Метод линеаризации экспериментальных данных. Общий метод линеаризации

Метод гармонической линеаризации позволяет с достаточной для практики точностью исследовать устойчивость и точность нелинейных систем, используя методы, разработанные для линейных систем. Метод дает возможность определить наличие автоколебаний, а также их частоту и амплитуду.

Нелинейная система представляется в виде соединения линейной и нелинейной части (рис. 5).

Рис. 5 Схема нелинейной системы

Выходной сигнал нелинейной части системы в общем случае определяется выражением

Обозначим как передаточную функцию линейной части. Система уравнений примет вид

Найдем условия, при которых на выходе линейной части системы возникают гармонические колебания вида

В этом случае сигнал y(t) нелинейной части будет представлять собой также периодическую функцию, но отличную от синусоиды. Эту функцию можно разложить в ряд Фурье

В этом выражении a i и b i - коэффициенты Фурье. Для симметричных нелинейностей F 0 =0.

Основным условием, которое накладывает метод на линейную часть системы, является условие фильтра нижних частот. Считается, что линейная часть пропускает только первую гармонику колебаний. Данное допущение позволяет считать высшие гармоники в (7.19) несущественными и ограничиться рассмотрением только первой гармоники сигнала y(t).

то выражение (7.20) можно переписать в виде

Первое уравнение системы (7.17) примет вид

В этом выражении


Результат замены нелинейности F(x,sx) выражением

и называется гармонической линеаризацией. Величины q и q 1 называются коэффициентами гармонической линеаризации или просто гармоническими коэффициентами. Для однозначных нелинейностей обычно q 1 =0 . Формулы для гармонических коэффициентов, соответствующих типовым нелинейностям, приводятся в приложениях.

Принципиальное отличие гармонической линеаризации от обычной состоит в том, что при обычной линеаризации нелинейную характеристику заменяют прямой линией с определенной постоянной крутизной, а при гармонической линеаризации - прямой линией, крутизна которой зависит от амплитуды входного сигнала нелинейного элемента.

Рассмотрим методику определения амплитуды и частоты автоколебаний.

1). В характеристическом уравнении системы, полученном из (7.22) делаем замену s=j и получим

2). Из полученного выражения выделяем вещественную и мнимую части и приравниваем их нулю, что, по критерию Михайлова, соответствует нахождению системы на колебательной границе устойчивости.

  • 3).Решение этой системы дает частоту и значения гармонических коэффициентов. Если эти значения вещественны и положительны, то в системе существует предельный цикл. По значениям гармонических коэффициентов можно определить амплитуду предельного цикла.
  • 4). Общим признаком устойчивости предельного цикла, т.е. существования автоколебаний, является равенство нулю предпоследнего определителя Гурвица при полученных значениях амплитуды и частоты предельного цикла. Часто более удобно использовать условие устойчивости предельного цикла, в основе которого лежит критерий устойчивости Михайлова.

Если это неравенство выполняется, то предельный цикл устойчив и в системе существуют автоколебания с определенными выше амплитудой и частотой. Индекс ”*” означает, что производные вычислены при уже известных значениях гармонических коэффициентах, амплитуды и частоты.

Пример. Допустим, что в уже рассмотренной выше системе стабилизации угла тангажа самолета рулевой привод нелинейный и его структурная схема имеет вид, показанный на рис. 7.6.

Рис.6 Схема нелинейного рулевого привода

Зададим следующие параметры нелинейности скоростной характеристикм рулевого привода: b = 0.12, k 1 = tg =c/b = 6.7. Коэффициенты гармонической линеаризации этой нелинейности определяются выражениями

Заменив в схеме нелинейную характеристику гармоническим коэффициентом, получим передаточную функцию рулевого привода

Подставим эту передаточную функцию в структурную схему системы стабилизации угла тангажа и определим передаточную функцию замкнутой системы

В характеристическом уравнении замкнутой системы сделаем замену s = j и выделим вещественную и мнимую части.

