Найти матрицу парных коэффициентов корреляции. Коэффициент парной корреляции в Excel

Коллинеарными являются факторы …

И коллинеарны.

4. В модели множественной регрессии определитель матрицы парных коэффициентов корреляции между факторами , и близок к нулю. Это означает, что факторы , и … мультиколлинеарность факторов.

5. Для эконометрической модели линейного уравнения множественной регрессии вида построена матрица парных коэффициентов линейной корреляции (y – зависимая переменная; х (1) , х (2) , х (3) , x (4) – независимые переменные):


Коллинеарными (тесно связанными) независимыми (объясняющими) переменными не являются x (2) и x (3)

1. Дана таблица исходных данных для построения эконометрической регрессионной модели:

Фиктивными переменными не являются

стаж работы

производительность труда

2. При исследовании зависимости потребления мяса от уровня дохода и пола потребителя можно рекомендовать …

использовать фиктивную переменную – пол потребителя

разделить совокупность на две: для потребителей женского пола и для потребителей мужского пола

3. Изучается зависимость цены квартиры (у ) от ее жилой площади (х ) и типа дома. В модель включены фиктивные переменные, отражающие рассматриваемые типы домов: монолитный, панельный, кирпичный. Получено уравнение регрессии: ,
где ,
Частными уравнениями регрессии для кирпичного и монолитного являются …

для типа дома кирпичный

для типа дома монолитный

4. При анализе промышленных предприятий в трех регионах (Республика Марий Эл, Республика Чувашия, Республика Татарстан) были построены три частных уравнения регрессии:

для Республики Марий Эл;

для Республики Чувашия;

для Республики Татарстан.

Укажите вид фиктивных переменных и уравнение с фиктивными переменными, обобщающее три частных уравнения регрессии.

5. В эконометрике фиктивной переменной принято считать …

переменную, принимающую значения 0 и 1

описывающую количественным образом качественный признак

1. Для регрессионной модели зависимости среднедушевого денежного дохода населения (руб., у ) от объема валового регионального продукта (тыс. р., х 1 ) и уровня безработицы в субъекте (%, х 2 ) получено уравнение . Величина коэффициента регрессии при переменной х 2 свидетельствует о том, что при изменении уровня безработицы на 1% среднедушевой денежный доход ______ рубля при неизменной величине валового регионального продукта.

изменится на (-1,67)

2. В уравнении линейной множественной регрессии: , где – стоимость основных фондов (тыс. руб.); – численность занятых (тыс. чел.); y – объем промышленного производства (тыс. руб.) параметр при переменной х 1 , равный 10,8, означает, что при увеличении объема основных фондов на _____ объем промышленного производства _____ при постоянной численности занятых.


на 1 тыс. руб. … увеличится на 10,8 тыс. руб.

3. Известно, что доля остаточной дисперсии зависимой переменной в ее общей дисперсии равна 0,2. Тогда значение коэффициента детерминации составляет … 0,8

4. Построена эконометрическая модель для зависимости прибыли от реализации единицы продукции (руб., у ) от величины оборотных средств предприятия (тыс. р., х 1 ): . Следовательно, средний размер прибыли от реализации, не зависящий от объема оборотных средств предприятия, составляет _____ рубля. 10,75

5. F-статистика рассчитывается как отношение ______ дисперсии к ________ дисперсии, рассчитанных на одну степень свободы. факторной … остаточной

1. Для эконометрической модели уравнения регрессии ошибка модели определяется как ______ между фактическим значением зависимой переменной и ее расчетным значением. Разность

2. Величина называется … случайной составляющей

3. В эконометрической модели уравнения регрессии величина отклонения фактического значения зависимой переменной от ее расчетного значения характеризует … ошибку модели

4. Известно, что доля объясненной дисперсии в общей дисперсии равна 0,2. Тогда значение коэффициента детерминации составляет … 0,2

5. При методе наименьших квадратов параметры уравнения парной линейной регрессии определяются из условия ______ остатков . минимизации суммы квадратов

1. Для обнаружения автокорреляции в остатках используется …

статистика Дарбина – Уотсона

2. Известно, что коэффициент автокорреляции остатков первого порядка равен –0,3. Также даны критические значения статистики Дарбина – Уотсона для заданного количества параметров при неизвестном и количестве наблюдений , . По данным характеристикам можно сделать вывод о том, что …автокорреляция остатков отсутствует

1. Рассчитать матрицу парных коэффициентов корреляции; проанализировать тесноту и направление связи результирующего признака Y с каждым из факторов Х ; оценить статистическую значимость коэффициентов корреляции r (Y , X i); выбрать наиболее информативный фактор.

