Оценка результатов линейной регрессии. Множественный коэффициент корреляции и множественный коэффициент детерминации

Множественный коэффициент корреляции трех переменных – это показатель тесноты линейной связи между одним из признаков (буква индекса перед тире) и совокупностью двух других признаков (буквы индекса после тире):

; (12.7)

(12.8)

Эти формулы позволяют легко вычислить множественные коэффициенты корреляции при известных значениях коэффициентов парной корреляции r xy , r xz и r yz .

Коэффициент R не отрицателен и всегда находится в пределах от 0 до 1. При приближении R к единице степень линейной связи трех признаков увеличивается. Между коэффициентом множественной корреляции, например R y-xz , и двумя коэффициентами парной корреляции r yx и r yz существует следующее соотношение: каждый из парных коэффициентов не может превышать по абсолютной величине R y-xz .

Квадрат коэффициента множественной корреляции R 2 называется коэффициентом множественной детерминации. Он показывает долю вариации зависимой переменной под воздействием изучаемых факторов.

Значимость множественной корреляции оценивается по
F –критерию:

, (12.9)

n – объем выборки,

k – число признаков; в нашем случае k = 3.

Теоретическое значение F –критерия берут из таблицы приложений для ν 1 = k –1 и ν 2 = n–k степеней свободы и принятого уровня значимости. Нулевая гипотеза о равенстве множественного коэффициента корреляции в совокупности нулю (H 0:R = 0) принимается, если F факт. < F табл . и отвергается, если F факт. ≥ F табл .

Конец работы -

Эта тема принадлежит разделу:

Математическая статистика

Учреждение образования.. гомельский государственный университет.. имени франциска скорины ю м жученко..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Учебное пособие
для студентов вузов, обучающихся по специальности 1-31 01 01 «Биология» Гомель 2010

Предмет и метод математической статистики
Предмет математической статистики – изучение свойств массовых явлений в биологии, экономике, технике и других областях. Эти явления обычно представляются сложными, вследствие разнообразия (варьиров

Понятие случайного события
Статистическая индукция или статистические заключения, как главная составная часть метода исследования массовых явлений, имеют свои отличительные черты. Статистические заключения делают с численно

Вероятность случайного события
Числовая характеристика случайного события, обладающая тем свойством, что для любой достаточно большой серии испытаний частота события лишь незначительно отличается от этой характеристики, называет

Вычисление вероятностей
Часто возникает необходимость одновременно складывать и умножать вероятности. Например, требуется определить вероятность выпадения 5 очков при одновременном бросании 2 кубиков. Искомая сумма вероят

Понятие случайной переменной
Определив понятие вероятности и выяснив ее главные свойства, перейдем к рассмотрению одного из важнейших понятий теории вероятностей – понятия случайной переменной. Допустим, что в результ

Дискретные случайные переменные
Случайная переменная дискретна, если совокупность возможных ее значений конечна, или, по крайней мере, поддается счислению. Предположим, что случайная переменная X может принимать значения x1

Непрерывные случайные переменные
В противоположность дискретным случайным переменным, рассмотренным в предыдущем подразделе, совокупность возможных значений непрерывной случайной переменной не только не конечна, но и не поддается

Математическое ожидание и дисперсия
Часто возникает необходимость охарактеризовать распределение случайной переменной с помощью одного–двух числовых показателей, выражающих наиболее существенные свойства этого распределения. К таким

Моменты
Большое значение в математической статистике имеют так называемые моменты распределения случайной переменной. В математическом ожидании большие значения случайной величины учитываются недостаточно.

Биномиальное распределение и измерение вероятностей
В этой теме рассмотрим основные типы распределения дискретных случайных переменных. Предположим, что вероятность наступления некоторого случайного события А при единичном испытании равно

Прямоугольное (равномерное) распределение
Прямоугольное (равномерное) распределение - простейший тип непрерывных распределений. Если случайная переменная X может принимать любое действительное значение в интервале (а, b), где а и b – дейст

Нормальное распределение
Нормальное распределение играет основную роль в математической статистике. Это ни в малейшей степени не является случайным: в объективной действительности весьма часто встречаются различные признак

Логарифмически нормальное распределение
Случайная переменная Y имеет логарифмически нормальное распределение с параметрами μ и σ, если случайная переменная X = lnY имеет нормальное распределение с теми же параметрами μ и &

Средние величины
Из всех групповых свойств наибольшее теоретическое и практическое значение имеет средний уровень, измеряемый средней величиной признака. Средняя величина признака – понятие очень глубокое,

Общие свойства средних величин
Для правильного использования средних величин необходимо знать свойства этих показателей: срединное расположение, абстрактность и единство суммарного действия. По своему численному значени

Средняя арифметическая
Средняя арифметическая, обладая общими свойствами средних величин, имеет свои особенности, которые можно выразить следующими формулами:

Средний ранг (непараметрическая средняя)
Средний ранг определяется для таких признаков, для которых еще не найдены способы количественного измерения. По степени проявления таких признаков объекты могут быть ранжированы, т. е. расположены

Взвешенная средняя арифметическая
Обычно, чтобы рассчитать среднюю арифметическую, складывают все значения признака и полученную сумму делят на число вариантов. В этом случае каждое значение, входя в сумму, увеличивает ее на полную

Средняя квадратическая
Средняя квадратическая вычисляется по формуле: , (6.5) Она равна корню квадратному из суммы

Медиана
Медианой называют такое значение признака, которое разделяет всю группу на две равные части: одна часть имеет значения признака меньшее, чем медиана, а другая – большее. Например, если име

