Распространение ошибок. Абсолютная и относительная погрешности

В физике и в других науках весьма часто приходится производить измерения различных величин (например, длины, массы, времени, температуры, электрического сопротивления и т. д.).

Измерение – процесс нахождения значения физической величины с помощью специальных технических средств – измерительных приборов.

Измерительным прибором называют устройство, с помощью которого осуществляется сравнение измеряемой величины с физической величиной того же рода, принятой за единицу измерения.

Различают прямые и косвенные методы измерений.

Прямые методы измерений – методы, при которых значения определяемых величин находятся непосредственным сравнением измеряемого объекта с единицей измерения (эталоном). Например, измеряемая линейкой длина какого-либо тела сравнивается с единицей длины – метром, измеряемая весами масса тела сравнивается с единицей массы – килограммом и т. д. Таким образом, в результате прямого измерения определяемая величина получается сразу, непосредственно.

Косвенные методы измерений – методы, при которых значения определяемых величин вычисляются по результатам прямых измерений других величин, с которыми они связаны известной функциональной зависимостью. Например, определение длины окружности по результатам измерения диаметра или определение объема тела по результатам измерения его линейных размеров.

Ввиду несовершенства измерительных приборов, наших органов чувств, влияния внешних воздействий на измерительную аппаратуру и объект измерения, а также прочих факторов все измерения можно производить только с известной степенью точности; поэтому результаты измерений дают не истинное значение измеряемой величины, а лишь приближенное. Если, например, вес тела определен с точностью до 0,1 мг, то это значит, что найденный вес отличается от истинного веса тела менее чем на 0,1 мг.

Точность измерений – характеристика качества измерений, отражающая близость результатов измерений к истинному значению измеряемой величины.

Чем меньше погрешности измерений, тем больше точность измерений. Точность измерений зависит от используемых при измерениях прибо- ров и от общих методов измерений. Совершенно бесполезно стремиться при измерениях в данных условиях перейти за этот предел точности. Можно свести к минимуму воздействие причин, уменьшающих точность измерений, но полностью избавиться от них невозможно, то есть при измерениях всегда совершаются более или менее значительные ошибки (погрешности). Для увеличения точности окончательного результата всякое физическое измерение необходимо делать не один, а несколько раз при одинаковых условиях опыта.

В результате i-го измерения (i – номер измерения) величины "Х”, получается приближенное число Х i , отличающееся от истинного значения Хист на некоторую величину ∆Х i = |Х i – Х|, которая является допущенной ошибкой или, другими словами, погрешностью. Истинная погрешность нам не известна, так как мы не знаем истинного значения измеряемой величины. Истинное значение измеряемой физической величины лежит в интервале

Х i – ∆Х < Х i – ∆Х < Х i + ∆Х

где Х i – значение величины Х, полученное при измерении (то есть измеренное значение); ∆Х – абсолютная погрешность определения величины Х.

Абсолютная ошибка (погрешность) измерения ∆Х – это абсолютная величина разности между истинным значением измеряемой величины Хист и результатом измерения X i: ∆Х = |Х ист – X i |.

Относительная ошибка (погрешность) измерения δ (характеризующая точность измерения) численно равна отношению абсолютной погрешности измерения ∆Х к истинному значению измеряемой величины Х ист (часто выражается в процентах): δ = (∆Х / Х ист) 100% .

Погрешности или ошибки измерений можно разделить на три класса: систематические, случайные и грубые (промахи).

Систематической называют такую погрешность, которая остается постоянной или закономерно (согласно некоторой функциональной зависимости) изменяется при повторных измерениях одной и той же величины. Такие погрешности возникают в результате конструктивных особенностей измерительных приборов, недостатков принятого метода измерений, каких-либо упущений экспериментатора, влияния внешних условий или дефекта самого объекта измерения.