Из второго уравнения системы получим выражение для частоты: , и подставив его в первое уравнение, после преобразований получим

Подставив сюда ранее определенные выражения для коэффициентов характеристического уравнения, можно получить квадратное уравнение относительно гармонического коэффициента, решив которое, найдем

По этим значениям можно вычислить для двух случаев все коэффициенты характеристического уравнения и определить частоты, соответствующие каждому значению q(А). Получим:

Оба значения гармонического коэффициента и соответствующие частоты вещественны и положительны. Следовательно, в системе существуют два предельных цикла. Значения амплитуды предельного цикла определяются численно путем подбора такого значения при котором формула для коэффициента гармонической линеаризации дает значение, равное ранее вычисленному. В рассматриваемом случае получим

Теперь оценим устойчивость предельных циклов. Используем неравенство, полученное из критерия Михайлова, для чего определим

Производная от коэффициента гармонической линеаризации, входящая в полученные выражения, вычисляется по формуле


Расчеты по выше приведенным формулам показывают, что первый предельный цикл не устойчив и возникает он при (0) 0.1166(6.7 0 ). Если начальное отклонение меньше указанного, то процесс на входе нелинейного элемента затухает (рис.7. 7) и система устойчива.


Если начальное значение угла тангажа больше указанного, то процессы сходятся ко второму предельному циклу, который устойчив и, таким образом в системе возникают автоколебания (рис. 8).


Рис. 8

Путем моделирования определено, что область притяжения устойчивого предельного цикла лежит приблизительно в пределах (0) 0.1167 - 1.4 (6.71 0 - 80.2 0 ).

Линеаризация является наиболее распространенным способом понижения уровня сложности ММ и служит основой применения линейной теории.

Суть любой линеаризации состоит в приближенной замене исходной нелинейной зависимости (нелинейности) некоторой линейной зависимостью в соответствии с определенным условием (критерием) эквивалентности. Среди возможных методов чаще всего применяют метод касательных (линеаризация в малой окрестности заданной точки). Этот метод не зависит от вида преобразуемых сигналов и может одинаково успешно использоваться для разных типов нелинейностей, которые могут быть одномерными и многомерными; безынерционными (статическими) и динамическими.

Безынерционные нелинейности устанавливают функциональную зависимость между значениями входа u (t ) и выхода y (t ) в один и тот же текущий момент времени t и могут задаваться либо явно (формулами, графиками, таблицами), либо неявно (алгебраическими уравнениями). На структурных схемах им соответствуют безынерционные (без памяти) нелинейные звенья .

Динамические нелинейности описываются математически нелинейными дифференциальными уравнениями и на структурных схемах им соответствуют нелинейные динамические звенья . При этом значения выхода y (t ) в текущий момент времени t зависят не только от значений входа в этот же момент времени, но и от производных, интегралов или каких либо других значений.

Математической основой метода касательных является разложение нелинейной функции в ряд Тейлора в малой окрестности некоторой «точки линеаризации» с последующим отбрасыванием нелинейных слагаемых, содержащих степени отклонений переменных (приращений) выше первой.

Суть метода рассмотрим на частных случаях с последующими обобщениями.

1) Пусть y = F (u ) - явно заданная одномерная безынерционная нелинейность, гладкая и непрерывная в окрестности некоторой точки u =u *. Полагая, u =u *+Du ; y =y *+Dy , где y *=F (u *), запишем ряд Тейлора для этой функции в виде:

Отбрасывая слагаемые более высокого порядка малости, и оставляя только слагаемые, содержащие Du в первой степени, получим приближенное равенство

. (2)

Это выражение приближенно описывает взаимосвязь малых приращений Dy и Du в виде линейной зависимости и является результатом линеаризации в рассматриваемом случае. Здесь К имеет геометрический смысл углового коэффициента наклона касательной к графику функции в точке с координатой u =u *.