Средняя геометрическая
Чтобы получить среднюю геометрическую для группы с n данными, нужно все варианты перемножить и из полученного произведения извлечь корень n-й степени:

Средняя гармоническая
Средняя гармоническая рассчитывается по формуле. (6.14) Для пяти вариантов: 1, 4, 5, 5 сре

Число степеней свободы
Число степеней свободы равно числу элементов свободного разнообразия в группе. Оно равно числу всех имеющихся элементов изучения без числа ограничений разнообразия. Например, для исследова

Коэффициент вариации
Стандартное отклонение – величина именованная, выраженная в тех же единицах измерения, как и средняя арифметическая. Поэтому для сравнения разных признаков, выраженных в разных единицах из

Лимиты и размах
Для быстрой и примерной оценки степени разнообразия часто применяются простейшие показатели: lim = {min ¸ max} – лимиты, т. е. наименьшее и наибольшее значения признака, p =

Нормированное отклонение
Обычно степень развития признака определяется путем его измерения и выражается определенным именованным числом: 3 кг веса, 15 см длины, 20 зацепок на крыле у пчел, 4% жира в молоке, 15 кг настрига

Средняя и сигма суммарной группы
Иногда бывает необходимо определить среднюю и сигму для суммарного распределения, составленного из нескольких распределений. При этом известны не сами распределения, а только их средние и сигмы.

Скошенность (асимметрия) и крутизна (эксцесс) кривой распределения
Для больших выборок (n > 100) вычисляют еще два статистических показателя. Скошенность кривой называется асимметрией:

Вариационный ряд
По мере увеличения численности изучаемых групп все более и более проявляется та закономерность в разнообразии, которая в малочисленных группах была скрыта случайной формой своего проявления.

Гистограмма и вариационная кривая
Гистограмма – это вариационный ряд, представленный в виде диаграммы, в которой различная величина частот изображается различной высотой столбиков. Гистограмма распределения данных представлена на р

Достоверность различия распределений
Статистическая гипотеза – это определённое предположение о распределении вероятностей, лежащем в основе наблюдаемой выборки данных. Проверка статистической гипотезы – это процесс принятия

Критерий по асимметрии и эксцессу
Некоторые признаки растений, животных и микроорганизмов при объединении объектов в группы дают распределения, значительно отличающиеся от нормального. В тех случаях, когда какие-нибудь при

Генеральная совокупность и выборка
Весь массив особей определенной категории называется генеральной совокупностью. Объем генеральной совокупности определяется задачами исследования. Если изучается какой-нибудь вид диких жив

Репрезентативность
Непосредственное изучение группы отобранных объектов дает, прежде всего, первичный материал и характеристику самой выборки. Все выборочные данные и сводные показатели имеют значение в каче

Ошибки репрезентативности и другие ошибки исследований
Оценка генеральных параметров по выборочным показателям имеет свои особенности. Часть никогда не может полностью охарактеризовать все целое, поэтому характеристика генеральной совокупности

Доверительные границы
Определять величину ошибок репрезентативности необходимо для того, чтобы выборочные показатели использовать еще и для нахождения возможных значений генеральных параметров. Этот процесс называется о

Общий порядок оценки
Три величины, необходимые для оценки генерального параметра, – выборочный показатель (), критерий надежности

Оценка средней арифметической
Оценка средней величины имеет целью установить величину генеральной средней для изученной категории объектов. Требуемая для этой цели ошибка репрезентативности определяется по формуле:

Оценка средней разности
В некоторых исследованиях в качестве первичных данных берется разность двух измерений. Это может быть в случае, когда каждая особь выборки изучается в двух состояниях – или в разном возрасте, или п

Недостоверная и достоверная оценка средней разности
Такие результаты выборочных исследований, по которым нельзя получить никакой определенной оценки генерального параметра (или он больше нуля, или меньше, или равен нулю), называются недостоверными.

Оценка разности генеральных средних
В биологических исследованиях особое значение имеет разность двух величин. По разности ведется сравнение разных популяций, рас, пород, сортов, линий, семейств, опытных и контрольных групп (метод гр

Критерий достоверности разности
При том большом значении, которое имеет для исследователей получение достоверных разностей, появляется необходимость овладеть методами, позволяющими определить – достоверна ли полученная, реально с

Репрезентативность при изучении качественных признаков
Качественные признаки обычно не могут иметь градаций проявления: они или имеются, или не имеются у каждой из особей, например пол, комолость, наличие или отсутствие каких-нибудь особенностей, уродс

Достоверность разности долей
Достоверность разности выборочных долей определяется так же, как и для разности средних: (10.34)

Коэффициент корреляции
Во многих исследованиях требуется изучить несколько признаков в их взаимной связи. Если вести такое исследование по отношению к двум признакам, то можно заметить, что изменчивость одного признака н

Ошибка коэффициента корреляции
Как и всякая выборочная величина, коэффициент корреляции имеет свою ошибку репрезентативности, вычисляемую для больших выборок по формуле:

Достоверность выборочного коэффициента корреляции
Критерий выборочного коэффициента корреляции определяется по формуле: (11.9) где:

Доверительные границы коэффициента корреляции
Доверительные границы генерального значения коэффициента корреляции находятся общим способом по формуле:

Достоверность разности двух коэффициентов корреляции
Достоверность разности коэффициентов корреляции определяется так же, как и достоверность разности средних, по обычной формуле

Уравнение прямолинейной регрессии
Прямолинейная корреляция отличается тем, что при этой форме связи каждому из одинаковых изменений первого признака соответствует вполне определенное и тоже одинаковое в среднем изменение другого пр

Ошибки элементов уравнения прямолинейной регрессии
В уравнении простой прямолинейной регрессии: у = а + bх возникают три ошибки репрезентативности. 1 Ошибка коэффициента регрессии:

Частный коэффициент корреляции
Частный коэффициент корреляции – это показатель, измеряющий степень сопряженности двух признаков при постоянном значении третьего. Математическая статистика позволяет установить корреляцию

Линейное уравнение множественной регрессии
Математическое уравнение для прямолинейной зависимости между тремя переменными называется множественным линейным уравнением плоскости регрессии. Оно имеет следующий общий вид:

Корреляционное отношение
Если связь между изучаемыми явлениями существенно отклоняется от линейной, что легко установить по графику, то коэффициент корреляции непригоден в качестве меры связи. Он может указать на отсутстви

Свойства корреляционного отношения
Корреляционное отношение измеряет степень корреляции при любой ее форме. Кроме того, корреляционное отношение обладает рядом других свойств, представляющих большой интерес в статистическом

Ошибка репрезентативности корреляционного отношения
Еще не разработано точной формулы ошибки репрезентативности корреляционного отношения. Обычно приводимая в учебниках формула имеет недостатки, которыми не всегда можно пренебречь. Эта формула не уч

Критерий линейности корреляции
Для определения степени приближения криволинейной зависимости к прямолинейной используется критерий F, вычисляемый по формуле:

Дисперсионный комплекс
Дисперсионный комплекс – это совокупность градаций с привлеченными для исследования данными и средними из данных по каждой градации (частные средние) и по всему комплексу (общая средняя).

Статистические влияния
Статистическое влияние – это отражение в разнообразии результативного признака того разнообразия фактора (его градаций), которое организовано в исследовании. Для оценки влияния фактора нео

Факториальное влияние
Факториальное влияние – это простое или комбинированное статистическое влияние изучаемых факторов. В однофакторных комплексах изучается простое влияние одного фактора при определенных орга

Однофакторный дисперсионный комплекс
Дисперсионный анализ разработан и введен в практику сельскохозяйственных и биологических исследований английским ученым Р. А. Фишером, который открыл закон распределения отношения средних квадратов

Многофакторный дисперсионный комплекс
Ясное представление о математической модели дисперсионного анализа облегчает понимание необходимых вычислительных операций, особенно при обработке данных многофакторных опытов, в которых больше ист

Преобразования
Правильное использование дисперсионного анализа для обработки экспериментального материала предполагает однородность дисперсий по вариантам (выборкам), нормальное или близкое к нему распределение в

Показатели силы влияний
Определение силы влияний по их результатам требуется в биологии, сельском хозяйстве, медицине для выбора наиболее эффективных средств воздействия, для дозировки физических и химических агентов – ст

Ошибка репрезентативности основного показателя силы влияния
Точная формула ошибки основного показателя силы влияния еще не найдена. В однофакторных комплексах, когда ошибка репрезентативности определяется только для одного показателя факториального

Предельные значения показателей силы влияния
Основной показатель силы влияния равен доле одного слагаемого от всей суммы слагаемых. Кроме того, этот показатель равен квадрату корреляционного отношения. По этим двум причинам показатель силы вл

Достоверность влияний
Основной показатель силы влияния, полученный в выборочном исследовании, характеризует, прежде всего, ту степень влияния, которая реально, в действительности, проявилась в группе исследованных объек

Дискриминантный анализ
Дискриминантный анализ является одним из методов многомерного статистического анализа. Цель дискриминантного анализа состоит в том, чтобы на основе измерения различных характеристик (признаков, пар

Постановка задачи, методы решения, ограничения
Предположим, имеется n объектов с m характеристиками. В результате измерений каждый объект характеризуется вектором x1 ... xm, m >1. Задача состоит в том, что

Предположения и ограничения
Дискриминантный анализ «работает» при выполнении ряда предположений. Предположение о том, что наблюдаемые величины – измеряемые характеристики объекта – имеют нормальное распределение. Это

Алгоритм дискриминантного анализа
Решение задач дискриминации (дискриминантный анализ) состоит в разбиении всего выборочного пространства (множества реализации всех рассматриваемых многомерных случайных величин) на некоторое число

Кластерный анализ
Кластерный анализ объединяет различные процедуры, используемые для проведения классификации. В результате применения этих процедур исходная совокупность объектов разделяется на кластеры или группы

Методы кластерного анализа
В практике обычно реализуются агломеративные методы кластеризации. Обычно перед началом классификации данные стандартизуются (вычитается среднее и производится деление на корень квадратный

Алгоритм кластерного анализа
Кластерный анализ – это совокупность методов классификации многомерных наблюдений или объектов, основанных на определении понятия расстояния между объектами с последующим выделением из них групп, &

Множественный коэффициент корреляции характеризует тесноту линейной связи между одной переменной и совокупностью других рассматриваемых переменных.
Особое значение имеет расчет множественного коэффициента корреляции результативного признака y с факторными x 1 , x 2 ,…, x m , формула для определения которого в общем случае имеет вид

где ∆ r – определитель корреляционной матрицы; ∆ 11 – алгебраическое дополнение элемента r yy корреляционной матрицы.
Если рассматриваются лишь два факторных признака, то для вычисления множественного коэффициента корреляции можно использовать следующую формулу:

Построение множественного коэффициента корреляции целесообразно только в том случае, когда частные коэффициенты корреляции оказались значимыми, и связь между результативным признаком и факторами, включенными в модель, действительно существует.

Коэффициент детерминации

Общая формула: R 2 = RSS/TSS=1-ESS/TSS
где RSS - объясненная сумма квадратов отклонений, ESS - необъясненная (остаточная) сумма квадратов отклонений, TSS - общая сумма квадратов отклонений (TSS=RSS+ESS)

,
где r ij - парные коэффициенты корреляции между регрессорами x i и x j , a r i 0 - парные коэффициенты корреляции между регрессором x i и y ;
- скорректированный (нормированный) коэффициент детерминации.