В любом измерительном приборе заложена та или иная систематическая погрешность, которую невозможно устранить, но порядок которой можно учесть. Систематические погрешности либо увеличивают, либо уменьшают результаты измерения, то есть эти погрешности характеризуются постоянным знаком. Например, если при взвешивании одна из гирь имеет массу на 0,01 г большую, чем указано на ней, то найденное значение массы тела будет завышенным на эту величину, сколько бы измерений ни производилось. Иногда систематические ошибки можно учесть или устранить, иногда этого сделать нельзя. Например, к неустранимым ошибкам относятся ошибки приборов, о которых мы можем лишь сказать, что они не превышают определенной величины.

Случайными ошибками называют ошибки, которые непредсказуемым образом изменяют свою величину и знак от опыта к опыту. Появление случайных ошибок обусловлено действием многих разнообразных и неконтролируемых причин.

Например, при взвешивании весами этими причинами могут быть колебания воздуха, осевшие пылинки, разное трение в левом и правом подвесе чашек и др. Случайные ошибки проявляются в том, что, произведя измерения одной и той же величины Х в одинаковых условиях опыта, мы получаем несколько различающихся значений: Х1, Х2, Х3,…, Х i ,…, Х n , где Х i – результат i-го измерения. Установить какую-либо закономерность между результатами не удается, поэтому результат i - го измерения Х считается случайной величиной. Случайные ошибки могут оказать определенное влияние на отдельное измерение, но при многократных измерениях они подчиняются статистическим законам и их влияние на результаты измерений можно учесть или значительно уменьшить.

Промахи и грубые погрешности – чрезмерно большие ошибки, явно искажающие результат измерения. Этот класс погрешностей вызван чаще всего неправильными действиями экспериментатора (например, из-за невнимательности вместо показания прибора «212» записывается совершенно другое число – «221»). Измерения, содержащие промахи и грубые погрешности, следует отбрасывать.

Измерения могут быть проведены с точки зрения их точности техническим и лабораторным методами.

При использовании технических методов измерение проводится один раз. В этом случае удовлетворяются такой точностью, при которой погрешность не превышает некоторого определенного, заранее заданного значения, определяемого погрешностью примененной измерительной аппаратурой.

При лабораторных методах измерений требуется более точно указать значение измеряемой величины, чем это допускает ее однократное измерение техническим методом. В этом случае делают несколько измерений и вычисляют среднее арифметическое полученных значений, которое принимают за наиболее достоверное (истинное) значение измеряемой величины. Затем производят оценку точности результата измерений (учет случайных погрешностей).

Из возможности проведения измерений двумя методами вытекает и существование двух методов оценки точности измерений: технического и лабораторного.

Относительная ошибка

Ошибки средняя квадратичная т, истинная А называются абсолютными ошибками.

В некоторых случаях абсолютная ошибка недостаточно показательна, в частности, при линейных измерениях. Например, линия измерена с ошибкой ±5 см. Для длины линии в 1 метр эта точность, очевидно, низкая, а для длины линии в 1 километр точность безусловно более высокая. Поэтому нагляднее точность измерения будет характеризоваться отношением абсолютной ошибки к полученному значению измеренной величины. Такое отношение называется относительной ошибкой. Относительная ошибка выражается дробью, причем дробь преобразуется так, чтобы числитель ее был равен единице.

Относительную ошибку определяют по соответствующей абсолютной

ошибке. Пусть X - полученное значение некоторой величины, тогда - средняя квадратичная относительная ошибка этой величины; - истинная относительная ошибка.

Знаменатель относительной ошибки целесообразно округлять до двух значащих цифр с нулями.

Пример. В приведенном случае средняя квадратичная относительная ошибка измерения линии будет равна

Предельная ошибка

Предельной ошибкой называется наибольшее значение случайной ошибки, которое может появиться при данных условиях равноточных измерений.

Теорией вероятности доказано, что случайные ошибки только в трех случаях из 1000 могут превзойти величину Зт; 5 ошибок из 100 могут превзойти и 32 ошибки из 100 могут превзойти т.