2. Построить модель парной регрессии с наиболее информативным фактором; дать экономическую интерпретацию коэффициента регрессии.

3. Оценить качество модели с помощью средней относительной ошибки аппроксимации, коэффициента детерминации и F – критерия Фишера (принять уровень значимости α=0,05).

4. С доверительной вероятностью γ=80% осуществить прогнозирование среднего значения показателя Y (прогнозные значения факторов приведены в Приложении 6). Представить графически фактические и модельные значения Y , результаты прогнозирования.

5. Методом включения построить двухфакторные модели, сохраняя в них наиболее информативный фактор; построить трехфакторную модель с полным перечнем факторов.

6. Выбрать лучшую из построенных множественных моделей. Дать экономическую интерпретацию ее коэффициентов.

7. Проверить значимость коэффициентов множественной регрессии с помощью t –критерия Стьюдента (принять уровень значимости α=0,05). Улучшилось ли качество множественной модели по сравнению с парной?

8. Дать оценку влияния факторов на результат с помощью коэффициентов эластичности, бета– и дельта– коэффициентов.

Задача 2. Моделирование одномерного временного ряда

В Приложении 7 приведены временные ряды Y(t) социально-экономических показателей по Алтайскому краю за период с 2000 г. по 2011 г. Требуется исследовать динамику показателя, соответствующего варианту задания.

Вариант Обозначение, наименование, единица измерения показателя
Y1 Потребительские расходы в среднем на душу населения (в месяц), руб.
Y2 Выбросы загрязняющих веществ в атмосферный воздух, тыс. тонн
Y3 Средние цены на вторичном рынке жилья (на конец года, за квадратный метр общей площади), руб
Y4 Объем платных услуг на душу населения, руб
Y5 Среднегодовая численность занятых в экономике, тыс. человек
Y6 Число собственных легковых автомобилей на 1000 человек населения (на конец года), штук
Y7 Среднедушевые денежные доходы (в месяц), руб
Y8 Индекс потребительских цен (декабрь к декабрю предыдущего года), %
Y9 Инвестиции в основной капитал (в фактически действовавших ценах), млн. руб
Y10 Оборот розничной торговли на душу населения (в фактически действовавших ценах), руб


Порядок выполнения работы

1. Построить линейную модель временного ряда , параметры которой оценить МНК. Пояснить смысл коэффициента регрессии.

2. Оценить адекватность построенной модели, используя свойства случайности, независимости и соответствия остаточной компоненты нормальному закону распределения.

3. Оценить точность модели на основе использования средней относительной ошибки аппроксимации.

4. Осуществить прогнозирование рассматриваемого показателя на год вперед (прогнозный интервал рассчитать при доверительной вероятности 70%).

5. Представить графически фактические значения показателя, результаты моделирования и прогнозирования.

6. Провести расчет параметров логарифмического, полиномиального (полином 2-й степени), степенного, экспоненциального и гиперболического трендов. На основании графического изображения и значения индекса детерминации выбрать наиболее подходящий вид тренда.

7. С помощью лучшей нелинейной модели осуществить точечное прогнозирование рассматриваемого показателя на год вперед. Сопоставить полученный результат с доверительным прогнозным интервалом, построенным при использовании линейной модели.

ПРИМЕР

Выполнения контрольной работы

Задача 1

Фирма занимается реализацией подержанных автомобилей. Наименования показателей и исходные данные для эконометрического моделирования представлены в таблице:

Цена реализации, тыс.у.е. (Y ) Цена нового авт., тыс.у.е. (Х1 ) Срок эксплуатации, годы (Х2 ) Левый руль - 1, правый руль - 0, (Х3 )
8,33 13,99 3,8
10,40 19,05 2,4
10,60 17,36 4,5
16,58 25,00 3,5
20,94 25,45 3,0
19,13 31,81 3,5
13,88 22,53 3,0
8,80 16,24 5,0
13,89 16,54 2,0
11,03 19,04 4,5
14,88 22,61 4,6
20,43 27,56 4,0
14,80 22,51 3,3
26,05 31,75 2,3

Требуется:

1. Рассчитать матрицу парных коэффициентов корреляции; проанализировать тесноту и направление связи результирующего признака Y с каждым из факторов Х; оценить статистическую значимость коэффициентов корреляции r(Y, X i); выбрать наиболее информативный фактор.