В случае многомерной нелинейности y =F (u ), когда y ={y i }, F ={F i } иu ={u j }– векторы, аналогично получим, что Dy =K Du . ЗдесьK ={K ij }- матричный коэффициент, элементы которого K ij определяются как значения частных производных функций F i по переменным u j , вычисленных в «точке» u =u* .



2. Пусть безынерционная нелинейность задана неявно с помощью алгебраического уравнения F (y ,u )=0 . Необходимо линеаризовать эту нелинейность в малой окрестности некоторого известного частного решения (u *, y *) в предположении того, что все нелинейные функции F i в составе F непрерывны и дифференцируемы в этой окрестности. Выполнив разложение этой вектор-функции в ряд Тейлора и, отбросив слагаемые второго и выше порядков малости, получим линейное уравнение первого приближения:

, (3)

где Dy =y y *; Du =u u *; - матрицы частных производных, вычисленные в точке линеаризации.

3. Пусть одномерная динамическая нелинейность задана дифференциальным уравнением «вход-выход» n -го порядка:

F (y , y (1) , …, y ( n ) , u , u (1) , …u ( m ))=0. (4)

Линеаризуем эту нелинейность методом касательных в малой окрестности известного частного решения этого уравнения y *(t ), соответствующего заданному входу u *(t ). Производные по времени соответствующих порядков от y *(t ) и u *(t ) также предполагаются известными.

Предполагая функцию F непрерывно-дифференцируемой по всем своим аргументам и следуя рассмотренной выше общей методике (разложение в ряд и учет только линейных относительно приращений аргументов слагаемых), запишем линейное уравнение первого приближения для нелинейного уравнения:

(5)

Здесь символ (*) означает, что частные производные определены при значениях переменных и их производных, соответствующих частному решению (y *(t ), u *(t )). В общем случае их значения (коэффициенты уравнения) будут зависеть от времени и линеаризованная модель будет нестационарной . Но если частное решение соответствует статическому режиму , то эти коэффициенты будут постоянными .

Для удобства и краткости записи, введем следующие обозначения:

= a i ; = -b i ; Dy (i ) =D i Dy ; Du (i ) =D i Du ; D =d /dt .

Тогда линеаризованное уравнение (5) запишется в краткой операторной форме:

A (D )Dy (t )=B (D )Du (t ),

где A (D ) – полином степени n относительно оператора дифференцирования D ;

B (D ) – аналогичный операторный полином m -ой степени.

4. Пусть многомерная динамическая нелинейность задана нелинейными уравнениями состояния вида

(6)

Аналогично предыдущим случаям, линеаризуем эту нелинейность методом касательных в малой окрестности известного частного решения (x* , y* ), соответствующего заданному входу u* (t ). При этом уравнения первого приближения будут иметь следующий вид:

(7)

где - матрицы соответствующих размеров. Их элементы в общем случае будут функциями времени, но если частное решение соответствует статическому режиму, то они будут постоянны.

Сделаем заключительные замечания о применении метода касательных при линеаризации ММ всей САР, представляющей собой совокупность описаний взаимодействующих между собой конструктивных блоков.

1) «опорный режим» (*), относительно которого выполняется линеаризация, рассчитывается для всей системы по ее полной (нелинейной) ММ. Для расчета могут использоваться как графические, так и численные (компьютерные) методы. При этом коэффициенты всех линеаризованных уравнений и функциональных зависимостей будут зависеть от выбранных точек линеаризации;

2) все нелинейные зависимости ММ должны быть непрерывными и непрерывно дифференцируемыми (гладкими) в малой окрестности режима (*);

3) отклонения переменных от их значений в опорном режиме должны быть достаточно малыми; для САР и У это требование вполне согласуется с целью управления – регулированием значений управляемых переменных в соответствии с предписанными законами их изменения;

4) для линейных уравнений в составе ММ линеаризация состоит в формальной замене всех переменных на их отклонения (приращения);

5) для получения линеаризованной ММ всей системы в стандартном виде, например в форме уравнений состояния, следует сначала проводить линеаризацию каждого из уравнений в составе ММ. Это будет намного проще и быстрее, чем попытка получения нелинейной ММ системы в стандартном виде с последующей ее линеаризацией;

6) при соблюдении всех условий применения метода касательных, свойства линеаризованной ММ дают объективное представление о локальных свойствах нелинейной ММ в малой окрестности опорного режима. Этот факт имеет строгое математическое обоснование в виде теорем Ляпунова (первый метод) и является теоретической базой для практического применения линейной теории управления.