Исходя из этого, в геодезической практике результаты измерений, содержащие ошибки 0>3т , относят к измерениям, содержащим грубые ошибки, и в обработку не принимают.

Значения ошибок 0 = 2т используют как предельные при составлении технических требований для данного вида работ, т. е. все случайные ошибки измерений, превышающие по своей величине эти значения, считают недопустимыми. При получении расхождений, превышающих величину 2т, принимают меры по улучшению условий измерений, а сами измерения повторяют.

Контрольные вопросы и упражнения:

  • 1. Перечислить виды измерений и дать их определение.
  • 2. Перечислить виды ошибок измерений и дать их определение.
  • 3. Перечислить критерии, применяемые для оценки точности измерений.
  • 4. Найти среднюю квадратичную ошибку ряда измерений, если вероятнейшие ошибки равны: - 2,3; + 1,6; - 0,2; + 1,9; - 1,1.
  • 5. Найти относительную ошибку измерения длины линии по результатам: 487,23 м и 486,91 м.

Физические величины характеризуются понятием «точность погрешности». Есть высказывание, что путем проведения измерений можно прийти к познанию. Так удастся узнать, какова высота дома или длина улицы, как и многие другие.

Введение

Разберемся в значении понятия «измерить величину». Процесс измерения заключается в том, чтобы сравнить её с однородными величинами, которые принимают в качестве единицы.

Для определения объёма используются литры, для вычисления массы применяются граммы. Чтобы было удобнее производить расчеты, ввели систему СИ международной классификации единиц.

За измерение длины вязли метры, массы - килограммы, объёма - кубические литры, времени - секунды, скорости - метры за секунду.

При вычислении физических величин не всегда нужно пользоваться традиционным способом, достаточно применить вычисление при помощи формулы. К примеру, для вычисления таких показателей, как средняя скорость, необходимо поделить пройденное расстояние на время, проведенное в пути. Так производятся вычисления средней скорости.

Применяя единицы измерения, которые в десять, сто, тысячу раз превышают показатели принятых измерительных единиц, их называют кратными.

Наименование каждой приставки соответствует своему числу множителя:

  1. Дека.
  2. Гекто.
  3. Кило.
  4. Мега.
  5. Гига.
  6. Тера.

В физической науке для записи таких множителей используется степень числа 10. К примеру, миллион обозначается как 10 6 .

В простой линейке длина имеет единицу измерения - сантиметр. Она в 100 раз меньше метра. 15-сантиметровая линейка имеет длину 0,15 м.

Линейка является простейшим видом измерительных приборов для того, чтобы измерять показатели длины. Более сложные приборы представлены термометром - чтобы гигрометром - чтобы определять влажность, амперметром - замерять уровень силы, с которой распространяется электрический ток.

Насколько точны будут показатели проведенных измерений?

Возьмем линейку и простой карандаш. Наша задача заключается в измерении длины этой канцелярской принадлежности.

Для начала потребуется определить, какова цена деления, указанная на шкале измерительного прибора. На двух делениях, которые являются ближайшими штрихами шкалы, написаны цифры, к примеру, «1» и «2».

Необходимо подсчитать, сколько делений заключено в промежутке этих цифр. При правильном подсчете получится «10». Вычтем от того числа, которое является большим, число, которое будет меньшим, и поделим на число, которое составляют деления между цифрами:

(2-1)/10 = 0,1 (см)

Так определяем, что ценой, определяющей деление канцелярской принадлежности, является число 0,1 см или 1 мм. Наглядно показано, как определяется показатель цены для деления с применением любого измерительного прибора.

Измеряя карандаш с длиной, которая немного меньше, чем 10 см, воспользуемся полученными знаниями. При отсутствии на линейке мелкого деления, следовал бы вывод, что предмет имеет длину 10 см. Это приблизительное значение названо измерительной погрешностью. Она указывает на тот уровень неточности, которая может допускаться при проведении измерений.

