Курсовая работа по Дисциплине: Эконометрика на Тему: Временные ряды. Тренды

МОСКОВСКИЙ ИНСТИТУТ УПРАВЛЕНИЯ

Специальность: Финансы и кредиты

Отделение: Заочное

Группа: РФК1

Курсовая работа

По Дисциплине: Эконометрика

На Тему: Временные ряды. Тренды. Автокорреляция.

Студент:

Руководитель:

Проверил:

Москва 2005г.

Введение . 3

История возникновения эконометрики как науки .. 5

Временные ряды. 7

Процесс белого шума .. 12

Процесс скользящего среднего .. 18

Нестационарные временные ряды .. 20

Тренд и его анализ. 24

.. 25

Сглаживание временных рядов . 28

Заключение . 32

Литература .. 33

Введение

Эконометрика – это наука, в которой на базе реальных статистических

данных строятся, анализируются и совершаются математические модели

реальных экономических явлений.

Одним из важнейших направлений эконометрики является построение

прогнозов по различным экономическим показателям.

· факторы, формирующие циклические колебания ряда (например,

сравнению с летним);

· случайные факторы.

Очевидно, что реальные данные чаще всего содержат все три компоненты. Модель, в которой временной ряд представлен как сумма перечисленных компонент, называется аддитивной моделью временного ряда. Если же временной ряд представлен как их произведение, то такая модель называется мультипликативной.

Под временным рядом (time series) понимается последовательность наблюдений значений некоторой переменной, произведенных через равные промежутки времени. Если принять длину такого промежутка за единицу времени (год, квартал, день и т. п.), то можно считать, что последовательные наблюдения x1, ..., xn произведены в моменты

t = 1, …, n.

Основная отличительная особенность статистического анализа временных рядов состоит в том, что последовательность наблюдений

x1, ..., xn рассматривается как реализация последовательности, вообще говоря, статистически зависимых случайных величин X1, ..., Xn, имеющих некоторое совместное распределение с функцией распределения

F(v1, v2, …, vn) = P{ X1 < v1, X2 < v2, ... , Xn < vn }.

Рассмотрим в основном временные ряды, у которых совместное распределение случайных величин X1, ..., Xn имеет совместную плотность распределения p(x1, x2, … , xn).

Чтобы сделать задачу статистического анализа временных рядов доступной для практического решения, приходится так или иначе ограничивать класс рассматриваемых моделей временных рядов, вводя те или иные предположения относительно структуры ряда и структуры его вероятностных характеристик. Одно из таких ограничений предполагает стационарность временного ряда.

Ряд xt, t = 1, …, n, называется строго стационарным (или стационарным в узком смысле), если для любого m (m < n) совместное распределение вероятностей случайных величин X t1…… X tm такое же, как и для X t1+ш…… X tm + I, при любых t1,…, tm и I, таких, что 1 ≤ t1, … , tm ≤ n и 1 ≤ t1+ д., … , tm+ I≤ n.

Другими словами, свойства строго стационарного временного ряда не изменяются при изменении начала отсчета времени. В частности, при m = 1 из предположения о строгой стационарности временного ряда xt следует, что закон распределения вероятностей случайной величины Xt не зависит от t, а значит, не зависят от t и все его основные числовые характеристики (если, конечно, они существуют), в том числе: математическое ожидание E (Xt) = Mи дисперсия D(Xt)= Ớ2.

Значение М. определяет постоянный уровень, относительно которого колеблется анализируемый временной ряд xt, а постоянная Ớ характеризует размах этих колебаний.

Одно из главных отличий последовательности наблюдений, образующих временной ряд, заключается в том, что члены временного ряда являются, вообще говоря, статистически взаимозависимыми. Степень тесноты статистической связи между случайными величинами Xt и Xt+ может быть измерена парным коэффициентом корреляции

font-size:14.0pt; line-height:150%">где

font-size:14.0pt; line-height:150%">Если ряд xt стационарный, то значение не зависит от t и является функцией только от ; мы будем использовать для него обозначение font-size:14.0pt; line-height:150%">font-size:14.0pt; line-height:150%">В частности,

font-size:14.0pt; line-height:150%">Соответственно, для стационарного ряда и значение коэффициента корреляции

font-size:14.0pt; line-height:150%">.jpg" width="41" height="26">

так что

font-size:14.0pt; line-height:150%">В частности, font-size:14.0pt; line-height:150%">Практическая проверка строгой стационарности ряда xt на основании наблюдения значений x1, x2, …, xn в общем случае затруднительна. В связи с этим под стационарным рядом на практике часто подразумевают временной ряд xt, у которого

font-size:14.0pt; line-height:150%">Ряд, для которого выполнены указанные три условия, называют стационарным в широком смысле (слабо стационарным, стационарным второго порядка или ковариационно стационарным).

