Чи має зворотна матриця. Знаходження зворотної матриці: три алгоритми та приклади

Знаходження зворотної матриці.

У цій статті розберемося з поняттям зворотної матриці, її властивостями та способами знаходження. Детально зупинимося на рішенні прикладів, у яких потрібно побудувати зворотну матрицю для заданої.

Навігація на сторінці.

    Зворотна матриця – визначення.

    Знаходження зворотної матриці за допомогою матриці з додатків алгебри.

    Властивості зворотної матриці.

    Знаходження зворотної матриці методом Гаусса-Жордана.

    Знаходження елементів зворотної матриці за допомогою розв'язання відповідних систем лінійних рівнянь алгебри.

Зворотна матриця – визначення.

Поняття зворотної матриці вводиться лише квадратних матриць, визначник яких відмінний від нуля, тобто для невироджених квадратних матриць.

Визначення.

Матрицяназивається зворотною для матриці, визначник якої відмінний від нуля , якщо справедливі рівність , де E- Поодинока матриця порядку nна n.

Знаходження зворотної матриці за допомогою матриці з додатків алгебри.

Як знайти зворотну матрицю для цієї?

По-перше, нам знадобляться поняття транспонованої матриці, мінору матриці та алгебраїчного доповнення елемента матриці.

Визначення.

Мінорk-ого порядкуматриці Aпорядку mна n- Це визначник матриці порядку kна kяка виходить з елементів матриці А, що знаходяться у вибраних kрядках та kстовпці. ( kне перевищує найменшого з чисел mабо n).

Мінор (n-1)-огопорядку, що складається з елементів усіх рядків, крім i-ий, і всіх стовпців, крім j-огоквадратної матриці Апорядку nна nпозначимо як .

Іншими словами, мінор виходить із квадратної матриці Апорядку nна nвикреслюванням елементів i-ийрядки та j-огостовпця.

Для прикладу запишемо, мінор Другогопорядку, що виходить з матриці вибором елементів її другого, третього рядків та першого, третього стовпців . Також покажемо мінор, який виходить із матриці викресленням другого рядка та третього стовпця . Проілюструємо побудову цих мінорів: і .

Визначення.

Алгебраїчним доповненнямелемента квадратної матриці називають мінор (n-1)-огопорядку, який виходить із матриці А, викресленням елементів її i-ийрядки та j-огостовпця, помножений на .

Алгебраїчне доповнення елемента позначається як . Таким чином, .

Наприклад, для матриці Алгебраїчне доповнення елемента є.

По-друге, нам знадобляться дві властивості визначника, які ми розібрали у розділі обчислення визначника матриці:

На підставі цих властивостей визначника, визначення операції множення матриці на числоі поняття зворотної матриці справедлива рівність , де - транспонована матриця, елементами якої є додатки алгебри .

Матриця дійсно є зворотною для матриці А, оскільки виконуються рівності . Покажемо це

Складемо алгоритм знаходження зворотної матриціз використанням рівності .

Розберемо алгоритм знаходження зворотної матриці з прикладу.

приклад.

Дано матрицю . Знайдіть зворотну матрицю.

Рішення.

Обчислимо визначник матриці А, Розклавши його за елементами третього стовпця:

Визначник відмінний від нуля, тому матриця Аоборотна.

Знайдемо матрицю з додатків алгебри:

Тому

Виконаємо транспонування матриці з додатків алгебри:

Тепер знаходимо зворотну матрицю як :

Перевіряємо отриманий результат:

Рівності виконуються, отже, зворотна матриця знайдена правильно.

Властивості зворотної матриці.

Поняття зворотної матриці, рівність , визначення операцій над матрицями та властивості визначника матриці дозволяють обґрунтувати наступні властивості зворотної матриці:

Знаходження елементів зворотної матриці за допомогою розв'язання відповідних систем лінійних рівнянь алгебри.

Розглянемо ще один спосіб знаходження зворотної матриці для квадратної матриці Апорядку nна n.

Цей метод заснований на вирішенні nсистем лінійних неоднорідних алгебраїчних рівнянь з nневідомими. Невідомими змінними цих системах рівнянь є елементи зворотної матриці.