Определяя параметры длины карандаша с более высоким уровнем точности, большей ценой деления достигается большая измерительная точность, которая обеспечивает меньшую погрешность.

При этом абсолютно точного выполнения измерений не может быть. А показатели не должны превышать размеры цены деления.

Установлено, что размеры измерительной погрешности составляют ½ цены, которая указана на делениях прибора, который применяется для определения размеров.

После выполнения замеров карандаша в 9,7 см определим показатели его погрешности. Это промежуток 9,65 - 9,85 см.

Формулой, измеряющей такую погрешность, является вычисление:

А = а ± D (а)

А - в виде величины для измерительных процессов;

а - значение результата замеров;

D - обозначение абсолютной погрешности.

При вычитании или складывании величин с погрешностью результат будет равен сумме показателей погрешности, которую составляет каждая отдельная величина.

Знакомство с понятием

Если рассматривать в зависимости от способа её выражения, можно выделить такие разновидности:

  • Абсолютную.
  • Относительную.
  • Приведенную.

Абсолютная погрешность измерений обозначается буквой «Дельта» прописной. Это понятие определяется в виде разности между измеренными и действительными значениями той физической величины, которая измеряется.

Выражением абсолютной погрешность измерений являются единицы той величины, которую необходимо измерить.

При измерении массы она будет выражаться, к примеру, в килограммах. Это не эталон точности измерений.

Как рассчитать погрешность прямых измерений?

Есть способы изображения и их вычисления. Для этого важно уметь определять физическую величину с необходимой точностью, знать, что такое абсолютная погрешность измерений, что её никто никогда не сможет найти. Можно вычислить только её граничное значение.

Даже если условно употребляется этот термин, он указывает именно на граничные данные. Абсолютная и относительная погрешность измерений обозначаются одинаковыми буквами, разница в их написании.

При измерении длины абсолютная погрешность будет измеряться в тех единицах, в которых исчисляться длина. А относительная погрешность вычисляется без размеров, так как она является отношением абсолютной погрешности к результату измерения. Такую величину часто выражают в процентах или в долях.

Абсолютная и относительная погрешность измерений имеют несколько разных способов вычисления в зависимости от того, какой физических величин.

Понятие прямого измерения

Абсолютная и относительная погрешность прямых измерений зависят от класса точности прибора и умения определять погрешность взвешивания.

Прежде чем говорить о том, как вычисляется погрешность, необходимо уточнить определения. Прямым называется измерение, при котором происходит непосредственное считывание результата с приборной шкалы.

Когда мы пользуемся термометром, линейкой, вольтметром или амперметром, то всегда проводим именно прямые измерения, так как применяем непосредственно прибор со шкалой.

Есть два фактора, которые влияют на результативность показаний:

  • Погрешностью приборов.
  • Погрешностью системы отсчета.

Граница абсолютной погрешности при прямых измерениях будет равна сумме погрешности, которую показывает прибор, и погрешности, которая происходит в процессе отсчета.

D = D (пр.) + D (отс.)

Пример с медицинским термометром

Показатели погрешности указаны на самом приборе. На медицинском термометре прописана погрешность 0,1 градусов Цельсия. Погрешность отсчета составляет половину цены деления.

D отс. = С/2

Если цена деления 0,1 градуса, то для медицинского термометра можно произвести вычисления:

D = 0,1 o С + 0,1 o С / 2 = 0,15 o С

На тыльной стороне шкалы другого термометра есть ТУ и указано, что для правильности измерений необходимо погружать термометр всей тыльной частью. Точность измерения не указана. Остается только погрешность отсчета.

Если цена деления шкалы этого термометра равна 2 o С, то можно измерять температуру с точностью до 1 o С. Таковы пределы допускаемой абсолютной погрешности измерений и вычисление абсолютной погрешности измерений.

Особую систему вычисления точности используют в электроизмерительных приборах.