Если ряд является стационарным в широком смысле, то он не обязательно является строго стационарным. В то же время, и строго стационарный ряд может не быть стационарным в широком смысле просто потому, что у него могут не существовать математическое ожидание и/или дисперсия. (В отношении последнего примером может служить случайная выборка из распределения Коши.) Кроме того, возможны ситуации, когда указанные три условия выполняются, но, например, зависит от t. Ряд xt, t = 1, …, n, называется гауссовским, если совместное распределение случайных величин X1, ... , Xn является n-мерным нормальным распределением. Для

гауссовского ряда понятия стационарности в узком и в широком смысле совпадают.

В дальнейшем, говоря о стационарности некоторого ряда xt, мы (если не

оговаривается противное) будем иметь в виду, что этот ряд стационарен в широком смысле (так что у него существуют математическое ожидание и дисперсия). Итак, пусть xt – стационарный ряд c

font-size:14.0pt; line-height:150%">Поскольку в данном случае коэффициент измеряет корреляцию между членами одного и того же временного ряда, его принято называть коэффициентом автокорреляции (или просто автокорреляцией). По той же причине о ковариациях говорят как об автоковариациях..jpg" width="16" height="16">принято говорить об автокорреляционной функции font-size:14.0pt; line-height:150%"> Автокорреляционная функция безразмерна, т. е. не зависит от масштаба измерения анализируемого временного ряда. Ее значения могут изменяться в пределах от 1 до +1; при этом ρ(0) = 1. Кроме того, из стационарности ряда xt следует, , так что при анализе поведения автокорреляционных функций обычно ограничиваются рассмотрением только неотрицательных значений font-size:14.0pt; line-height:150%">График зависимости font-size:14.0pt; line-height:150%"> xt – стационарный временной ряд и

c – некоторая постоянная, то временные ряды

xt и (xt + c) имеют одинаковые коррелограммы.

Если предположить, что временной ряд описывается моделью стационарного

гауссовского процесса, то полное описание совместного распределения случайных величин X 1, ..., X n требует задания n+1 параметров:

или https://pandia.ru/text/79/393/images/image026_1.jpg" width="199" height="22 src=">

Это намного меньше, чем без требования стационарности, но все же больше, чем количество наблюдений. В связи с этим, даже для стационарных

гауссовских временных рядов приходится производить дальнейшее упрощение модели с тем, чтобы ограничить количество параметров, подлежащих оцениванию по имеющимся наблюдениям. Мы переходим теперь к рассмотрению некоторых простых по структуре временных рядов, которые, в то же время, полезны для описания эволюции во времени многих реальных экономических показателей.

Процесс белого шума

Процессом белого шума (“белым шумом”, “чисто случайным временным

рядом”) называют стационарный временной ряд xt, для которого

font-size:14.0pt; line-height:150%">Последнее означает, что при t ≠ s случайные величины Xt и Xs, соответствующие наблюдениям процесса белого шума в моменты t и s, некоррелированы.

В случае, когда Xt имеет нормальное распределение, случайные величины X 1, ..., X n взаимно независимы и имеют одинаковое нормальное распределение N(0, 2), образуя случайную выборку из этого распределения, т. е. .

Такой ряд называют гауссовским белым шумом.

В то же время, в общем случае, даже если некоторые случайные величины

X1, ... ,Xn взаимно независимы и имеют одинаковое распределение, то это еще не означает, что они образуют процесс белого шума, т. к. случайная величина Xt может просто не иметь математического ожидания и/или дисперсии (в качестве примера мы опять можем указать на распределение Коши).