Квадрат множественного коэффициента корреляции называется множественным коэффициентом детерминации ; он показывает, какая доля дисперсии результативного признака y объясняется влиянием факторных признаков x 1 , x 2 , …,x m . Заметим, что формула для вычисления коэффициента детерминации через соотношение остаточной и общей дисперсии результативного признака даст тот же результат.
Множественный коэффициент корреляции и коэффициент детерминации изменяются в пределах от 0 до 1. Чем ближе к 1, тем связь сильнее и, соответственно, тем точнее уравнение регрессии, построенное в дальнейшем, будет описывать зависимость y от x 1 , x 2 , …,x m . Если значение множественного коэффициента корреляции невелико (меньше 0,3), это означает, что выбранный набор факторных признаков в недостаточной мере описывает вариацию результативного признака либо связь между факторными и результативной переменными является нелинейной.

Рассчитывается множественный коэффициент корреляции с помощью калькулятора . Значимость множественного коэффициента корреляции и коэффициента детерминации проверяется с помощью критерия Фишера .

Какое из приведенных чисел может быть значением коэффициента множественной детерминации:
а) 0,4 ;
б) -1;
в) -2,7;
г) 2,7.

Множественный линейный коэффициент корреляции равен 0.75 . Какой процент вариации зависимой переменной у учтен в модели и обусловлен влиянием факторов х 1 и х 2 .
а) 56,2 (R 2 =0.75 2 =0.5625);


  1. Оцените качество построенной модели. Улучшилось ли качество модели по сравнению с однофакторной моделью? Дайте оценку влияния значимых факторов на результат с помощью коэффициентов эластичности, - и -коэффициентов.
Для оценки качества выбранной множественной модели (6) , аналогично п.1.4 данной задачи, используем коэффициент детерминации R - квадрат, среднюю относительную ошибку аппроксимации и F -критерий Фишера.

Коэффициент детерминации R -квадрат возьмем из итогов «Регрессии» (таблица «Регрессионная статистика» для модели (6)).

Следовательно, вариация (изменение) цены квартиры Y на 76,77% объясняется по данному уравнению вариацией города области Х 1 , числа комнат в квартире Х 2 и жилой площади Х 4 .

Используем исходные данные Y i и найденные инструментом «Регрессия» остатки (таблица «Вывод остатка» для модели (6)). Рассчитаем относительные погрешности и найдем среднее значение
.

ВЫВОД ОСТАТКА


Наблюдение

Предсказанное Y

Остатки

Отн. погрешность

1

45,95089273

-7,95089273

20,92340192

2

86,10296493

-23,90296493

38,42920407

3

94,84442678

30,15557322

24,12445858

4

84,17648426

-23,07648426

37,76838667

5

40,2537216

26,7462784

39,91981851

6

68,70572376

24,29427624

26,12287768

7

143,7464899

-25,7464899

21,81905923

8

106,0907598

25,90924022

19,62821228

9

135,357993

-42,85799303

46,33296544

10

114,4792566

-9,47925665

9,027863476

11

41,48765602

0,512343975

1,219866607

12

103,2329236

21,76707636

17,41366109

13

130,3567798

39,64322022

23,3195413

14

35,41901876

2,580981242

6,7920559

15

155,4129693

-24,91296925

19,0903979

16

84,32108188

0,678918123

0,798727204

17

98,0552279

-0,055227902

0,056355002

18

144,2104618

-16,21046182

12,66442329

19

122,8677535

-37,86775351

44,55029825

20

100,0221225

59,97787748

37,48617343

21

53,27196558

6,728034423

11,21339071

22

35,06605378

5,933946225

14,47303957

23

114,4792566

-24,47925665

27,19917406

24

113,1343153

-30,13431529

36,30640396

25

40,43190991

4,568090093

10,15131132

26

39,34427892

-0,344278918

0,882766457

27

144,4794501

-57,57945009

66,25943623

28

56,4827667

-16,4827667

41,20691675

29

95,38240332

-15,38240332

19,22800415

30

228,6988826

-1,698882564

0,748406416

31

222,8067278

12,19327221

5,188626473

32

38,81483144

1,185168555

2,962921389

33

48,36325811

18,63674189

27,81603267

34

126,6080021

-3,608002113

2,933335051

35

84,85052935

15,14947065

15,14947065

36

116,7991162

-11,79911625

11,23725357

37

84,17648426

-13,87648426

19,73895342

38

113,9412801

-31,94128011

38,95278062

39

215,494184

64,50581599

23,03779142

40

141,7795953

58,22040472

29,11020236

Среднее

101,2375

22,51770962

По столбцу относительных погрешностей найдем среднее значение =22.51% (с помощью функции СРЗНАЧ).

Сравнение показывает, что 22.51%>7%. Следовательно, точность модели неудовлетворительная.

С помощью F – критерия Фишера проверим значимость модели в целом. Для этого выпишем из итогов применения инструмента «Регрессия» (таблица «дисперсионный анализ» для модели (6)) F = 39,6702.

С помощью функции FРАСПОБР найдем значение F кр =3.252 для уровня значимости α = 5% , и чисел степеней свободы k 1 = 2 , k 2 = 37 .

F > F кр , следовательно, уравнение модели (6) является значимым, его использование целесообразно, зависимая переменная Y достаточно хорошо описывается включенными в модель (6) факторными переменными Х 1 , Х 2 . и Х 4 .