Точность электроизмерительных приборов

Чтобы задать точность таких устройств, используется величина, называемая классом точности. Для её обозначения применяют букву «Гамма». Чтобы точно произвести определение абсолютной и относительной погрешности измерений, нужно знать класс точности прибора, который указан на шкале.

Возьмем, к примеру, амперметр. На его шкале указан класс точности, который показывает число 0,5. Он пригоден для измерений на постоянном и переменном токе, относится к устройствам электромагнитной системы.

Это достаточно точный прибор. Если сравнить его со школьным вольтметром, видно, что у него класс точности - 4. Эту величину обязательно знать для дальнейших вычислений.

Применение знаний

Таким образом, D c = c (max) Х γ /100

Этой формулой и будем пользоваться для конкретных примеров. Воспользуемся вольтметром и найдем погрешность измерения напряжения, которое дает батарейка.

Подключим батарейку непосредственно к вольтметру, предварительно проверив, стоит ли стрелка на нуле. При подключении прибора стрелка отклонилась на 4,2 деления. Это состояние можно охарактеризовать так:

  1. Видно, что максимальное значение U для данного предмета равно 6.
  2. Класс точности -(γ) = 4.
  3. U(о) = 4,2 В.
  4. С=0,2 В

Пользуясь этими данными формулы, абсолютная и относительная погрешность измерений вычисляется так:

D U = DU (пр.)+ С/2

D U (пр.) = U (max) Х γ /100

D U (пр.) = 6 В Х 4/100 = 0, 24 В

Это погрешность прибора.

Расчет абсолютной погрешности измерений в этом случае будет выполнен так:

D U = 0,24 В + 0,1 В = 0,34 В

По рассмотренной формуле без труда можно узнать, как рассчитать абсолютную погрешность измерений.

Существует правило округления погрешностей. Оно позволяет найти средний показатель между границей абсолютной погрешности и относительной.

Учимся определять погрешность взвешивания

Это один из примеров прямых измерений. На особом месте стоит взвешивание. Ведь у рычажных весов нет шкалы. Научимся определять погрешность такого процесса. На точность измерения массы влияет точность гирь и совершенство самих весов.

Мы пользуемся рычажными весами с набором гирь, которые необходимо класть именно на правую чашу весов. Для взвешивания возьмем линейку.

Перед началом опыта нужно уравновесить весы. Линейку кладем на левую чашу.

Масса будет равна сумме установленных гирь. Определим погрешность измерения этой величины.

D m = D m (весов) + D m (гирь)

Погрешность измерения массы складывается из двух слагаемых, связанных с весами и гирями. Чтобы узнать каждую из этих величин, на заводах по выпуску весов и гирь продукция снабжается специальными документами, которые позволяют вычислить точность.

Применение таблиц

Воспользуемся стандартной таблицей. Погрешность весов зависит от того, какую массу положили на весы. Чем она больше, тем, соответственно, больше и погрешность.

Даже если положить очень легкое тело, погрешность будет. Этот связано с процессом трения, происходящим в осях.

Вторая таблица относится к набору гирь. На ней указано, что каждая из них имеет свою погрешность массы. 10-граммовая имеет погрешность в 1 мг, как и 20-граммовая. Просчитаем сумму погрешностей каждой из этих гирек, взятой из таблицы.

Удобно писать массу и погрешность массы в двух строчках, которые расположены одна под другой. Чем меньше гири, тем точнее измерение.

Итоги

В ходе рассмотренного материала установлено, что определить абсолютную погрешность невозможно. Можно лишь установить её граничные показатели. Для этого используются формулы, описанные выше в вычислениях. Данный материал предложен для изучения в школе для учеников 8-9 классов. На основе полученных знаний можно решать задачи на определение абсолютной и относительной погрешности.

Как было сказано выше, результат измерения любой величины отличается от истинного значения. Это отличие, равное разности между показанием прибора и истинным значением, называется абсолютной погрешностью измерения, которая выражается в тех же единицах, что и сама измеряемая величина:

где х - абсолютная погрешность.