Временной ряд, соответствующий процессу белого шума, ведет себя крайне нерегулярным образом из-за некоррелированности при t ≠ s случайных величин Xt и Xs. Это иллюстрирует приводимый ниже график смоделированной реализации гауссовского процесса белого шума (NOISE) с D(Xt) ≡ 0.04.

font-size:14.0pt; line-height:150%">В связи с этим процесс белого шума не годится для непосредственного моделирования эволюции большинства временных рядов, встречающихся в экономике.

В то же время, как мы увидим ниже, такой процесс является базой для построения более реалистичных моделей временных рядов, порождающих “более гладкие” траектории ряда. В связи с частым использованием процесса белого шума в дальнейшем изложении, мы будем отличать этот процесс от других моделей временных рядов, используя для него обозначение εt.

В качестве примера ряда, траектория которого похожа на реализацию процесса белого шума, можно указать, например, на ряд, образованный значениями темпов изменения (прироста) индекса Доу-Джонса в течение 1984 года (дневные данные).

График этого ряда имеет вид

font-size:14.0pt; line-height:150%">Заметим, однако, что здесь наблюдается некоторая асимметрия распределения вероятностей значений xt (скошенность этого распределения в сторону положительных значений), что исключает описание модели этого ряда как гауссовского белого шума.

Процесс авторегрессии

Одной из широко используемых моделей временных рядов является процесс авторегрессии (модель авторегрессии). В своей простейшей форме модель авторегрессии описывает механизм порождения ряда следующим образом:

Xt = a Xt – 1 + εt, t = 1, …, n,

где εt – процесс белого шума, имеющий нулевое математическое ожидание и

дисперсию font-size:14.0pt; line-height:150%">X0 – некоторая случайная величина,

а a ≠ 0 – некоторый постоянный коэффициент.

При этом

E(Xt) = a E(X t – 1),

так что рассматриваемый процесс может быть стационарным только если E(Xt) = 0 для всех t = 0, 1, …, n.

Xt = a X t – 1 + εt = a (a Xt –2 + εt–1) + εt = a2 Xt–2 + a εt–1 + εt = … =

= a t X0 + a t –1 ε1 + a t–2 ε2 + … + εt,

Xt–1 = a Xt–2 + εt–1 = a t–1 X0 + a t–2 ε1 + a t–3 ε2 + … + εt–1 ,

Xt–2 = a Xt–3 + εt–2 = a t–2 X0 + a t–3 ε1 + a t–4 ε2 + … + εt–2,

X1 = a X0 + ε1.

Если случайная величина X0 не коррелирована со случайными величинами ε1, ε2,

…, εn, то отсюда следует, что

font-size:14.0pt; line-height:150%">Таким образом, механизм порождения последовательных наблюдений, заданный соотношениями

Xt = a Xt–1 + εt, t = 1, …, n,

порождает стационарный временной ряд, если a < 1 ; случайная величина X0 не коррелирована со случайными величинами ε1, ε2, …,εn ;

font-size:14.0pt; line-height:150%">Рассмотренная модель порождает (при указанных условиях) стационарный ряд, имеющий нулевое математическое ожидание. Однако ее можно легко распространить и на временные ряды yt с ненулевым математическим ожиданием , полагая, что

указанная модель относится к центрированному ряду

font-size:14.0pt; line-height:150%">Поэтому без ограничения общности можно обойтись в текущем рассмотрении моделями авторегрессии, порождающими стационарный процесс с нулевым средним.

Продолжая рассмотрение для ранее определенного процесса Xt (с нулевым математическим ожиданием), заметим, что для него

font-size:14.0pt; line-height:150%">и при значениях a > 0, близких к 1, между соседними наблюдениями имеется сильная положительная корреляция, что обеспечивает более гладкий характер поведения траекторий ряда по сравнению с процессом белого шума. При a < 0 процесс авторегрессии, напротив, имеет менее гладкие реализации, поскольку в этом случае проявляется тенденция чередования знаков последовательных наблюдений.