Дополнительно с помощью t –критерия Стьюдента проверим значимость отдельных коэффициентов модели.

t –статистики для коэффициентов уравнения регрессии приведены в итогах инструмента «Регрессия». Получены следующие значения для выбранной модели (6) :


Коэффициенты

Стандартная ошибка

t-статистика

P-Значение

Нижние 95%

Верхние 95%

Нижние 95,0%

Верхние 95,0%

Y-пересечение

-5,643572321

12,07285417

-0,46745966

0,642988

-30,1285

18,84131

-30,1285

18,84131

X4

2,591405557

0,461440597

5,61590284

2,27E-06

1,655561

3,52725

1,655561

3,52725

X1

6,85963077

9,185748512

0,74676884

0,460053

-11,7699

25,48919

-11,7699

25,48919

X2

-1,985156991

7,795346067

-0,25465925

0,800435

-17,7949

13,82454

-17,7949

13,82454

Критическое значение t кр найдено для уровня значимости α=5% и числа степеней свободы k =40–2–1=37 . t кр =2.026 (функция СТЬЮДРАСПОБР).

Для свободного коэффициента α =–5.643 определена статистика
, t кр , следовательно, свободный коэффициент не является значимым, его можно исключить из модели.

Для коэффициента регрессии β 1 =6.859 определена статистика
, β 1 не является значимым, его и фактор города области можно удалить из модели.

Для коэффициента регрессии β 2 =-1,985 определена статистика
, t кр , следовательно, коэффициент регрессии β 2 не является значимым, его и фактор числа комнат в квартире можно исключить из модели.

Для коэффициента регрессии β 4 =2.591 определена статистика
, >t кр, следовательно, коэффициент регрессии β 4 является значимым, его и фактор жилой площади квартиры можно сохранить в модели.

Выводы о значимости коэффициентов модели сделаны на уровне значимости α=5% . Рассматривая столбец «P-значение», отметим, что свободный коэффициент α можно считать значимым на уровне 0.64 = 64%; коэффициент регрессии β 1 – на уровне 0,46 = 46%; коэффициент регрессии β 2 – на уровне 0,8 = 80%; а коэффициент регрессии β 4 – на уровне 2,27E-06= 2,26691790951854E-06 = 0,0000002%.

При добавлении в уравнение новых факторных переменных автоматически увеличивается коэффициент детерминации R 2 и уменьшается средняя ошибка аппроксимации, хотя при этом не всегда улучшается качество модели. Поэтому для сравнения качества модели (3) и выбранной множественной модели (6) используем нормированные коэффициенты детерминации.

Таким образом, при добавлении в уравнение регрессии фактора «город области» Х 1 и фактора «число комнат в квартире» Х 2 качество модели ухудшилось, что говорит в пользу удаления факторов Х 1 и Х 2 из модели.

Проведем дальнейшие расчеты.

Средние коэффициенты эластичности в случае линейной модели определяются формулами
.

С помощью функции СРЗНАЧ найдем: S Y , при увеличении только фактора Х 4 на одно его стандартное отклонение – увеличивается на 0,914 S Y

Дельта-коэффициенты определяются формулами
.

Найдем коэффициенты парной корреляции с использованием инструмента «Корреляция» пакета «Анализ данных» в Excel.


Y

X1

X2

X4

Y

1

X1

-0,01126

1

X2

0,751061

-0,0341

1

X4

0,874012

-0,0798

0,868524

1

Коэффициент детерминации был определен ранее и равен 0.7677.

Вычислим дельта-коэффициенты:

;

Поскольку Δ 1 1 и Х 2 выбрана неудачно, и их нужно удалить из модели. Значит, по уравнению полученной линейной трехфакторной модели изменение результирующего фактора Y (цены квартиры) на 104% объясняется воздействием фактора Х 4 (жилой площадью квартиры), на 4% воздействием фактора Х 2 (число комнат), на 0,0859% воздействием фактора Х 1 (город области).

При изучении сложных явлений необходимо учитывать более двух случайных факторов. Правильное представление о природе связи между этими факторами можно получить только в том случае, если подвергнуть исследованию сразу все рассматриваемые случайные факторы. Совместное изучение трех и более случайных факторов позволит исследователю установить более или менее обоснованные предположения о причинных зависимостях между изучаемыми явлениями. Простой формой множественной связи является ли­нейная зависимость между тремя признаками. Случайные факторы обозначаются как X 1 , X 2 и X 3 . Парный коэффициенты корреляции между X 1 и X 2 обозначается как r 12 , соответственно между X 1 и X 3 - r 12 , между X 2 и X 3 - r 23 . В качестве меры тесноты линей­ной связи трех признаков используют множественные ко­эф-фициенты корреляции, обозначаемые R 1 ּ 23 , R 2 ּ 13 , R 3 ּ 12 и частные коэффициенты корреляции, обозначаемые r 12.3 , r 13.2 , r 23.1 .

Множественный коэффициент корреляции R 1.23 трех факторов - это показатель тесноты линейной свя­зи между одним из факторов (индекс перед точкой) и совокупностью двух других факторов (индексы после точ­ки).

Значения коэффициента R всегда находятся в преде­лах от 0 до 1. При приближении R к единице степень линейной связи трех признаков увеличивается.

Между коэффициентом множественной корреляции, например R 2 ּ 13 , и двумя коэффициентами парной корреляции r 12 и r 23 существует соот­ношение: каждый из парных коэффициентов не может превы­шать по абсолютной величине R 2 ּ 13 .