При проведении комплексного контроля, когда измеряются показатели разной размерности, целесообразнее пользоваться не абсолютной, а относительной погрешностью. Она определяется по следующей формуле:

Целесообразность применения х отн связана со следующими обстоятельствами. Предположим, что мы измеряем время с точностью до 0,1 с (абсолютная погрешность). При этом если речь идет о беге на 10 000 м, то точность вполне приемлема. Но измерять с такой точностью время реакции нельзя, так как величина ошибки почти равна измеряемой величине (время простой реакции равняется 0,12-0,20 с). В связи с этим нужно сопоставить величину ошибки и саму измеряемую величину и определить относительную погрешность.

Рассмотрим пример определения абсолютной и относительной погрешностей измерения. Предположим, что измерение частоты сердечных сокращений после бега с помощью высокоточного прибора дает нам величину, близкую к истинной и равную 150 уд/мин. Одновременное пальпаторное измерение дает величину, равную 162 уд/мин. Подставив эти значения в приведенные выше формулы, получим:

x =150-162=12 уд/мин - абсолютная погрешность;

х= (12: 150)Х100%=8% -относительная погрешность.

Задание №3 Индексы оценки физического развития

Индекс

Оценка

Индекс Брока-Бругша

Были разработаны и добавлены такие варианты:

    при росте до 165 см «идеальный вес» = рост (см) – 100;

    при росте от 166 до 175 см «идеальный вес» = рост (см) – 105;

    при росте выше 176 см «идеальный вес» = рост (см) – 110.

Жизненный индекс

Ж/М (по росту)

Средняя величина показателя для мужчин - 65-70 мл/кг, для женщин - 55-60 мл/кг, для спортсменов - 75-80 мл/кг, для спортсменок - 65-70 мл/кг.

Разностный индекс определяется путем вычитания из величины роста сидя длины ног. Средний показатель для мужчин - 9-10 см, для женщин - 11-12 см. Чем меньше индекс, тем, следовательно, больше длина ног, и наоборот.

Весо – ростовой индекс Kетле

BMI = m / h2 , где m - масса тела человека (в кг), h - рост человека (в м).

Выделяют следующие значения BMI:

меньше 15 - острый дефицит веса;

от 15 до 20 - дефицит веса;

от 20 до 25 - нормальный вес;

от 25 до 30 - избыточный вес;

свыше 30 - ожирение.

Индекс скелии по Мануврие характеризует длину ног.

ИС = (длина ног / рост сидя) х 100

Величина до 84,9 свидетельствует о коротких ногах;

85-89 - о средних;

90 и выше - о длинных.

Масса тела (вес) для взрослых рассчитывается по формуле Бернгарда.

Вес = (рост х объем груди) / 240

Формула дает возможность учитывать особенности телосложения. Если расчет производится по формуле Брока, то после расчетов из результата следует вычесть около 8%: рост - 100 - 8%

Жизненный показатель

ЖЕЛ (мл) / на массу тела (кг)

Чем выше показатель, тем лучше развита дыхательная функция грудной клетки.

W. Stern (1980) предложил метод определения жировой прослойки у спортсменов.

Процент жировой прослойки

Тощая масса тела

[(масса тела - тощая масса тела) / масса тела] х 100

98,42 +

Согласно формуле Лоренца, идеальная масса тела (М) составляет:

М = Р - (100 - [(Р - 150) / 4])

где: Р - рост человека.

Индекс пропорциональности развития грудной клетки (индекс Эрисмана): обхват грудной клетки в паузе (см) - (рост (см) / 2) = +5,8 см для мужчин и +3,3 см для женщин.

Показатель пропорциональности физического развития

(рост стоя - рост сидя / рост сидя) х 100

Величина показателя позволяет судить об относительной длине ног: меньше 87% - малая длина по отношению к длине туловища, 87-92% - пропорциональное физическое развитие, более 92% - относительно большая длина ног.