Следующие два графика демонстрируют поведение смоделированных реализаций временных рядов, порожденных моделями авторегрессии ε

при a = 0.8 (первый график) и a = – 0.8 (второй график).

https://pandia.ru/text/79/393/images/image040_0.jpg" width="69" height="24">

Более того, статистические данные о поведении ряда до момента t = 0 могут

отсутствовать вовсе, так что значение x0 является просто некоторой наблюдаемой числовой величиной. В обоих случаях ряд Xt уже не будет стационарным даже при a.

Процесс скользящего среднего

Еще одной простой моделью порождения временного ряда является процесс скользящего среднего порядка q (MA(q)). Согласно этой модели,

font-size:14.0pt; line-height:150%">При этом для обеспечения стационарности необходимо и достаточно, чтобы параметры по обсолютной величине был меньше еденицы (или, что то же, чтобы корень характеристического уравнения 1- font-size:14.0pt; line-height:150%">font-size:14.0pt; line-height:150%">Смешанный процесс авторегрессии – скользящего среднего (процесс

Процесс Xt с нулевым математическим ожиданием, принадлежащий такому классу процессов, характеризуется порядками p и q его AR и МA составляющих и обозначается как процесс ARMA(p, q) (autoregressive moving average, mixed autoregressive moving average). Более точно, процесс Xt с нулевым математическим ожиданием принадлежит классу ARMA(p, q), если

font-size:14.0pt; line-height:150%">где a(L) и b(L) имеют тот же вид, что и в определенных ранее моделях AR(p) и MA(q). Если процесс имеет постоянное математическое ожидание , то он является процессом типа ARMA(p, q), если

font-size:14.0pt; line-height:150%">Отметим следующие свойства процесса 

Процесс стационарен, если все корни уравнения a(z) = 0 лежат вне единичного

круга z ≤ 1.

Если процесс стационарен, то существует эквивалентный ему процесс

font-size:14.0pt; line-height:150%">Если все корни уравнения b(z) = 0 лежат вне единичного круга z ≤ 1

(условие обратимости), то существует эквивалентное представление

font-size:14.0pt; line-height:150%">Отсюда вытекает, что стационарный процесс ARMA(p, q) всегда можно

аппроксимировать процессом скользящего среднего достаточно высокого порядка, а

при выполнении условия обратимости его можно также аппроксимировать процессом авторегрессии достаточно высокого порядка.

В экономике многие временные ряды являются агрегированными. Из указанного выше факта вытекает, что если каждая из компонент отвечает простой модели AR, то при независимости этих компонент их сумма будет ARMA процессом.

Нестационарные временные ряды

В экономической практике принято рассматривать два основных типа нестационарных временных рядов:

Случайное блуждание (со сдвигом)

font-size:14.0pt; line-height:150%"> font-size:14.0pt; line-height:150%">Вторым основным типом является ряд вида:

Хt = https://pandia.ru/text/79/393/images/image054_1.gif" width="13" height="15 src=">t

Такие ряды называются также временными рядами с детерминистическим трендом.



200


150


100


50


Рис. Нестационарный временной ряд с детерминистическим трендом.

Рассмотрим временной ряд со стохастическим трендом.

Yt = https://pandia.ru/text/79/393/images/image054_1.gif" width="13" height="15 src=">t

Данное уравнение является частным случаем более общей модели

Yt = https://pandia.ru/text/79/393/images/image053_1.gif" width="16" height="15 src="> Yt-1 + font-size:14.0pt; line-height:150%">В зависимости от значения font-size:14.0pt; line-height:150%">|а| < 1 - процесс является стационарным;

|а| font-size:14.0pt; line-height:150%">При |а| >1 процесс становится «взрывным», т. е. шок, произошедший в системе в момент времени t, будет иметь более сильное влияние на нее в момент времени t+1, еще более сильное – в момент t+2 и т. д.

На рисунке изображены процессы нестационарных временных рядов с коэффициентом >1. Рисунок A

font-size:14.0pt; line-height:150%">Показывает первые 250, а

Рисунок Б. – первые 450 неблюдений одного и того же процесса. . Видно, как с увеличением числа наблюдений усиливается

взрывной» характер процесса.

Рисунок Б.

180

160

140

120

100

80

60

40

20


О450

Аналогичные тенденции прослеживаются для процессов с коэффициентом < -1.