Формулы для вычисления множественных коэффициентов корреляции при известных значениях коэффициен­тов парной корреляции r 12 , r 13 и r 23 имеют вид:

Квадрат коэффициента множественной корреляции R 2 назы­вается коэффициентом множественной детерминации. Он пока­зывает долю вариации зависимой переменной под воздействием изучаемых факторов.

Значимость множественной корреляции оценивается по F -критерию:

n – объем выборки; k – число факторов. В нашем случае k = 3.

нулевая гипотеза о равенстве множественного коэффициента корреляции в совокупности нулю (h o :r =0)принимается, если f ф <f t , и отвергается, если
f ф ³ f т.

теоретическое значение f -критерия определяется для v 1 = k - 1 и v 2 = n - k степеней свободы и принятого уровня значимости a (при­ложение 1).

Пример вычисления коэффициента множественной корреляции . При изучении взаимосвязи между факторами были получены коэффициенты парной корреляции (n =15): r 12 ==0,6; г 13 = 0,3; r 23 = - 0,2.

Необходимо выяснить зависимость признака X 2 от признака X 1 и X 3 , т. е. рассчитать коэффициент множественной кор­реляции:

Табличное значение F -критерия при n 1 = 2 и n 2 = 15 – 3 = 12 степенях свободы при a = 0,05 F 0,05 = 3,89 и при a = 0,01 F 0,01 = 6,93.

Таким образом, взаимосвязь между признаками R 2.13 = 0,74 значима на
1%-ном уровне значимости F ф > F 0,01 .

Судя по коэффициенту множественной детерминации R 2 = (0,74) 2 = 0,55, вариация признака X 2 на 55% связана с действием изучаемых факторов, а 45% вариации (1-R 2) не может быть объяснено влиянием этих переменных.

Частная линейная корреляция

Частный коэффициент корреляции - это показа­тель, измеряющий степень сопряженности двух признаков.

Математическая статистика позволяет установить корреля­цию между двумя признаками при постоянном значении третье­го, не ставя специального эксперимента, а используя парные ко­эффициенты корреляции r 12 , r 13 , r 23 .

Частные коэффициенты корреляции рассчитывают по формулам:

Цифры перед точкой указывают, между ка­кими признаками изучается зависимость, а цифра после точки - влияние какого признака исключается (элиминируется). Ошиб­ку и критерий значимости частной корреляции определяют по тем же формулам, что и парной корреляции:

.

Теоретическое значение t- критерия определяется для v = n – 2 степеней свободы и принятого уровня значимости a (при­ложение 1).

Нулевая гипотеза о равенстве частного коэффициента корреляции в совокупности нулю (H o : r = 0)принимается, если t ф < t т, и отвергается, если
t ф ³ t т.

Частные коэф­фициенты могут принимать значения, заключенные между -1 и+1. Частные коэффициенты детерминации находят путем возве­дения в квадрат частных коэффициентов корреляции:

D 12.3 = r 2 12ּ3 ; d 13.2 = r 2 13ּ2 ; d 23ּ1 = r 2 23ּ1 .

Определение степени частного воздействия отдельных факторов на результативный признак при исключении (элимини­ровании) связи его с другими признаками, искажающими эту корреляцию, часто представляет большой интерес. Иногда бывает, что при постоянном значении элиминируемого признака нельзя подметить его статистического влияния на изменчивость других признаков. Чтобы уяснить технику расчета частного коэффици­ента корреляции, рассмотрим пример. Имеются три параметра X , Y и Z . Для объема выборки n = 180 определены парные коэффициенты корреляции

r xy = 0,799; r xz = 0,57; r yz = 0,507.

Определим частные ко­эффициенты корреляции:

Частный коэффициент корреляции между параметром X и Y Z (r хуּz = 0,720) показывает, что лишь незначительная часть взаимосвязи этих признаков в общей корреляции (r xy = 0,799) обусловлена влиянием третьего признака (Z ). Аналогичное заключение необходимо сделать и в отношении частного коэффициента корреляции между параметром X и параметром Z с постоянным значением параметраY (r х z ּу = 0,318 и r xz = 0,57). Напротив, частный коэффициент корреляции между параметрами Y и Z с постоянным значением параметра X r yz ּx = 0,105 значительно от­личается от общего коэффициента корреляции r у z = 0,507. Из это­го видно, что если подобрать объекты с одинаковым значением параметра X , то связь между признаками Y и Z у них будет очень слабой, так как значительная часть в этой взаимосвязи обуслов­лена варьированием параметра X .

При некоторых обстоятельствах частный коэффициент корре­ляции может оказаться противоположным по знаку парному.

Например, при изучении взаимосвязи между признаками X, У и Z - были получены парные коэффициенты корреляции (при n = 100): r ху = 0,6; r х z = 0,9;
r у z = 0,4.

Частные коэффициенты корреляции при исключении влияния третьего признака:

Из примера видно, что значения парного коэффициента и частного коэффициента корреляции разнятся в знаке.

Метод частной корреляции дает возможность вычислить частный коэффициент корреляции второго порядка. Этот коэф­фициент указывает на взаимосвязь между первым и вторым признаком при постоянном значении третьего и четвертого. Оп­ределение частного коэффициента второго порядка ведут на ос­нове частных коэффициентов первого порядка по формуле:

где r 12 . 4 , r 13 ּ4 , r 23 ּ4 - частные коэффициенты, значение кото­рых определяют по формуле частного коэффициента, используя коэффициенты парной корреляции r 12 , r 13 , r 14 , r 23 , r 24 , r 34 .

Регрессионный анализ — это статистический метод исследования, позволяющий показать зависимость того или иного параметра от одной либо нескольких независимых переменных. В докомпьютерную эру его применение было достаточно затруднительно, особенно если речь шла о больших объемах данных. Сегодня, узнав как построить регрессию в Excel, можно решать сложные статистические задачи буквально за пару минут. Ниже представлены конкретные примеры из области экономики.