Зависимости

Обработка результатов косвенных измерений при нелинейной

Представление результатов измерений

Ввиду того, что каждый аргумент может иметь соответствующие доверительные границы неисключенной систематической и случайной погрешностей, то задача определения погрешности косвенного измерения в этих случаях делится на три этапа:

а) суммирование частных неисключенных систематических погрешностей аргументов;

б) суммирование частных случайных погрешностей аргументов;

в) сложение систематической и случайной составляющих погрешности.

Доверительная граница неисключенной систематической погрешности косвенного измерения при условии одинаковой доверительной вероятности частных погрешностей и их равномерного распределения внутри заданных границ определяется по формуле (без учета знака):

где θ y – доверительная граница неисключенной систематическо погрешности среднего значения X j -го аргумента. При отсутствии корреляционной связи между аргументами оценка СКО случайной погрешности косвенного измерения вычисляется по

где S x j – оценка СКО случайной погрешности результата измерения X j -го аргумента.

При нормальном распределении погрешностей косвенного измерения доверительная граница случайной составляющей погрешности вычисляется по формуле:

где t p – квантиль Стьюдента при доверительной вероятности P с эффективным числом степеней свободы k эф , определяемом при малых объемах выборки по формуле:

При больших объемах число степеней свободы находится по формуле

Доверительная граница суммарной погрешности результата косвенного

измерения определяется по правилам, изложенным выше.

Существуют два метода определения точечной оценки результата косвенного измерения и её погрешности: линеаризации и приведения.

Для косвенных измерений при нелинейных зависимостях и некоррелированных погрешностях измерений аргументов используется метод линеаризации. Метод линеаризации основан на том, что погрешность измерения значительно меньше измеряемой величины, и поэтому вблизи средних значений Xi аргументов нелинейная функциональная зависимость линеаризуется и раскладывается в ряд Тейлора (члены высокого порядка не учитываются). Линеаризуя функцию нескольких случайных аргументов (какими и являются результаты измерений и их погрешности), можно получить, как правило, достаточно простое выражение для вычисления оценок среднего

значения и среднего квадратического отклонения функции. Разложение нелинейной функции в ряд Тейлора имеет вид:

Метод линеаризации допустим, если можно пренебречь остаточным членом R . Остаточным членом


пренебрегают, если

где X S – среднее квадратическое отклонение случайных погрешностей результата измерения x i -го аргумента. Первое слагаемое правой части уравнения есть точечная оценка истинного значения косвенной величины, которая получается подстановкой в

функциональную зависимость средних арифметических X i , значений аргументов:

Второе слагаемое

есть сумма составляющих погрешности косвенного измерения, называемых частными погрешностями, а частные производные

Коэффициентами влияния.

Отклонения ΔXi должны быть взяты из полученных значений погрешностей и такими, чтобы они максимизировали выражение для остаточного члена R . Если частные погрешности косвенного измерения не зависят друг от друга, т. е. являются некоррелированными, и известны доверительные границы погрешности аргументов при одинаковой вероятности, то предельная погрешность (без учета знака) косвенного измерения вычисляется по формуле:

значения частных производных функциональной зависимости определяются при средних значениях аргументов

Этот метод, называемый максимум-минимум, дает значительно завышенное значение погрешности косвенного измерения. Относительно правильная оценка погрешности косвенного измерения, получается, по методу квадратического суммирования

В ряде случаев расчет погрешности косвенного измерения значительно упрощается при переходе к относительным погрешностям. Для этого используется прием логарифмирования и последующего дифференцирования функциональной зависимости. Когда предельная погрешность косвенного измерения, полученная по методу максимума-минимума.