Используем Excel (Данные / Анализ данных / КОРРЕЛЯЦИЯ):

Получим матрицу коэффициентов парной корреляции между всеми имеющимися переменными:

У Х1 Х2 Х3
У
Х1 0,910987
Х2 -0,4156 -0,2603
Х3 0,190785 0,221927 -0,30308

Проанализируем коэффициенты корреляции между результирующим признаком Y и каждым из факторов X j:

> 0, следовательно, между переменными Y и Х 1 наблюдается прямая корреляционная зависимость: чем выше цена нового автомобиля, тем выше цена реализации.

> 0,7 – эта зависимость является тесной.

< 0, значит, между переменными Y и Х 2 наблюдается

обратная корреляционная зависимость: цена реализации ниже для авто-

мобилей с большим сроком эксплуатации.

– эта зависимость умеренная, ближе к слабой.

> 0, значит, между переменными Y и Х 3 наблюдается прямая корреляционная зависимость: цена реализации выше для автомобилей с левым рулем.

< 0,4 – эта зависимость слабая.

Для проверки значимости найденных коэффициентов корреляции используем критерий Стьюдента.

Для каждого коэффициента корреляции вычислим t -статистику по формуле и занесем результаты расчетов в дополнительный столбец корреляционной таблицы:

У Х1 Х2 Х3 t-статистики
У
Х1 0,910987 7,651524603
Х2 -0,4156 -0,2603 1,582847988
Х3 0,190785 0,221927 -0,30308 0,673265587

По таблице критических точек распределения Стъюдента при уровне значимости и числе степеней свободы определим критическое значение (Приложение 1, или функция СТЬЮДРАСПОБР).Y и сроком эксплуатации Х 2 достоверна.

< , следовательно, коэффициент не является значимым. На основании выборочных данных нет оснований утверждать, что зависимость между ценой реализации Y и расположением руля Х 3 достоверна.

Таким образом, наиболее тесная и значимая зависимость наблюдается между ценой реализации Y и ценой нового автомобиля Х 1 ; фактор Х 1 является наиболее информативным.

Матрица парных коэффициентов корреляции

Y X1 X2 X3 X4 X5
Y
X1 0,732705
X2 0,785156 0,706287
X3 0,179211 -0,29849 0,208514
X4 0,667343 0,924333 0,70069 0,299583
X5 0,709204 0,940488 0,691809 0,326602 0,992945

В узлах матрицы находятся парные коэффициенты корреляции, характеризующие тесноту взаимосвязи между факторными признаками. Анализируя эти коэффициенты, отметим, что чем больше их абсолютная величина, тем большее влияние оказывает соответствующий факторный признак на результативный. Анализ полученной матрицы осуществляется в два этапа:

1. Если в первом столбце матрицы есть коэффициенты корреляции, для которых /r / < 0,5, то соответствующие признаки из модели исключаются. В данном случае в первом столбце матрицы коэффициентов корреляции исключается фактор или коэффициент роста уровня инфляции. Данный фактор оказывает меньшее влияние на результативный признак, нежели оставшиеся четыре признака.

2. Анализируя парные коэффициенты корреляции факторных признаков друг с другом, (r XiXj), характеризующие тесноту их взаимосвязи, необходимо оценить их независимость друг от друга, поскольку это необходимое условие для дальнейшего проведения регрессионного анализа. В виду того, что в экономике абсолютно независимых признаков нет, необходимо выделить, по возможности, максимально независимые. Факторные признаки, находящиеся в тесной корреляционной зависимости друг с другом, называются мультиколлинеарными. Включение в модель мультиколлинеарных признаков делает невозможным экономическую интерпретацию регрессионной модели, так как изменение одного фактора влечет за собой изменение факторов с ним связанных, что может привести к «поломке» модели в целом.

Критерий мультиколлениарности факторов выглядит следующим образом:

/r XiXj / > 0,8

В полученной матрице парных коэффициентов корреляции этому критерию отвечают два показателя, находящиеся на пересечении строк и . Из каждой пары этих признаков в модели необходимо оставить один, он должен оказывать большее влияние на результативный признак. В итоге из модели исключаются факторы и , т.е. коэффициент роста себестоимости реализованной продукции и коэффициент роста объёма её реализации.

Итак, в регрессионную модель вводим факторы Х1 и Х2.