Ідея дуже проста. Позначимо зворотну матрицю як X, тобто, . Так як за визначенням зворотної матриці, то

Прирівнюючи відповідні елементи по стовпцям, отримаємо nсистем лінійних рівнянь

Вирішуємо їх у будь-який спосіб і зі знайдених значень складаємо зворотну матрицю.

Розберемо цей спосіб з прикладу.

приклад.

Дано матрицю . Знайдіть зворотну матрицю.

Рішення.

Приймемо . Рівність дає нам три системи лінійних неоднорідних рівнянь алгебри:

Не розписуватимемо рішення цих систем, при необхідності звертайтеся до розділу вирішення систем лінійних рівнянь алгебри.

З першої системи рівнянь маємо, з другої -, з третьої -. Отже, потрібна зворотна матриця має вигляд . Рекомендуємо перевірити, щоб переконатися в правильності результату.

Підведемо підсумок.

Ми розглянули поняття зворотної матриці, її властивості та три методи її знаходження.

Приклад рішень методом зворотної матриці

Завдання 1.Вирішити СЛАУ методом зворотної матриці. 2 x 1 + 3x 2 + 3x 3 + x 4 = 1 3 x 1 + 5x 2 + 3x 3 + 2x 4 = 2 5 x 1 + 7x 2 + 6x 3 + 2x 4 = 3 4 x 1 + 4x 2 + 3x 3 + х 4 = 4

Початок форми

Кінець форми

Рішення. Запишемо матрицю у вигляді: Вектор B: B T = (1,2,3,4) Головний визначник Мінор для (1,1): = 5 (6 1-3 2)-7 (3 1-3 2)+4 ( 3 2-6 2) = -3 Мінор для (2,1): = 3 (6 1-3 2)-7 (3 1-3 1)+4 (3 2-6 1) = 0 Мінор для (3 ,1): = 3 (3 1-3 2)-5 (3 1-3 1)+4 (3 2-3 1) = 3 Мінор для (4,1): = 3 (3 2-6 2) -5 (3 2-6 1)+7 (3 2-3 1) = 3 Визначник мінору ∆ = 2 (-3)-3 0+5 3-4 3 = -3

Транспонована матрицяАлгебраїчні доповнення ∆ 1,1 = 5 (6 1-2 3)-3 (7 1-2 4)+2 (7 3-6 4) = -3 ∆ 1,2 = -3 (6 1-2 3) -3 (7 1-2 4)+1 (7 3-6 4) = 0 ∆ 1,3 = 3 (3 1-2 3)-3 (5 1-2 4)+1 (5 3-3 4 ) = 3 ∆ 1,4 = -3 (3 2-2 6)-3 (5 2-2 7)+1 (5 6-3 7) = -3 ∆ 2,1 = -3 (6 1-2 3)-3 (5 1-2 4)+2 (5 3-6 4) = 9 ∆ 2,2 = 2 (6 1-2 3)-3 (5 1-2 4)+1 (5 3- 6 4) = 0 ∆ 2,3 = -2 (3 1-2 3)-3 (3 1-2 4)+1 (3 3-3 4) = -6 ∆ 2,4 = 2 (3 2- 2 6)-3 (3 2-2 5)+1 (3 6-3 5) = 3 ∆ 3,1 = 3 (7 1-2 4)-5 (5 1-2 4)+2 (5 4 -7 4) = -4 ∆ 3,2 = -2 (7 1-2 4)-3 (5 1-2 4)+1 (5 4-7 4) = 1 ∆ 3,3 = 2 (5 1 -2 4)-3 (3 1-2 4)+1 (3 4-5 4) = 1 ∆ 3,4 = -2 (5 2-2 7)-3 (3 2-2 5)+1 ( 3 7-5 5) = 0 ∆ 4,1 = -3 (7 3-6 4)-5 (5 3-6 4)+3 (5 4-7 4) = -12 ∆ 4,2 = 2 ( 7 3-6 4)-3 (5 3-6 4)+3 (5 4-7 4) = -3 ∆ 4,3 = -2 (5 3-3 4)-3 (3 3-3 4) +3 (3 4-5 4) = 9 ∆ 4,4 = 2 (5 6-3 7)-3 (3 6-3 5)+3 (3 7-5 5) = -3 Зворотна матриця Вектор результатів X X = A -1 ∙ B X T = (2,-1,-0.33,1) x 1 = 2 x 2 = -1 x 3 = -0.33 x 4 = 1

Див. також рішень СЛАУ методом зворотної матриці online. Для цього введіть свої дані та отримайте рішення з докладними коментарями.