Линеаризация исходной нелинейной модели облегчает решение конкретной задачи исследования. Поэтому для упрощения моделирования и исследования, когда это возможно, желательно заменить нелинейное уравнение приближенным линейным, решение которого с достаточной степенью точности описывает свойство исходной нелинейной системы. Процесс замены нелинейной модели линейной называетсялинеаризацией .

Если дифференциальное уравнение объекта нелинейно из-за нелинейности его статической характеристики, то для линеаризации уравнения необходимо заменить нелинейную статическую характеристику.

чаще всего применяют метод малых отклонений .

Техника составления линеаризованных уравнений принципиально проста. Математическое обоснование этой процедуры заключается в требованиях к виду нелинейности функции . Для допустимости линеаризации достаточно, что , и существуют и непрерывны в некоторой окрестности точки (x 0 , y 0 , u 0). Тогда линеаризация осуществляется при помощи разложения в ряд Тейлора функции в окрестности точки (x 0 , y 0 , u 0) и отбрасыванием всех нелинейных членов этого ряда. Интуитивно ясно, что линеаризованная модель, полученная при помощи разложения в ряд Тейлора, может оказаться пригодной для описания процессов в нелинейном объекте, не связанных с большими изменениями переменных в окрестности точки (x 0 , y 0). Ошибка моделирования тем меньше, чем меньше отклонения переменных.

Таким образом, идея линеаризация нелинейных моделей состоит в том, что вместо (4.42) используют упрощенные математические модели, основанные на том, что процессы в системе протекают, мало отклоняясь от некоторой так называемой опорной траектории (x 0 ,u 0 ,y 0), удовлетворяющей уравнениям:

. (4.43)

Тогда можно записать приближенную линеаризованную модель в отклонениях от этого режима:

, (4.44)

Пример 1 .1. Линеаризовать уравнение состояния .

Решение. Линеаризуем уравнение состояния вблизи траектории, соответствующей . Имеем , откуда решая это уравнение, получаем, что либо (при ), либо .

Рассмотрим второй случай (так как первый тривиален):

.

.

В отклонениях , линеаризованное уравнение имеет вид:

. (4.45)

Если расчетный режим является установившимся, т.е. не зависит от времени, то коэффициенты в (4.44) также не зависят от времени. Такие системы называются стационарными. Особенно часто на практике встречаются стационарные линейные непрерывные системы, описываемые уравнениями:

Если линеаризация приводит к большим погрешностям, то надо выбрать модель, линейную по параметрам:

где a − матрица порядка n ´N ; Y − нелинейная вектор-функция.

К этому классу относятся, к примеру, билинейные объекты:

x "=a 1 x +a 2 xu +a 3 u , где a = (a 1 , a 2 , a 3), Y = (x, xu, u ).

Сказанное относится и к дискретных по времени систем.

В

Рис. 2.2. Звено САР

большинстве случаев можно линеаризовать нелинейные зависимости, используя метод малых отклонений или вариаций. Для рассмотрения его обратимся к некоторому звену системы автоматического регулирования (рис. 2.2). Входная и выходная величины обозначены через X 1 иX 2 , а внешнее возмущение – через F(t).

Допустим, что звено описывается некоторым нелинейным дифференциальным уравнением вида

Для составления такого уравнения нужно использовать соответствующую отрасль технических наук (например электротехнику, механику, гидравлику и т. п.), изучающую этот конкретный вид устройства.

