकिन यह भी पराबैंगनी को अवशोषित करने के लिए पर्याप्त है, जो जीवन के लिए हानिकारक है। ओजोन का विनाश तब होता है जब यह मुक्त कणों, नाइट्रिक ऑक्साइड, हलोजन युक्त यौगिकों ("फ्रीन्स" सहित) के साथ संपर्क करता है। ओजोन ऑक्सीजन का एक अपरूप है, जो निम्नलिखित के परिणामस्वरूप बनता है: रासायनिक प्रतिक्रिया, आमतौर पर बारिश के बाद, जब परिणामी यौगिक ऊपरी क्षोभमंडल तक बढ़ जाता है; ओजोन में एक विशिष्ट गंध होती है।

पराबैंगनी विकिरण (180-200 एनएम) का अधिकांश लघु-तरंग दैर्ध्य भाग समताप मंडल में बरकरार रहता है और लघु तरंगों की ऊर्जा रूपांतरित हो जाती है। इन किरणों के प्रभाव में, चुंबकीय क्षेत्र, अणु टूट जाते हैं, आयनीकरण होता है, गैसों का नया निर्माण होता है और अन्य रासायनिक यौगिक. इन प्रक्रियाओं को उत्तरी रोशनी, बिजली और अन्य चमक के रूप में देखा जा सकता है। समताप मंडल में लगभग कोई जलवाष्प नहीं है।

मीसोस्फीयर 50 किमी की ऊंचाई से शुरू होती है और 80-90 किमी तक फैली हुई है। 75-85 किमी की ऊंचाई तक यह -88 डिग्री सेल्सियस तक गिर जाता है। मेसोस्फीयर की ऊपरी सीमा मेसोपॉज़ है।

बाह्य वायुमंडल(दूसरा नाम आयनोस्फीयर है) - मेसोस्फीयर के बाद वायुमंडल की परत - 80-90 किमी की ऊंचाई से शुरू होती है और 800 किमी तक फैली हुई है। थर्मोस्फीयर में हवा का तापमान तेजी से और लगातार बढ़ता है और कई सौ या हजारों डिग्री तक पहुंच जाता है।

बहिर्मंडल- प्रकीर्णन क्षेत्र, थर्मोस्फीयर का बाहरी भाग, 800 किमी से ऊपर स्थित है। एक्सोस्फीयर में गैस अत्यधिक दुर्लभ होती है, और इसलिए इसके कण इंटरप्लेनेटरी स्पेस (अपव्यय) में लीक हो जाते हैं।
100 किमी की ऊंचाई तक, वातावरण एक सजातीय (एकल चरण), गैसों का अच्छी तरह मिश्रित मिश्रण है। उच्च परतों में, ऊंचाई में गैसों का वितरण उनके आणविक द्रव्यमान पर निर्भर करता है, भारी गैसों की सांद्रता पृथ्वी की सतह से दूरी के साथ तेजी से घटती है। गैस घनत्व में कमी के कारण समताप मंडल में तापमान 0°C से गिरकर मध्यमंडल में -110°C हो जाता है। हालांकि, 200-250 किमी की ऊंचाई पर अलग-अलग कणों की गतिज ऊर्जा लगभग 1500 डिग्री सेल्सियस के तापमान से मेल खाती है। 200 किमी से ऊपर, तापमान और गैस घनत्व में महत्वपूर्ण उतार-चढ़ाव समय और स्थान में देखे जाते हैं।

लगभग 2000-3000 किमी की ऊंचाई पर, एक्सोस्फीयर धीरे-धीरे तथाकथित निकट अंतरिक्ष निर्वात में गुजरता है, जो कि इंटरप्लेनेटरी गैस के अत्यधिक दुर्लभ कणों, मुख्य रूप से हाइड्रोजन परमाणुओं से भरा होता है। लेकिन यह गैस अंतरग्रहीय पदार्थ का ही हिस्सा है। दूसरा भाग धूमकेतु और उल्कापिंड मूल के धूल जैसे कणों से बना है। इन अत्यंत दुर्लभ कणों के अलावा, सौर और गांगेय मूल के विद्युत चुम्बकीय और कणिका विकिरण इस अंतरिक्ष में प्रवेश करते हैं।

क्षोभमंडल वायुमंडल के द्रव्यमान का लगभग 80% हिस्सा है, समताप मंडल लगभग 20% है; मेसोस्फीयर का द्रव्यमान 0.3% से अधिक नहीं है, थर्मोस्फीयर वायुमंडल के कुल द्रव्यमान का 0.05% से कम है। वायुमंडल में विद्युत गुणों के आधार पर, न्यूट्रोस्फीयर और आयनोस्फीयर को प्रतिष्ठित किया जाता है। वर्तमान में यह माना जाता है कि वातावरण 2000-3000 किमी की ऊंचाई तक फैला हुआ है।

वायुमंडल में गैस की संरचना के आधार पर, होमोस्फीयर और हेटरोस्फीयर को प्रतिष्ठित किया जाता है। हेटरोस्फीयर- यह वह क्षेत्र है जहां गुरुत्वाकर्षण गैसों के पृथक्करण को प्रभावित करता है, क्योंकि। इस ऊंचाई पर उनका मिश्रण नगण्य है। इसलिए हेटरोस्फीयर की परिवर्तनशील संरचना का अनुसरण करता है। इसके नीचे वायुमंडल का एक अच्छी तरह से मिश्रित, सजातीय भाग है जिसे होमोस्फीयर कहा जाता है। इन परतों के बीच की सीमा को टर्बोपॉज कहा जाता है और यह लगभग 120 किमी की ऊंचाई पर स्थित है।

वायुमंडलीय दबाव - इसमें वस्तुओं और पृथ्वी की सतह पर वायुमंडलीय वायु का दबाव। सामान्य वायुमंडलीय दबाव 760 मिमी एचजी है। कला। (101 325 पा)। ऊंचाई में प्रत्येक किलोमीटर की वृद्धि के लिए, दबाव 100 मिमी कम हो जाता है।

वायुमंडल की संरचना

पृथ्वी का वायु खोल, जिसमें मुख्य रूप से गैसें और विभिन्न अशुद्धियाँ (धूल, पानी की बूंदें, बर्फ के क्रिस्टल, समुद्री लवण, दहन उत्पाद) शामिल हैं, जिनकी मात्रा स्थिर नहीं है। मुख्य गैसें नाइट्रोजन (78%), ऑक्सीजन (21%) और आर्गन (0.93%) हैं। कार्बन डाइऑक्साइड CO2 (0.03%) के अपवाद के साथ, वातावरण बनाने वाली गैसों की सांद्रता लगभग स्थिर है।

वायुमंडल में SO2, CH4, NH3, CO, हाइड्रोकार्बन, HC1, HF, Hg वाष्प, I2, साथ ही NO और कई अन्य गैसें कम मात्रा में होती हैं। क्षोभमंडल में लगातार बड़ी मात्रा में निलंबित ठोस और तरल कण (एयरोसोल) होते हैं।

दोस्तों के साथ शेयर करें या अपने लिए सेव करें:

लोड हो रहा है...