Завдання 2. Систему рівнянь записати у матричній формі та вирішити її за допомогою зворотної матриці. Зробити перевірку одержаного рішення. Рішення:xml:xls

Приклад 2. Записати систему рівнянь у матричній формі та вирішити за допомогою зворотної матриці. Рішення:xml:xls

приклад. Дано систему трьох лінійних рівнянь із трьома невідомими. Потрібно: 1) знайти її рішення за допомогою формул Крамера; 2) записати систему в матричній формі та вирішити її засобами матричного обчислення. Методичні рекомендації. Після рішення методом Крамера знайдіть кнопку "Рішення методом зворотної матриці для вихідних даних". Ви отримаєте відповідне рішення. Таким чином, дані знову заповнювати не доведеться. Рішення. Позначимо через А - матрицю коефіцієнтів за невідомих; X - матрицю-стовпець невідомих; B - матрицю-стовпець вільних членів:

Вектор B: B T =(4,-3,-3) З урахуванням цих позначень дана система рівнянь набуває наступної матричної форми: А*Х = B. Якщо матриця А - невироджена (її визначник відмінний від нуля, то вона має зворотну матрицю А -1 Помноживши обидві частини рівняння на А -1 отримаємо: А -1 * А * Х = А -1 * B, А -1 * А = Е. Ця рівність називається матричним записом розв'язання системи лінійних рівнянь. Для знаходження рішення системи рівнянь необхідно обчислити обернену матрицю А-1. Система матиме рішення, якщо визначник матриці A відмінний від нуля. Знайдемо головний визначник. ∆=-1 (-2 (-1)-1 1)-3 (3 (-1)-1 0)+2 (3 1-(-2 0))=14 Отже, визначник 14 ≠ 0, тому продовжуємо Рішення. Для цього знайдемо зворотну матрицю через додатки алгебри. Нехай маємо невироджену матрицю А:

Обчислюємо додатки алгебри.

∆ 1,1 =(-2 (-1)-1 1)=1

∆ 1,2 =-(3 (-1)-0 1)=3

∆ 1,3 =(3 1-0 (-2))=3

∆ 2,1 =-(3 (-1)-1 2)=5

∆ 2,2 =(-1 (-1)-0 2)=1

∆ 2,3 =-(-1 1-0 3)=1

∆ 3,1 =(3 1-(-2 2))=7

∆ 3,2 =-(-1 1-3 2)=7

X T = (-1,1,2) x 1 = -14 / 14 = -1 x 2 = 14 / 14 = 1 x 3 = 28 / 14 = 2 Перевірка. -1 -1+3 1+0 2=4 3 -1+-2 1+1 2=-3 2 -1+1 1+-1 2=-3 doc:xml:xls Відповідь: -1,1,2.

Зворотна матриця для цієї це така матриця, множення вихідної на яку дає одиничну матрицю: Обов'язковим і достатньою умовоюНаявності зворотної матриці є нерівність нулю детермінанта вихідної (що у свою чергу має на увазі, що матриця повинна бути квадратна). Якщо ж визначник матриці дорівнює нулю, її називають виродженою і така матриця немає зворотної. У вищій математиці зворотні матриці мають важливе значенняі застосовуються на вирішення низки задач. Наприклад, на знаходження зворотної матриціпобудовано матричний метод розв'язання систем рівнянь. Наш сервіс сайт дозволяє обчислювати зворотну матрицю онлайндвома методами: методом Гауса-Жордана та за допомогою матриці алгебраїчних доповнень. Перервий має на увазі велику кількість елементарних перетвореньвсередині матриці, другий - обчислення детермінанта та алгебраїчних доповнень до всіх елементів. Для обчислення визначника матриці онлайн ви можете скористатися іншим сервісом - Обчислення детермінанта матриці онлайн

.