Индекс Руффье (Ir).

J r = 0,1 (ЧСС 1 + ЧСС 2 + ЧСС 3 – 200) ЧСС 1 – пульс в покое, ЧСС 2 – после нагрузки, ЧСС 3 – после 1 мин. Восстановления

Полученный индекс Руфье-Диксона расценивается как:

    хороший - 0,1 – 5;

    средний - 5,1 – 10;

    удовлетворительный - 10,1 – 15;

    плохой - 15,1 – 20.

Коэффициент выносливости (К).

Используется для оценки степени тренированности сердечнососудистой системы к выполнению физической нагрузки и определяется по формуле:

где ЧСС - частота сердечных сокращений, уд./мин; ПД - пульсовое давление, мм рт. ст. Увеличение KB, связанное с уменьшением ПД, является показателем детренированности сердечнососудистой системы.

Индекс Скибинскии

Этот тест отражает функциональные резервы дыхательной и сердечно-сосудистой систем:

После 5-минутного отдыха в положении стоя определите ЧСС (по пульсу), ЖЕЛ (в мл);

Через 5 мин после этого задержите дыхание после спокойного вдоха (ЗД);

Индекс рассчитайте по формуле:

Если результат более 60 - отлично;

30-60 - хорошо;

10-30-удовлетворительно;

5-10 - неудовлетворительно;

Менее 5 - очень плохо.

Абсолютные и относительные ошибки

Такие ошибки, как средняя (J), средняя квадратическая (m ), вероятная (r ), истинная (D) и предельная (D пр ), являются абсолютными ошибками. Они всегда выражены в единицах измеряемой величины, т.е. имеют одинаковую с измеряемой величиной размерность.
Часто возникают случаи, когда разные по величине объекты измеряют с одинаковыми абсолютными ошибками. Например, средняя квадратическая ошибка измерения линий длиной: l 1 = 100 м и l 2 = 1000 м, составила m = 5 см. Возникает вопрос: какая же линия измерялась точнее? Чтобы избежать неопределенности, точность измерений ряда величин оценивают в виде отношения абсолютной ошибки к значению измеряемой величины. Полученное отношение называется относительной ошибкой, которую обычно выражают дробью с числителем, равным единице.
Наименование абсолютной ошибки определяет и название соответствующей ей относительной ошибки измерения [ 1 ].

Пусть x - результат измерения некоторой величины. Тогда
- cредняя квадратическая относительная ошибка;

Средняя относительная ошибка;

Вероятная относительная ошибка;

Истинная относительная ошибка;

Предельная относительная ошибка.

Знаменатель N относительной ошибки необходимо округлять до двух значащих цифр с нулями:

m x = 0,3 м; x = 152,0 м;

m x = 0,25 м; x = 643,00 м; .

m x = 0,033 м; x = 795,000 м;

Как видно из примера, чем больше знаменатель дроби, тем точнее выполнены измерения.

Ошибки округления

При обработке результатов измерений немаловажную роль играют ошибки округления, которые по своим свойствам можно отнести к случайным величинам [ 2 ]:

1) предельная ошибка одного округления составляет 0,5 единицы удерживаемого знака;

2) большие и меньшие по абсолютной величине ошибки округления равновозможны;
3) положительные и отрицательные ошибки округления равновозможны;
4) математическое ожидание ошибок округления равно нулю.
Эти свойства позволяют отнести ошибки округления к случайным величинам, имеющим равномерное распределение. Непрерывная случайная величина X имеет равномерное распределение на интервале [a, b ], если на этом интервале плотность распределения случайной величины постоянна, а вне его равна нулю (рис. 2), т.е.

j (x ) . (1.32)

Функция распределения F (x )

a b x (1.33)

Рис. 2 Математическое ожидание

(1.34)

Дисперсия
(1.35)

Среднее квадратическое отклонение

(1.36)

Для ошибок округления

Поделитесь с друзьями или сохраните для себя:

Загрузка...