Основанием для линеаризации служит предположение о достаточной малости отклонений всех переменных, входящих в уравнение динамики звена, так как именно на достаточно малом участке криволинейную характеристику можно заменить отрезком прямой. Отклонения переменных отсчитываются при этом от их значений в установившемся процессе или в определенном равновесном состоянии системы. Пусть, например, установившийся процесс характеризуется постоянным значением переменной Х 1 , которое обозначим Х 10 . В процессе регулирования (рис. 2.3) переменная Х 1 будет иметь зна­чениягде
обозначает отклонение переменнойX 1 от установившегося значения Х 10 .

А

Рис. 2.3. Процесс регулирования в звене

налогичные соотношения вводятся для других переменных. Для рассматриваемого случая имеем: а также
.

Далее можно записать:
;
и
, так как
и

Все отклонения предполагаются достаточно малыми. Это математическое предположение не противоречит физическому смыслу задачи, так как сама идея автоматического регулирования требует, чтобы все отклонения регулируемой величины в процессе регулирования были достаточно малыми.

Установившееся состояние звена определяется значениями Х 10 , Х 20 и F 0 . Тогда уравнение (2.1) может быть записано для установившего состояния в виде

Разложим левую часть уравнения (2.1) в ряд Тейлора

где  – члены высшего порядка. Индекс 0 при частных производных означает, что после взятия производной в её выражение надо подставить установившееся значение всех переменных
.

В состав членов высшего порядка в формуле (2.3) входят высшие частные производные, умноженные на квадраты, кубы и более высокие степени отклонений, а также произведения отклонений. Они будут малыми высшего порядка по сравнению с самими отклонениями, которые являются малыми первого порядка.

Уравнение (2.3) является уравнением динамики звена, так же как (2.1), но записано в другой форме. Отбросим в этом уравнении малые высшего порядка, после чего из уравнения (2.3) вычтем уравнения установившегося состояния (2.2). В результате получим следующее приближённое уравнение динамики звена в малых отклонениях:

В это уравнение все переменные и их производные входят линейно, то есть в первой степени. Все частные производные представляют собой некоторые постоянные коэффициенты в том случае, если исследуется система с постоянными параметрами. Если же система имеет переменные параметры, то уравнение (2.4) будет иметь переменные коэффициенты. Рассмотрим только случай постоянных коэффициентов.

Получение уравнения (2.4) является целью проделанной линеаризации. В теории автоматического регулирования принято записывать уравнения всех звеньев так, чтобы в левой части уравнения была выходная величина, а все остальные члены переносятся в правую часть. При этом все члены уравнения делятся на коэффициент при выходной величине. В результате уравнение (2.4) принимает вид

где введены следующие обозначения

. (2.6)

Кроме того, для удобства принято все дифференциальные уравнения записывать в операторной форме с обозначениями

Тогда дифференциальное уравнение (2.5) запишется в виде

Эту запись будем называть стандартной формой записи уравнения динамики звена.

Коэффициенты Т 1 и Т 2 имеют размерность времени – секунды. Это вытекает из того, что все слагаемые в уравнении (2.8) должны иметь одинаковую размерность, а например, размерность(илиpx 2) отличается от размерности х 2 на секунду в минус первой степени (
). Поэтому коэффициенты Т 1 и Т 2 называютпостоянными времени .

Коэффициент k 1 имеет размерность выходной величины, деленную на размерность входной. Он называетсякоэффициентом передачи звена. Для звеньев, у которых выходная и входная величины имеют одинаковую размерность, используются также следующие термины: коэффициент усиления – для звена, представляющего собой усилитель или имеющего в своем составе усилитель; передаточное число – для редукторов, делителей напряжения, масштабирующих устройств и т. п.

Коэффициент передачи характеризует статические свойства звена, так как в установившемся состоянии
. Следовательно, он определяет крутизну статической характеристики при малых отклонениях. Если изобразить всю реальную статическую характеристику звена
, то линеаризация дает
или
. Коэффициент передачи k 1 будет представлять собой тангенс угла наклона касательной в той точкеC(см. рис. 2.3), от которой отсчитываются малые отклонения х 1 и х 2 .