Знайти зворотну матрицю на сайт

сайтдозволяє знаходити зворотну матрицю онлайншвидко та безкоштовно. На сайті здійсняться обчислення нашим сервісом і видається результат з докладним рішеннямза знаходженням зворотної матриці. Сервер завжди видає лише точну та правильну відповідь. У завданнях визначення зворотної матриці онлайн, необхідно, щоб визначник матрицібув відмінним від нуля, інакше сайтповідомить про неможливість знайти зворотну матрицю через рівність нуля визначника вихідної матриці. Завдання щодо знаходження зворотної матрицізустрічається у багатьох розділах математики, будучи одним із самих базових понять алгебри та математичним інструментом у прикладних завданнях. Самостійне визначення зворотної матрицівимагає значних зусиль, багато часу, обчислень та великої уважності, щоб не допустити описки або дрібної помилки у обчисленнях. Тому наш сервіс з знаходження зворотної матриці онлайнзначно полегшить вам завдання та стане незамінним інструментом для вирішення математичних завдань. навіть якщо ви знаходите зворотну матрицюМи рекомендуємо перевірити ваше рішення на нашому сервері. Введіть вашу вихідну матрицю у нас на Обчислення зворотної матриці онлайн і звірте вашу відповідь. Наша система ніколи не помиляється і знаходить зворотну матрицюзаданої розмірності в режимі онлайнмиттєво! На сайті сайтдопускаються символьні записи в елементах матриць, в цьому випадку зворотна матриця онлайнбуде представлена ​​у загальному символьному вигляді.

Розглянемо проблему визначення операції, зворотної до множення матриць.

Нехай A - квадратна матриця порядку n. Матриця A^(-1) , що задовольняє разом із заданою матрицею A рівностями:

A^(-1)\cdot A=A\cdot A^(-1)=E,


називається зворотній. Матрицю A називають оборотнийякщо для неї існує зворотна, в іншому випадку - незворотній.

З визначення слід, що й зворотна матриця A^(-1) існує, вона квадратна тієї ж порядку, як і A . Однак не для будь-якої квадратної матриці існує зворотна. Якщо визначник матриці A дорівнює нулю (\det(A)=0) , то неї немає зворотної. Насправді, застосовуючи теорему про визначника добутку матриць для одиничної матриці E=A^(-1)A отримуємо протиріччя

\det(E)=\det(A^(-1)\cdot A)=\det(A^(-1))\det(A)=\det(A^(-1))\cdot0=0


оскільки визначник одиничної матриці дорівнює 1. Виявляється, що відмінність від нуля визначника квадратної матриці є єдиною умовою існування зворотної матриці. Нагадаємо, що квадратну матрицю, визначник якої дорівнює нулю, називають виродженою (особливою), інакше - невиродженою (неособливою).

Теорема 4.1 про існування та єдиність зворотної матриці. Квадратна матриця A=\begin(pmatrix)a_(11)&cdots&a_(1n)\vdots&ddots&vdots a_(n1)&cdots&a_(nn) \end(pmatrix), Визначник якої відмінний від нуля, має зворотну матрицю і притому тільки одну:

A^(-1)=\frac(1)(\det(A))\cdot\! \begin(pmatrix)A_(11)&A_(21)&\cdots&A_(1n)\\ A_(12)&A_(22)&\cdots&A_(n2)\\ \vdots&\vdots&\ddots&\vdots\\ A_(1n )&A_(2n)&\cdots&A_(nn) \end(pmatrix)= \frac(1)(\det(A))\cdot A^(+),

де A^(+) - матриця, транспонована для матриці, складеної з додатків алгебри елементів матриці A .

Матриця A^(+) називається приєднаною матрицеюпо відношенню до матриці A.