Далее осуществляется регрессионный анализ (сервис, анализ данных, регрессия). Вновь составляет таблица исходных данных с факторами Х1 и Х2. Регрессия в целом используется для анализа воздействия на отдельную зависимую переменную значений независимых переменных (факторов) и позволяет корреляционную связь между признаками представить в виде некоторой функциональной зависимости называемой уравнением регрессии или корреляционно-регрессионной моделью.

В результате регрессионного анализа получаем результаты расчета многомерной регрессии. Проанализируем полученные результаты.

Все коэффициенты регрессии значимы по критерию Стьюдента. Коэффициент множественной корреляции R составил 0,925, квадрат этой величины (коэффициент детерминации) означает, что вариация результативного признака в среднем на 85,5% объясняется за счет вариации факторных признаков, включенных в модель. Коэффициент детерминированности характеризует тесноту взаимосвязи между совокупностью факторных признаков и результативным показателем. Чем ближе значение R-квадрат к 1, тем теснее взаимосвязь. В нашем случае показатель, равный 0,855, указывает на правильный подбор факторов и на наличие взаимосвязи факторов с результативным показателем.

Рассматриваемая модель адекватна, поскольку расчетное значение F-критерия Фишера существенно превышает его табличное значение (F набл =52,401; F табл =1,53).

В качестве общего результата проведенного корреляционно-регрессионного анализа выступает множественное уравнение регрессии, которое имеет вид:

Полученное уравнение регрессии отвечает цели корреляционно-регрессионного анализа и является линейной моделью зависимости балансовой прибыли предприятия от двух факторов: коэффициента роста производительности труда и коэффициента имущества производственного назначения.

На основании полученной модели можно сделать вывод о том, что при увеличении уровня производительности труда на 1% к уровню предыдущего периода величина балансовой прибыли возрастет на 0,95 п.п.; увеличение же коэффициента имущества производственного назначения на 1% приведет к росту результативного показателя на 27,9 п.п. Слелдовательно, доминирующее влияние на рост балансовой прибыли оказывает увеличение стоимости имущества производственного назначения (обновление и рост основных средств предприятия).

По множественной регрессионной модели выполняется многофакторный прогноз результативного признака. Пусть известно, что Х1 = 3,0, а Х3 = 0,7. Подставим значения факторных признаков в модель, получим Упр = 0,95*3,0 + 27,9*0,7 – 19,4 = 2,98. Таким образом, при увеличении производительности труда и модернизации основных средств на предприятии балансовая прибыль в 1 квартале 2005 г. по отношению к предыдущему периоду (IV квартал 2004 г.) возрастет на 2,98%.

Первоначально в модель у включают все главные компоненты (в скобках указаны расчетные значения t -критерия):

Качество модели характеризуют: множественный коэффициент детерминации r = 0,517, средняя относительная ошибка аппроксимации = 10,4%, остаточная дисперсия s 2 = 1,79 и F набл = 121. Ввиду того что F набл > F кр =2,85 при α = 0,05, v 1 = 6, v 2 = 14, уравнение регрессии значимо и хотя бы один из коэффициентов регрессии - β 1 , β 2 , β 3 , β 4 - не равен нулю.

Если значимость уравнения регрессии (гипотеза Н 0: β 1 = β 2 = β 3 = β 4 = 0проверялась при α = 0,05, то значимость коэффициентов регрессии, т.е. гипотезы H 0: β j = 0 (j = 1, 2, 3, 4), следует проверять при уровне значимости, большем, чем 0,05, например при α = 0,1. Тогда при α = 0,1, v = 14 величина t кр = 1,76, и значимыми, как следует из уравнения (53.41), являются коэффициенты регрессии β 1 , β 2 , β 3 .

Учитывая, что главные компоненты не коррелированы между собой, можно сразу исключить из уравнения все незначимые коэффициенты, и уравнение примет вид

(53.42)

Сравнив уравнения (53.41) и (53.42), видим, что исключение незначимых главных компонент f 4 и f 5 , не отразилось на значениях коэффициентов уравнения b 0 = 9,52, b 1 = 0,93, b 2 = 0,66 и соответствующих t j (j = 0, 1, 2, 3).

Это обусловлено некоррелированностью главных компонент. Здесь интересна параллель уравнений регрессии по исходным показателям (53.22), (53.23) и главным компонентам (53.41), (53.42).

Уравнение (53.42) значимо, поскольку F набл = 194 > F кр = 3,01, найденного при α = 0,05, v 1 = 4, v 2 = 16. Значимы и коэффициенты уравнения, так как t j > t кр . = 1,746, соответствующего α = 0,01, v = 16 для j = 0, 1, 2, 3. Коэффициент детерминации r = 0,486 свидетельствует о том, что 48,6% вариации у обусловлено влияниемтрех первых главных компонент.