Виды регрессии

Само это понятие было введено в математику в 1886 году. Регрессия бывает:

  • линейной;
  • параболической;
  • степенной;
  • экспоненциальной;
  • гиперболической;
  • показательной;
  • логарифмической.

Пример 1

Рассмотрим задачу определения зависимости количества уволившихся членов коллектива от средней зарплаты на 6 промышленных предприятиях.

Задача. На шести предприятиях проанализировали среднемесячную заработную плату и количество сотрудников, которые уволились по собственному желанию. В табличной форме имеем:

Количество уволившихся

Зарплата

30000 рублей

35000 рублей

40000 рублей

45000 рублей

50000 рублей

55000 рублей

60000 рублей

Для задачи определения зависимости количества уволившихся работников от средней зарплаты на 6 предприятиях модель регрессии имеет вид уравнения Y = а 0 + а 1 x 1 +…+а k x k , где х i — влияющие переменные, a i — коэффициенты регрессии, a k — число факторов.

Для данной задачи Y — это показатель уволившихся сотрудников, а влияющий фактор — зарплата, которую обозначаем X.

Использование возможностей табличного процессора «Эксель»

Анализу регрессии в Excel должно предшествовать применение к имеющимся табличным данным встроенных функций. Однако для этих целей лучше воспользоваться очень полезной надстройкой «Пакет анализа». Для его активации нужно:

  • с вкладки «Файл» перейти в раздел «Параметры»;
  • в открывшемся окне выбрать строку «Надстройки»;
  • щелкнуть по кнопке «Перейти», расположенной внизу, справа от строки «Управление»;
  • поставить галочку рядом с названием «Пакет анализа» и подтвердить свои действия, нажав «Ок».

Если все сделано правильно, в правой части вкладки «Данные», расположенном над рабочим листом «Эксель», появится нужная кнопка.

в Excel

Теперь, когда под рукой есть все необходимые виртуальные инструменты для осуществления эконометрических расчетов, можем приступить к решению нашей задачи. Для этого:

  • щелкаем по кнопке «Анализ данных»;
  • в открывшемся окне нажимаем на кнопку «Регрессия»;
  • в появившуюся вкладку вводим диапазон значений для Y (количество уволившихся работников) и для X (их зарплаты);
  • подтверждаем свои действия нажатием кнопки «Ok».

В результате программа автоматически заполнит новый лист табличного процессора данными анализа регрессии. Обратите внимание! В Excel есть возможность самостоятельно задать место, которое вы предпочитаете для этой цели. Например, это может быть тот же лист, где находятся значения Y и X, или даже новая книга, специально предназначенная для хранения подобных данных.

Анализ результатов регрессии для R-квадрата

В Excel данные полученные в ходе обработки данных рассматриваемого примера имеют вид:

Прежде всего, следует обратить внимание на значение R-квадрата. Он представляет собой коэффициент детерминации. В данном примере R-квадрат = 0,755 (75,5%), т. е. расчетные параметры модели объясняют зависимость между рассматриваемыми параметрами на 75,5 %. Чем выше значение коэффициента детерминации, тем выбранная модель считается более применимой для конкретной задачи. Считается, что она корректно описывает реальную ситуацию при значении R-квадрата выше 0,8. Если R-квадрата<0,5, то такой анализа регрессии в Excel нельзя считать резонным.

Анализ коэффициентов

Число 64,1428 показывает, каким будет значение Y, если все переменные xi в рассматриваемой нами модели обнулятся. Иными словами можно утверждать, что на значение анализируемого параметра оказывают влияние и другие факторы, не описанные в конкретной модели.

Следующий коэффициент -0,16285, расположенный в ячейке B18, показывает весомость влияния переменной Х на Y. Это значит, что среднемесячная зарплата сотрудников в пределах рассматриваемой модели влияет на число уволившихся с весом -0,16285, т. е. степень ее влияния совсем небольшая. Знак «-» указывает на то, что коэффициент имеет отрицательное значение. Это очевидно, так как всем известно, что чем больше зарплата на предприятии, тем меньше людей выражают желание расторгнуть трудовой договор или увольняется.

Множественная регрессия

Под таким термином понимается уравнение связи с несколькими независимыми переменными вида:

y=f(x 1 +x 2 +…x m) + ε, где y — это результативный признак (зависимая переменная), а x 1 , x 2 , …x m — это признаки-факторы (независимые переменные).

Оценка параметров

Для множественной регрессии (МР) ее осуществляют, используя метод наименьших квадратов (МНК). Для линейных уравнений вида Y = a + b 1 x 1 +…+b m x m + ε строим систему нормальных уравнений (см. ниже)

Чтобы понять принцип метода, рассмотрим двухфакторный случай. Тогда имеем ситуацию, описываемую формулой

Отсюда получаем:

где σ — это дисперсия соответствующего признака, отраженного в индексе.

МНК применим к уравнению МР в стандартизируемом масштабе. В таком случае получаем уравнение:

в котором t y , t x 1, … t xm — стандартизируемые переменные, для которых средние значения равны 0; β i — стандартизированные коэффициенты регрессии, а среднеквадратическое отклонение — 1.

Обратите внимание, что все β i в данном случае заданы, как нормируемые и централизируемые, поэтому их сравнение между собой считается корректным и допустимым. Кроме того, принято осуществлять отсев факторов, отбрасывая те из них, у которых наименьшие значения βi.

Задача с использованием уравнения линейной регрессии

Предположим, имеется таблица динамики цены конкретного товара N в течение последних 8 месяцев. Необходимо принять решение о целесообразности приобретения его партии по цене 1850 руб./т.