Справді, матриця \frac(1)(\det(A))\,A^(+)існує за умови \det(A)\ne0. Треба показати, що вона обернена до A, тобто. задовольняє двом умовам:

\begin(aligned)\mathsf(1))&~A\cdot\!\left(\frac(1)(\det(A))\cdot A^(+)\right)=E;\\ \mathsf (2))&~ \!\left(\frac(1)(\det(A))\cdot A^(+)\right)\!\cdot A=E.\end(aligned)

Доведемо першу рівність. Відповідно до п.4 зауважень 2.3, із властивостей визначника випливає, що AA^(+)=\det(A)\cdot E. Тому

A\cdot\!\left(\frac(1)(\det(A))\cdot A^(+)\right)= \frac(1)(\det(A))\cdot AA^(+) = \frac(1)(\det(A))\cdot \det(A)\cdot E=E,

що й потрібно було показати. Аналогічно доводиться друга рівність. Отже, за умови \det(A)\ne0 матриця A має зворотну

A^(-1)=\frac(1)(\det(A))\cdot A^(+).

Єдиність зворотної матриці доведемо від протилежного. Нехай крім матриці A^(-1) існує ще одна зворотна матриця B\,(B\ne A^(-1)) така, що AB=E . Помножуючи обидві частини цієї рівності зліва на матрицю A^(-1) , отримуємо \underbrace(A^(-1)AB)_(E)=A^(-1)E. Звідси B=A^(-1) , що суперечить припущенню B\ne A^(-1) . Отже, обернена матриця єдина.

Зауваження 4.1

1. З визначення випливає, що матриці A та A^(-1) перестановочні.

2. Матриця, зворотна до невиродженої діагональної, є також діагональною:

\Bigl[\operatorname(diag)(a_(11),a_(22),\ldots,a_(nn))\Bigr]^(-1)= \operatorname(diag)\!\left(\frac(1) )(a_(11)),\,\frac(1)(a_(22)),\,\ldots,\,\frac(1)(a_(nn))\right)\!.

3. Матриця, обернена до невиродженої нижньої (верхньої) трикутної, є нижньою (верхньою) трикутною.

4. Елементарні матриці мають зворотні, які є елементарними (див. п.1 зауважень 1.11).

Властивості зворотної матриці

Операція обігу матриці має такі властивості:

\begin(aligned)\bold(1.)&~~ (A^(-1))^(-1)=A\,;\\ \bold(2.)&~~ (AB)^(-1 )=B^(-1)A^(-1)\,;\\ \bold(3.)&~~ (A^T)^(-1)=(A^(-1))^T\ ,;\\ \bold(4.)&~~ \det(A^(-1))=\frac(1)(\det(A))\,;\\ \bold(5.)&~~ E^(-1)=E\,. \end(aligned)


якщо мають сенс операції, зазначені у рівності 1-4.

Доведемо властивість 2: якщо добуток AB невироджених квадратних матриць того самого порядку має зворотну матрицю, то (AB)^(-1)=B^(-1)A^(-1).

Дійсно, визначник добутку матриць AB не дорівнює нулю, оскільки

\det(A\cdot B)=\det(A)\cdot\det(B), де \det(A)\ne0,~\det(B)\ne0

Отже, зворотна матриця (AB) ^ (-1) існує і єдина. Покажемо за визначенням, що матриця B^(-1)A^(-1) є зворотною стосовно матриці AB . Справді.

Матриця $A^(-1)$ називається зворотної по відношенню до квадратної матриці $A$, якщо виконано умову $A^(-1)\cdot A=A\cdot A^(-1)=E$, де $E $ - Поодинока матриця, порядок якої дорівнює порядку матриці $ A $.

Невироджена матриця - матриця, визначник якої не дорівнює нулю. Відповідно, вироджена матриця - та, у якої дорівнює нулю визначник.

Зворотна матриця $A^(-1)$ існує і тоді, коли матриця $A$ – невироджена. Якщо зворотна матриця $A^(-1)$ існує, вона єдина.

Є кілька способів знаходження зворотної матриці, і ми розглянемо два їх. На цій сторінці буде розглянуто метод приєднаної матриці, який належить стандартним у більшості курсів вищої математики. Другий спосіб знаходження зворотної матриці (метод елементарних перетворень), який передбачає використання методу Гаусса або Гаусса-Жордана, розглянутий у другій частині .