Уравнение (53.42) характеризуется средней относительной ошибкой аппроксимации = 9,99% и остаточной дисперсией s 2 = 1,91.

Уравнение регрессии на главных компонентах (53.42) обладает несколько лучшими аппроксимирующими свойствами по сравнению с регрессионной моделью (53.23) по исходным показателям: r = 0,486 > r = 0,469; = 9,99% < (х ) = 10,5% и s 2 (f) = 1,91 < s 2 (x) = 1,97. Кроме того, в уравнении (53.42) главные компоненты являются линейными функциями всех исходных показателей, в то время как в уравнение (53.23) входят только две переменные (x 1 и х 4 ). В ряде случаев приходится учитывать, что модель (53.42) трудноинтерпретируема, так как в нее входит третья главная компонента f 3 , которая нами не интерпретирована и вклад которой в суммарную дисперсию исходных показателей (x 1 , ..., х 5) составляет всего 8,6%. Однако исключение f 3 из уравнения (53.42) значительно ухудшает аппроксимирующие свойства модели: r = 0,349; = 12,4% и s 2 (f ) = 2,41. Тогда в качестве регрессионной модели урожайности целесообразно выбрать уравнение (53.23).

Кластерный анализ

В статистических исследованиях группировка первичных данных является основным приемом решения задачи классификации, а поэтому и основой всей дальнейшей работы с собранной информацией.

Традиционно эта задача решается следующим образом. Из множества признаков, описывающих объект, отбирается один, наиболее информативный, с точки зрения исследователя, и производится группировка данных в соответствии со значениями этого признака. Если требуется провести классификацию по нескольким признакам, ранжированным между собой по степени важности, то сначала осуществляется классификация по первому признаку, затем каждый из полученных классов разбивается на подклассы по второму признаку и т.д. Подобным образом строится большинство комбинационных статистических группировок.

В тех случаях, когда не представляется возможным упорядочить классификационные признаки, применяется наиболее простой метод многомерной группировки - создание интегрального показателя (индекса), функционально зависящего от исходных признаков, с последующей классификацией по этому показателю.

Развитием этого подхода является вариант классификации по нескольким обобщающим показателям (главным компонентам), полученным с помощью методов факторного или компонентного анализа.

При наличии нескольких признаков (исходных или обобщенных) задача классификации может быть решена методами кластерного анализа, которые отличаются от других методов многомерной классификации отсутствием обучающих выборок, т.е. априорной информации о распределении генеральной совокупности.

Различия между схемами решения задачи по классификации во многом определяются тем, что понимают под понятиями «сходство» и «степень сходства».

После того как сформулирована цель работы, естественно попытаться определить критерии качества, целевую функцию, значения которой позволят сопоставить различные схемы классификации.

В экономических исследованиях целевая функция, как правило, должна минимизировать некоторый параметр, определенный на множестве объектов (например, целью классификации оборудования может явиться группировка, минимизирующая совокупность затрат времени и средств на ремонтные работы).

В случаях когда формализовать цель задачи не удается, критерием качества классификации может служить возможность содержательной интерпретации найденных групп.

Рассмотрим следующую задачу. Пусть исследуется совокупность п объектов, каждый из которых характеризуется k измеренными признаками. Требуется разбить эту совокупность на однородные в некотором смысле группы (классы). При этом практически отсутствует априорная информация о характере распределения k -мерного вектора Х внутри классов.

Полученные в результате разбиения группы обычно называются кластерами* (таксонами**, образами), методы их нахождения - кластер-анализом (соответственно численной таксономией или распознаванием образов с самообучением).

* Clаster (англ.) - группа элементов, характеризуемых каким-либо общимсвойством.

**Тахоп (англ.) - систематизированная группа любой категории.

Необходимо с самого начала четко представлять, какая из двух задач классификации подлежит решению. Если решается обычная задача типизации, то совокупность наблюдений разбивают на сравнительно небольшое число областей группирования (например, интервальный вариационный ряд в случае одномерных наблюдений) так, чтобы элементы одной такой области находились друг от друга по возможности на небольшом расстоянии.

Решение другой задачи заключается в определении естественного расслоения результатов наблюдений на четко выраженные кластеры, лежащие друг от друга на некотором расстоянии.