номер месяца

название месяца

цена товара N

1750 рублей за тонну

1755 рублей за тонну

1767 рублей за тонну

1760 рублей за тонну

1770 рублей за тонну

1790 рублей за тонну

1810 рублей за тонну

1840 рублей за тонну

Для решения этой задачи в табличном процессоре «Эксель» требуется задействовать уже известный по представленному выше примеру инструмент «Анализ данных». Далее выбирают раздел «Регрессия» и задают параметры. Нужно помнить, что в поле «Входной интервал Y» должен вводиться диапазон значений для зависимой переменной (в данном случае цены на товар в конкретные месяцы года), а в «Входной интервал X» — для независимой (номер месяца). Подтверждаем действия нажатием «Ok». На новом листе (если так было указано) получаем данные для регрессии.

Строим по ним линейное уравнение вида y=ax+b, где в качестве параметров a и b выступают коэффициенты строки с наименованием номера месяца и коэффициенты и строки «Y-пересечение» из листа с результатами регрессионного анализа. Таким образом, линейное уравнение регрессии (УР) для задачи 3 записывается в виде:

Цена на товар N = 11,714* номер месяца + 1727,54.

или в алгебраических обозначениях

y = 11,714 x + 1727,54

Анализ результатов

Чтобы решить, адекватно ли полученное уравнения линейной регрессии, используются коэффициенты множественной корреляции (КМК) и детерминации, а также критерий Фишера и критерий Стьюдента. В таблице «Эксель» с результатами регрессии они выступают под названиями множественный R, R-квадрат, F-статистика и t-статистика соответственно.

КМК R дает возможность оценить тесноту вероятностной связи между независимой и зависимой переменными. Ее высокое значение свидетельствует о достаточно сильной связи между переменными «Номер месяца» и «Цена товара N в рублях за 1 тонну». Однако, характер этой связи остается неизвестным.

Квадрат коэффициента детерминации R 2 (RI) представляет собой числовую характеристику доли общего разброса и показывает, разброс какой части экспериментальных данных, т.е. значений зависимой переменной соответствует уравнению линейной регрессии. В рассматриваемой задаче эта величина равна 84,8%, т. е. статистические данные с высокой степенью точности описываются полученным УР.

F-статистика, называемая также критерием Фишера, используется для оценки значимости линейной зависимости, опровергая или подтверждая гипотезу о ее существовании.

(критерий Стьюдента) помогает оценивать значимость коэффициента при неизвестной либо свободного члена линейной зависимости. Если значение t-критерия > t кр, то гипотеза о незначимости свободного члена линейного уравнения отвергается.

В рассматриваемой задаче для свободного члена посредством инструментов «Эксель» было получено, что t=169,20903, а p=2,89Е-12, т. е. имеем нулевую вероятность того, что будет отвергнута верная гипотеза о незначимости свободного члена. Для коэффициента при неизвестной t=5,79405, а p=0,001158. Иными словами вероятность того, что будет отвергнута верная гипотеза о незначимости коэффициента при неизвестной, равна 0,12%.

Таким образом, можно утверждать, что полученное уравнение линейной регрессии адекватно.

Задача о целесообразности покупки пакета акций

Множественная регрессия в Excel выполняется с использованием все того же инструмента «Анализ данных». Рассмотрим конкретную прикладную задачу.

Руководство компания «NNN» должно принять решение о целесообразности покупки 20 % пакета акций АО «MMM». Стоимость пакета (СП) составляет 70 млн американских долларов. Специалистами «NNN» собраны данные об аналогичных сделках. Было принято решение оценивать стоимость пакета акций по таким параметрам, выраженным в миллионах американских долларов, как:

  • кредиторская задолженность (VK);
  • объем годового оборота (VO);
  • дебиторская задолженность (VD);
  • стоимость основных фондов (СОФ).

Кроме того, используется параметр задолженность предприятия по зарплате (V3 П) в тысячах американских долларов.

Решение средствами табличного процессора Excel

Прежде всего, необходимо составить таблицу исходных данных. Она имеет следующий вид:

  • вызывают окно «Анализ данных»;
  • выбирают раздел «Регрессия»;
  • в окошко «Входной интервал Y» вводят диапазон значений зависимых переменных из столбца G;
  • щелкают по иконке с красной стрелкой справа от окна «Входной интервал X» и выделяют на листе диапазон всех значений из столбцов B,C, D, F.

Отмечают пункт «Новый рабочий лист» и нажимают «Ok».

Получают анализ регрессии для данной задачи.

Изучение результатов и выводы

«Собираем» из округленных данных, представленных выше на листе табличного процессора Excel, уравнение регрессии:

СП = 0,103*СОФ + 0,541*VO - 0,031*VK +0,405*VD +0,691*VZP - 265,844.

В более привычном математическом виде его можно записать, как:

y = 0,103*x1 + 0,541*x2 - 0,031*x3 +0,405*x4 +0,691*x5 - 265,844

Данные для АО «MMM» представлены в таблице:

Подставив их в уравнение регрессии, получают цифру в 64,72 млн американских долларов. Это значит, что акции АО «MMM» не стоит приобретать, так как их стоимость в 70 млн американских долларов достаточно завышена.

Как видим, использование табличного процессора «Эксель» и уравнения регрессии позволило принять обоснованное решение относительно целесообразности вполне конкретной сделки.

Теперь вы знаете, что такое регрессия. Примеры в Excel, рассмотренные выше, помогут вам в решение практических задач из области эконометрики.

Поделитесь с друзьями или сохраните для себя:

Загрузка...