Метод приєднаної (союзної) матриці

Нехай задано матрицю $A_(n\times n)$. Для того щоб знайти зворотну матрицю $A^(-1)$, потрібно здійснити три кроки:

  1. Знайти визначник матриці $A$ і переконатися, що $Delta Aneq 0$, тобто. що матриця А – невироджена.
  2. Скласти алгебраїчні доповнення $A_(ij)$ кожного елемента матриці $A$ і записати матрицю $A_(n\times n)^(*)=\left(A_(ij) \right)$ зі знайдених додатків алгебри.
  3. Записати зворотну матрицю з урахуванням формули $A^(-1)=\frac(1)(\Delta A)\cdot (A^(*))^T$.

Матрицю $(A^(*))^T$ найчастіше називають приєднаної (взаємної, союзної) до матриці $A$.

Якщо рішення відбувається вручну, перший спосіб хороший лише для матриць порівняно невеликих порядків: другого (), третього (), четвертого (). Щоб знайти зворотну матрицю для матриці вищого порядку, використовуються інші методи Наприклад, метод Гауса, який розглянуто у другій частині.

Приклад №1

Знайти матрицю, зворотну до матриці $A=\left(\begin(array) (cccc) 5 & -4 &1 & 0 12 &-11 &4 & 0 \\ -5 & 58 &4 & 0 \ 1 & -9 & 0 \end(array) \right)$.

Так як всі елементи четвертого стовпця дорівнюють нулю, то $ Delta A = 0 $ (тобто матриця $ A $ є виродженою). Оскільки $\Delta A=0$, зворотної матриці до матриці $A$ немає.

Приклад №2

Знайти матрицю, зворотну до матриці $A=\left(\begin(array) (cc) -5 & 7 \ 9 & 8 \end(array)\right)$.

Використовуємо метод приєднаної матриці. Спочатку знайдемо визначник заданої матриці $A$:

$$ \Delta A=\left| \begin(array) (cc) -5 & 7\ 9 & 8 \end(array)\right|=-5\cdot 8-7\dot 9=-103. $$

Так як $ \ Delta A \ neq 0 $, то зворотна матриця існує, тому продовжимо рішення. Знаходимо додатки алгебри

\begin(aligned) & A_(11)=(-1)^2\cdot 8=8; \; A_(12)=(-1)^3\cdot 9=-9;\\ & A_(21)=(-1)^3\cdot 7=-7; \; A_(22)=(-1)^4\cdot (-5)=-5.\\end(aligned)

Складаємо матрицю з додатків алгебри: $A^(*)=\left(\begin(array) (cc) 8 & -9\\ -7 & -5 \end(array)\right)$.

Транспонуємо отриману матрицю: $(A^(*))^T=\left(\begin(array) (cc) 8 & -7\ -9 & -5 \end(array)\right)$ (отримана матриця часто називається приєднаною чи союзною матрицею до матриці $A$). Використовуючи формулу $A^(-1)=\frac(1)(\Delta A)\cdot (A^(*))^T$, маємо:

$$ A^(-1)=\frac(1)(-103)\cdot \left(\begin(array) (cc) 8 & -7\\ -9 & -5 \end(array)\right) =\left(\begin(array) (cc) -8/103 & 7/103\\ 9/103 & 5/103 \end(array)\right) $$

Отже, зворотну матрицю знайдено: $A^(-1)=\left(\begin(array) (cc) -8/103 & 7/103\9/103 & 5/103 \end(array)\right) $. Щоб перевірити істинність результату, достатньо перевірити істинність однієї з рівностей: $A^(-1)\cdot A=E$ або $A\cdot A^(-1)=E$. Перевіримо виконання рівності $A^(-1)\cdot A=E$. Щоб поменше працювати з дробами, підставлятимемо матрицю $A^(-1)$ не у формі $\left(\begin(array) (cc) -8/103 & 7/103\\ 9/103 & 5/103 \ end(array)\right)$, а у вигляді $-\frac(1)(103)\cdot \left(\begin(array) (cc) 8 & -7\ -9 & -5 \end(array )\right)$:

Відповідь: $A^(-1)=\left(\begin(array) (cc) -8/103 & 7/103\\ 9/103 & 5/103 \end(array)\right)$.