Если первая задача типизации всегда имеет решение, то во втором случае может оказаться, что множество наблюдений не обнаруживает естественного расслоения на кластеры, т.е. образует один кластер.

Хотя многие методы кластерного анализа довольно элементарны, основная часть работ, в которых они были предложены, относится к последнему десятилетию. Это объясняется тем, что эффективное решение задач поиска кластеров, требующее выполнения большого числа арифметических и логических операций, стало возможным только с возникновением и развитием вычислительной техники.

Обычной формой представления исходных данных в задачах кластерного анализа служит матрица

каждая строка которой представляет результаты измерений k рассматриваемых признаков у одного из обследованных объектов. В конкретных ситуациях может представлять интерес как группировка объектов, так и группировка признаков. В тех случаях, когда разница между двумя этими задачами не существенна, например при описании некоторых алгоритмов, мы будем пользоваться только термином «объект», включая в это понятие и термин «признак».

Матрица Х не является единственным способом представления данных в задачах кластерного анализа. Иногда исходная информация задана в виде квадратной матрицы

элемент r ij которой определяет степень близости i -го объекта к j -му.

Большинство алгоритмов кластерного анализа полностью исходит из матрицы расстояний (или близостей) либо требует вычисления отдельных ее элементов, поэтому если данные представлены в форме X, то первым этапом решения задачи поиска кластеров будет выбор способа вычисления расстояний, или близости, между объектами или признаками.

Несколько проще решается вопрос об определении близости между признаками. Как правило, кластерный анализ признаков преследует те же цели, что и факторный анализ: выделение групп связанных между собой признаков, отражающих определенную сторону изучаемых объектов. Мерой близости в этом случае служат различные статистические коэффициенты связи.


Похожая информация.


1. ПОСТРОИМ МАТРИЦУ КОЭФФИЦИЕНТОВ ПАРНОЙ КОРРЕЛЯЦИИ.

Для этого рассчитаем коэффициенты парной корреляции по формуле:

Необходимые расчеты представлены в таблице 9.

-

связь между выручкой предприятия Y и объемом капиталовложений Х 1 слабая и прямая;

-

связи между выручкой предприятия Y и основными производственными фондами Х 2 практически нет;

-

связь между объемом капиталовложений Х 1 и основными производственными фондами Х 2 тесная и прямая;

Таблица 9

Вспомогательная таблица для расчета коэффициентов парных корреляций

t Y X1 X2

(y-yср)*
(x1-x1ср)

(y-yср)*
(x2-x2ср)

(х1-х1ср)*
(x2-x2ср)

1998 3,0 1,1 0,4 0,0196 0,0484 0,0841 0,0308 0,0406 0,0638
1999 2,9 1,1 0,4 0,0576 0,0484 0,0841 0,0528 0,0696 0,0638
2000 3,0 1,2 0,7 0,0196 0,0144 1E-04 0,0168 -0,0014 -0,0012
2001 3,1 1,4 0,9 0,0016 0,0064 0,0441 -0,0032 -0,0084 0,0168
2002 3,2 1,4 0,9 0,0036 0,0064 0,0441 0,0048 0,0126 0,0168
2003 2,8 1,4 0,8 0,1156 0,0064 0,0121 -0,0272 -0,0374 0,0088
2004 2,9 1,3 0,8 0,0576 0,0004 0,0121 0,0048 -0,0264 -0,0022
2005 3,4 1,6 1,1 0,0676 0,0784 0,1681 0,0728 0,1066 0,1148
2006 3,5 1,3 0,4 0,1296 0,0004 0,0841 -0,0072 -0,1044 0,0058
2007 3,6 1,4 0,5 0,2116 0,0064 0,0361 0,0368 -0,0874 -0,0152
Σ 31,4 13,2 6,9 0,684 0,216 0,569 0,182 -0,036 0,272
Средн. 3,14 1,32 0,69

Также матрицу коэффициентов парных корреляций можно найти в среде Excel с помощью надстройки АНАЛИЗ ДАННЫХ, инструмента КОРРЕЛЯЦИЯ.

Матрица коэффициентов парной корреляции имеет вид:

Y X1 X2
Y 1
X1 0,4735 1
X2 -0,0577 0,7759 1

Матрица парных коэффициентов корреляции показывает, что результативный признак у (выручка) имеет слабую связь с объемом капиталовложений х 1 , а с Размером ОПФ связи практически нет. Связь между факторами в модели оценивается как тесная, что говорит о их линейной зависимости, мультиколлинеарности.