Из рисунка видно, что проделанная выше линеаризация уравнения справедлива для процессов регулирования, захватывающих такой участок характеристики АВ, на котором касательная мало отличается от самой кривой.

Кроме того, отсюда вытекает другой, графический способ линеаризации. Если известна статическая характеристика и точка C, определяющая установившееся состояние, около которого происходит процесс регулирования, то коэффициент передачи в уравнении звена определяется графически из чертежа по зависимости k 1 = tgcучетом масштабов чертежа и размерностиx 2 . Во многих случаяхграфический метод линеаризации оказывается более удобным и быстрее приводит к цели.

Размерность коэффициента k 2 равна размерности коэффициента передачи k 1 , умноженной на время. Поэтому часто уравнение (2.8) записывают в виде

где
– постоянная времени.

П

Рис. 2.4. Двигатель независимого возбуждения

остоянные времени Т 1 , Т 2 и Т 3 определяют динамические свойства звена. Этот вопрос будет рассмотрен подробно ниже.

Коэффициент k 3 представляет собой коэффициент передачи по внешнему возмущению.

В качестве примера линеаризации рассмотрим электрический двигатель, управляемый со стороны цепи возбуждения (рис. 2.4).

Для нахождения дифференциального уравнения, связывающего приращение скорости с приращением напряжения на обмотке возбуждения, запишем закон равновесия электродвижущих сил (эдс) в цепи возбуждения, закон равновесия эдс в цепи якоря и закон равновесия моментов на валу двигателя:

;

.

Во втором уравнении для упрощения опущен член, соответствующий эдс самоиндукции в цепи якоря.

В этих формулах R В и R Я – сопротивления цепи возбуждения и цепи якоря; І В и І Я – токи в этих цепях; U В и U Я – напряжения, приложенные к этим цепям; В – число витков обмотки возбуждения; Ф – магнитный поток; Ω – угловая скорость вращения вала двигателя; М – момент сопротивления от внешних сил;J– приведенный момент инерции двигателя; С Е и С М – коэффициенты пропорциональности.

Допустим, что до появления приращения напряжения, приложенного к обмотке возбуждения, существовал установившийся режим, для которого уравнения (2.10) запишутся следующим образом:

(2.11)

Если теперь напряжение возбуждения получит приращение U В = U В0 + ΔU В, то все переменные, определяющие состояние системы, также получат приращения. В результате будем иметь: І В = І В0 + ΔІ В; Ф = Ф 0 + ΔФ; I Я = I Я0 + ΔІ Я; Ω = Ω 0 + ΔΩ.

Подставляем эти значения в (2.10), отбрасываем малые высшего порядка и получаем:

(2.12)

Вычитая из уравнений (2.12) уравнения (2.11), получим систему уравнений для отклонений:

(2.13)

В

Рис. 2.5. Кривая намагничивания

этих уравнениях введен коэффициент пропорциональности между приращением потока и приращением тока возбуждения
определяемый из кривой намагничивания электродвигателя (рис. 2.5).

Совместное решение системы (2.13) даёт

где коэффициент передачи, ,

; (2.15)

электромагнитная постоянная времени цепи возбуждения, с,

(2.16)

где L B = a B – динамический коэффициент самоиндукции цепи возбуждения; электромагнитная постоянная времени двигателя, с,

. (2.17)

Из выражений (2.15) – (2.17) видно, что рассматриваемая система является по существу нелинейной, так как коэффициент передачи и «постоянные» времени, на самом деле – не постоянны. Их можно считать постоянными только приближенно для какого-то определенного режима при условии малости отклонений всех переменных от установившихся значений.

Интересным является частный случай, когда в установившемся режиме U B0 = 0; І B0 = 0; Ф 0 = 0 и Ω 0 = 0. Тогда формула (2.14) приобретает вид

. (2.18)

В этом случае статическая характеристика будет связывать приращение ускорения двигателя
и приращение напряжения в цепи возбуждения.

Поделитесь с друзьями или сохраните для себя:

Загрузка...