Приклад №3

Знайти зворотну матрицю для матриці $A=\left(\begin(array) (ccc) 1 & 7 & 3 -4 & 9 & 4 \0 & 3 & 2\end(array) \right)$.

Почнемо з обчислення визначника матриці $A$. Отже, визначник матриці $A$ такий:

$$ \Delta A=\left| \begin(array) (ccc) 1 & 7 & 3 \\ -4 & 9 & 4 \\ 0 & 3 & 2\end(array) \right| = 18-36 +56-12 = 26. $$

Так як $ \ Delta A \ neq 0 $, то зворотна матриця існує, тому продовжимо рішення. Знаходимо додатки алгебри кожного елемента заданої матриці:

Складаємо матрицю з додатків алгебри і транспонуємо її:

$$ A^*=\left(\begin(array) (ccc) 6 & 8 & -12 \ -5 & 2 & -3 \\ 1 & -16 & 37\end(array) \right); \; (A^*)^T=\left(\begin(array) (ccc) 6 & -5 & 1 \\ 8 & 2 & -16 \\ -12 & -3 & 37\end(array) \right) $$

Використовуючи формулу $A^(-1)=\frac(1)(\Delta A)\cdot (A^(*))^T$, отримаємо:

$$ A^(-1)=\frac(1)(26)\cdot \left(\begin(array) (ccc) 6 & -5 & 1 \\ 8 & 2 & -16 \\ -12 & - 3 & 37\end(array) \right)= \left(\begin(array) (ccc) 3/13 & -5/26 & 1/26 \\ 4/13 & 1/13 & -8/13 \ \ -6/13 & -3/26 & 37/26 \end(array) \right) $$

Отже, $A^(-1)=\left(\begin(array) (ccc) 3/13 & -5/26 & 1/26 \\ 4/13 & 1/13 & -8/13 \\ - 6/13 & -3/26 & 37/26 \end(array) \right)$. Щоб перевірити істинність результату, достатньо перевірити істинність однієї з рівностей: $A^(-1)\cdot A=E$ або $A\cdot A^(-1)=E$. Перевіримо виконання рівності $A\cdot A^(-1)=E$. Щоб поменше працювати з дробами, будемо підставляти матрицю $A^(-1)$ не у формі $\left(\begin(array) (ccc) 3/13 & -5/26 & 1/26 \\ 4/13 & 1/13 & -8/13 \ -6/13 & -3/26 & 37/26 \end(array) \right)$, а у вигляді $\frac(1)(26)\cdot \left( \begin(array) (ccc) 6 & -5 & 1 \\ 8 & 2 & -16 \\ -12 & -3 & 37\end(array) \right)$:

Перевірку пройдено успішно, зворотна матриця $A^(-1)$ знайдена правильно.

Відповідь: $A^(-1)=\left(\begin(array) (ccc) 3/13 & -5/26 & 1/26 \\ 4/13 & 1/13 & -8/13 \\ -6 /13 & -3/26 & 37/26 \end(array) \right)$.

Приклад №4

Знайти матрицю, зворотну матриці $A=\left(\begin(array) (cccc) 6 & -5 & 8 & 4\\ 9 & 7 & 5 & 2 \7 & 5 & 3 & 7 \\ 8 & -8 & -3 \end(array) \right)$.

Для матриці четвертого порядку знаходження зворотної матриці за допомогою додатків алгебри дещо важко. Однак такі приклади контрольні роботитрапляються.

Щоб знайти зворотну матрицю, спочатку потрібно обчислити визначник матриці $A$. Найкраще в цій ситуації це зробити за допомогою розкладання визначника по рядку (стовпцю). Вибираємо будь-який рядок або стовпець і знаходимо додатки алгебри кожного елемента обраного рядка або стовпця.

Нехай є квадратна матриця n-го порядку

Матриця А-1 називається зворотною матрицеюстосовно матриці А, якщо А*А -1 = Е, де Е — одинична матриця n-го порядку.