2. ПОСТРОИТЬ ЛИНЕЙНУЮ МОДЕЛЬ МНОЖЕСТВЕННОЙ РЕГРЕССИИ

Параметры модели найдем с помощью МНК. Для этого составим систему нормальных уравнений.

Расчеты представлены в таблице 10.

Решим систему уравнений, используя метод Крамера:

Таблица 10

Вспомогательные вычисления для нахождения параметров линейной модели множественной регрессии

y
3,0 1,1 0,4 1,21 0,44 0,16 3,3 1,2
2,9 1,1 0,4 1,21 0,44 0,16 3,19 1,16
3,0 1,2 0,7 1,44 0,84 0,49 3,6 2,1
3,1 1,4 0,9 1,96 1,26 0,81 4,34 2,79
3,2 1,4 0,9 1,96 1,26 0,81 4,48 2,88
2,8 1,4 0,8 1,96 1,12 0,64 3,92 2,24
2,9 1,3 0,8 1,69 1,04 0,64 3,77 2,32
3,4 1,6 1,1 2,56 1,76 1,21 5,44 3,74
3,5 1,3 0,4 1,69 0,52 0,16 4,55 1,4
3,6 1,4 0,5 1,96 0,7 0,25 5,04 1,8
31,4 13,2 6,9 17,64 9,38 5,33 41,63 21,63

Линейная модель множественной регрессии имеет вид:

Если объем капиталовложений увеличить на 1 млн. руб., то выручка предприятия увеличиться в среднем на 2,317 млн. руб. при неизменных размерах основных производственных фондов.

Если основные производственные фонды увеличить на 1 млн. руб., то выручка предприятия уменьшиться в среднем на 1,171 млн. руб. при неизменном объеме капиталовложений.

3. РАССЧИТАЕМ:

коэффициент детерминации:

67,82% изменения выручки предприятия обусловлено изменением объема капиталовложений и основных производственных фондов, на 32,18% - влиянием факторов, не включенных в модель.

F – критерий Фишера

Проверим значимость уравнения

Табличное значение F – критерия при уровне значимости α = 0,05 и числе степеней свободы d.f. 1 = k = 2 (количество факторов), числе степеней свободы d.f. 2 = (n – k – 1) = (10 – 2 – 1) = 7 составит 4,74.

Так как F расч. = 7,375 > F табл. = 4.74, то уравнение регрессии в целом можно считать статистически значимым.

Рассчитанные показатели можно найти в среде Excel с помощью надстройки АНАЛИЗА ДАННЫХ, инструмента РЕГРЕССИЯ.


Таблица 11

Вспомогательные вычисления для нахождения средней относительной ошибки аппроксимации

y А
3,0 1,1 0,4 2,97 0,03 0,010
2,9 1,1 0,4 2,97 -0,07 0,024
3,0 1,2 0,7 2,85 0,15 0,050
3,1 1,4 0,9 3,08 0,02 0,007
3,2 1,4 0,9 3,08 0,12 0,038
2,8 1,4 0,8 3,20 -0,40 0,142
2,9 1,3 0,8 2,96 -0,06 0,022
3,4 1,6 1,1 3,31 0,09 0,027
3,5 1,3 0,4 3,43 0,07 0,019
3,6 1,4 0,5 3,55 0,05 0,014
0,353

среднюю относительную ошибку аппроксимации

В среднем расчетные значения отличаются от фактических на 3,53 %. Ошибка небольшая, модель можно считать точной.

4. Построить степенную модель множественной регрессии

Для построения данной модели прологарифмируем обе части равенства

lg y = lg a + β 1 ∙ lg x 1 + β 2 ∙ lg x 2 .

Сделаем замену Y = lg y, A = lg a, X 1 = lg x 1 , X 2 = lg x 2 .

Тогда Y = A + β 1 ∙ X 1 + β 2 ∙ X 2 – линейная двухфакторная модель регрессии. Можно применить МНК.

Расчеты представлены в таблице 12.