Одинична матриця- Така квадратна матриця, у якої всі елементи по головній діагоналі, що проходить від лівого верхнього кута до правого нижнього кута, - одиниці, а інші - нулі, наприклад:

зворотна матрицяможе існувати тільки для квадратних матрицьтобто. для тих матриць, у яких число рядків та стовпців збігаються.

Теорема умови існування зворотної матриці

Для того, щоб матриця мала зворотну матрицю, необхідно і достатньо, щоб вона була невиродженою.

Матриця А = (А1, А2, ... Аn) називається невиродженоюякщо вектори-стовпці є лінійно незалежними. Число лінійно незалежних векторів-стовпців матриці називається рангом матриці. Тому можна сказати, що для того, щоб існувала обернена матриця, необхідно і достатньо, щоб ранг матриці дорівнював її розмірності, тобто. r = n.

Алгоритм знаходження зворотної матриці

  1. Записати до таблиці на вирішення систем рівнянь методом Гаусса матрицю А і праворуч (на місце правих частин рівнянь) приписати до неї матрицю Е.
  2. Використовуючи перетворення Жордана, привести матрицю до матриці, що складається з одиничних стовпців; при цьому необхідно одночасно перетворити матрицю Е.
  3. Якщо необхідно, то переставити рядки (рівняння) останньої таблиці так, щоб під матрицею вихідної таблиці А вийшла одинична матриця Е.
  4. Записати зворотну матрицю А-1, яка знаходиться в останній таблиці під матрицею Е вихідної таблиці.
Приклад 1

Для матриці А знайти зворотну матрицю А-1

Рішення: Записуємо матрицю А і праворуч приписуємо одиничну матрицю Е. Використовуючи перетворення Жордана, наводимо матрицю А до одиничної матриці Е. Обчислення наведено у таблиці 31.1.

Перевіримо правильність обчислень множенням вихідної матриці А та зворотної матриці А-1.

В результаті множення матриць вийшла поодинока матриця. Отже, обчислення зроблено правильно.

Відповідь:

Розв'язання матричних рівнянь

Матричні рівняння можуть мати вигляд:

АХ = В, ХА = В, АХВ = С,

де А, В, С - матриці, що задаються, Х - шукана матриця.

Матричні рівняння вирішуються з допомогою множення рівняння зворотні матриці.

Наприклад, щоб знайти матрицю з рівняння необхідно помножити це рівняння на ліворуч.

Отже, щоб знайти рішення рівняння потрібно знайти зворотну матрицю і помножити її на матрицю , що стоять у правій частині рівняння.

Аналогічно вирішуються інші рівняння.

Приклад 2

Розв'язати рівняння АХ = В, якщо

Рішення: Оскільки зворотна матриця дорівнює (див. приклад 1)

Матричний метод в економічному аналізі

Поряд з іншими знаходять застосування також матричні методи . Ці методи базуються на лінійній та векторно-матричній алгебрі. Такі методи застосовуються з метою аналізу складних та багатовимірних економічних явищ. Найчастіше ці методи використовуються за необхідності порівняльної оцінки функціонування організацій та його структурних підрозділів.

У процесі застосування матричних методів аналізу можна виділити кілька етапів.

На першому етапіздійснюється формування системи економічних показниківі на її основі складається матриця вихідних даних , яка є таблицею, в якій за її окремими рядками показуються номери систем (i = 1,2,...,,n), а за вертикальними графами - номери показників (j = 1,2,....,m).

На другому етапіпо кожній вертикальній графі виявляється найбільше з існуючих значень показників, яке приймається за одиницю.

Після цього всі суми, відображені в даній графі поділяють на найбільше значенняі формується матриця стандартизованих коефіцієнтів.

На третьому етапівсі складові матриці зводять у квадрат. Якщо вони мають різну значимість, то кожному показнику матриці надається певний ваговий коефіцієнт k. Розмір останнього визначається експертним шляхом.

На останньому, четвертому етапізнайдені величини рейтингових оцінок R jгрупуються у порядку їх збільшення чи зменшення.

Викладені матричні методи слід використовувати, наприклад, при порівняльному аналізірізних інвестиційних проектів, і навіть в оцінці інших економічних показників діяльності організацій.

Поділіться з друзями або збережіть для себе:

Завантаження...