Таблица 12

Вспомогательные вычисления для нахождения параметров степенной модели множественной регрессии

y lg y
3,0 1,1 0,4 0,041 -0,398 0,477 0,002 -0,016 0,020 0,158 -0,190
2,9 1,1 0,4 0,041 -0,398 0,462 0,002 -0,016 0,019 0,158 -0,184
3,0 1,2 0,7 0,079 -0,155 0,477 0,006 -0,012 0,038 0,024 -0,074
3,1 1,4 0,9 0,146 -0,046 0,491 0,021 -0,007 0,072 0,002 -0,022
3,2 1,4 0,9 0,146 -0,046 0,505 0,021 -0,007 0,074 0,002 -0,023
2,8 1,4 0,8 0,146 -0,097 0,447 0,021 -0,014 0,065 0,009 -0,043
2,9 1,3 0,8 0,114 -0,097 0,462 0,013 -0,011 0,053 0,009 -0,045
3,4 1,6 1,1 0,204 0,041 0,531 0,042 0,008 0,108 0,002 0,022
3,5 1,3 0,4 0,114 -0,398 0,544 0,013 -0,045 0,062 0,158 -0,217
3,6 1,4 0,5 0,146 -0,301 0,556 0,021 -0,044 0,081 0,091 -0,167
31,4 13,2 6,9 1,178 -1,894 4,955 0,163 -0,165 0,592 0,614 -0,943

Решаем систему уравнений применяя метод Крамера.

Степенная модель множественной регрессии имеет вид:

В степенной функции коэффициенты при факторах являются коэффициентами эластичности. Коэффициент эластичности показывает на сколько процентов измениться в среднем значение результативного признака у, если один из факторов увеличить на 1 % при неизменном значении других факторов.

Если объем капиталовложений увеличить на 1%, то выручка предприятия увеличиться в среднем на 0,897% при неизменных размерах основных производственных фондов.

Если основные производственные фонды увеличить на 1%, то выручка предприятия уменьшиться на 0,226% при неизменных капиталовложениях.

5. РАССЧИТАЕМ:

коэффициент множественной корреляции:

Связь выручки предприятия с объемом капиталовложений и основными производственными фондами тесная.

Таблица 13

Вспомогательные вычисления для нахождения коэффициента множественной корреляции, коэффициента детерминации, ср.относ.ошибки аппроксимации степенной модели множественной регрессии

Y

(Y-Y расч.) 2

A
3,0 1,1 0,4 2,978 0,000 0,020 0,007
2,9 1,1 0,4 2,978 0,006 0,058 0,027
3,0 1,2 0,7 2,838 0,026 0,020 0,054
3,1 1,4 0,9 3,079 0,000 0,002 0,007
3,2 1,4 0,9 3,079 0,015 0,004 0,038
2,8 1,4 0,8 3,162 0,131 0,116 0,129
2,9 1,3 0,8 2,959 0,003 0,058 0,020
3,4 1,6 1,1 3,317 0,007 0,068 0,024
3,5 1,3 0,4 3,460 0,002 0,130 0,012
3,6 1,4 0,5 3,516 0,007 0,212 0,023
31,4 13,2 6,9 0,198 0,684 0,342

коэффициент детерминации:

71,06% изменения выручки предприятия в степенной модели обусловлено изменением объема капиталовложений и основных производственных фондов, на 28,94 % - влиянием факторов, не включенных в модель.

F – критерий Фишера

Проверим значимость уравнения

Табличное значение F – критерия при уровне значимости α = 0,05 и числе степеней свободы d.f. 1 = k = 2, числе степеней свободы d.f. 2 = (n – k – 1) = (10 – 2 – 1) = 7 составит 4,74.

Так как F расч. = 8,592 > F табл. = 4.74, то уравнение степенной регрессии в целом можно считать статистически значимым.

Посадка невозможна, в каком из реализуемых случаев расход топлива меньше. Получить программу оптимального управления, когда до некоторого момента t1 управление отсутствует u*=0, а начиная с t=t1, управление равно своему максимальному значению u*=umax, что соответствует минимальному расходу топлива. 6.) Решить каноническую систему уравнений, рассматривая ее для случаев, когда и управление...

К составлению математических моделей. Если математическая модель - это диагноз заболевания, то алгоритм - это метод лечения. Можно выделить следующие основные этапы операционного исследования: наблюдение явления и сбор исходных данных; постановка задачи; построение математической модели; расчет модели; тестирование модели и анализ выходных данных. Если полученные результаты не удовлетворяют...

Математических построений по аналогии с выявляет в плоском приближении продольно-скалярную электромагнитную волну с электрической - (28) и магнитной (29) синфазными составляющими. Математическая модель безвихревой электродинамики характеризуется скалярно-векторной структурой своих уравнений. Основополагающие уравнения безвихревой электродинамики сведены в таблице 1. Таблица 1 , ...

Поделитесь с друзьями или сохраните для себя:

Загрузка...