Такого рода процессы (а также процесс с коэффициентом = -1 редко соотвествуют экономическим данным, поэтому, как правило, основной упор делается на рассмотрении процессов, имеющих единичный корень, - т. е. случая, когда =1.

Тренд и его анализ.

Тренд или тенденция временного ряда – это несколько условное

понятие. Под трендом понимают закономерную, неслучайную

составляющую временного ряда (обычно монотонную), которая может

быть вычислена по вполне определенному однозначному правилу. Тренд

временного ряда часто связан с действием физических законов или

каких-либо других объективных закономерностей. Однако, вообще

говоря, нельзя однозначно разделить случайный процесс или

временной ряд на регулярную часть (тренд) и колебательную часть

(остаток). Поэтому обычно предполагают, что тренд - это некоторая

функция простого вида (линейная, квадратичная и т. п.), описывающая

“поведение в целом” ряда или процесса. Если выделение такого

тренда упрощает исследование, то предположение о выбранной форме

тренда считается допустимым.

Для временного ряда уравнение линейного тренда имеет вид

font-size:14.0pt; line-height:150%"> При r>0 говорят о положительном тренде (с течением времени

значения временного ряда имеет тенденцию возрастать), при r<0 об

отрицательном (тенденция убывания). При r, близких к нулю, иногда

говорят о боковом тренде. Как было сказано выше, для случая, когда

t=1,2,3,...n, имеем:

font-size:14.0pt; line-height:150%">однако на практике не стоит отдельно вычислять r и уX и только

потом подставлять их в уравнение тренда. Лучше прямо в формуле

тренда произвести сокращения, после которых она примет вид:

font-size:14.0pt; line-height:150%"> После выделения линейного тренда нужно выяснить, насколько он

значим. Это делается с помощью анализа коэффициент корреляции.

Дело в том, что отличие коэффициента корреляции от нуля и тем

самым наличие реального тренда (положительного или отрицательного)

может оказаться случайным, связанным со спецификой

рассматриваемого отрезка временного ряда. Другими словами, при

анализе другого набора экспериментальных данных (для того же

временного ряда) может оказаться, что полученная при этом оценка

намного ближе к нулю, чем исходная (и, возможно, даже имеет другой

знак), и говорить о реальном тренде тут уже становится трудно.

Автокорреляция уровней временного ряда

При наличии во временном ряде тенденции и циклических колебаний значения каждого последующего уровня ряда зависят от предыдущих. Корреляционную зависимость между последовательными уровнями временного ряда называют автокорреляцией уровней ряда.

Количественно ее можно измерить с помощью линейного коэффициента корреляции между уровнями исходного временного ряда и уровнями этого ряда, сдвинутыми на несколько шагов во времени.

Формула для расчета коэффициента автокорреляции имеет вид:

font-size:14.0pt; line-height:150%">где

font-size:14.0pt; line-height:150%">Эту величину называют коэффициентом автокорреляции уровней ряда первого порядка, так как он измеряет зависимость между соседними уровнями ряда и .

Аналогично можно определить коэффициенты автокорреляции второго и более высоких порядков. Так, коэффициент автокорреляции второго порядка характеризует тесноту связи между уровнями и font-size:14.0pt; line-height:150%"> font-size:14.0pt; line-height:150%">где

font-size:14.0pt; line-height:150%">Число периодов, по которым рассчитывается коэффициент автокорреляции, называют лагом. С увеличением лага число пар значений, по которым рассчитывается коэффициент автокорреляции, уменьшается. Считается целесообразным для обеспечения статистической достоверности коэффициентов автокорреляции использовать правило – максимальный лаг должен быть не больше .

Свойства коэффициента автокорреляции.

Он строится по аналогии с линейным коэффициентом корреляции и таким образом характеризует тесноту только линейной связи текущего и предыдущего уровней ряда. Поэтому по коэффициенту автокорреляции можно судить о наличии линейной (или близкой к линейной) тенденции. Для некоторых временных рядов, имеющих сильную нелинейную тенденцию (например, параболу второго порядка или экспоненту), коэффициент автокорреляции уровней исходного ряда может приближаться к нулю.

По знаку коэффициента автокорреляции нельзя делать вывод о возрастающей или убывающей тенденции в уровнях ряда. Большинство временных рядов экономических данных содержат положительную автокорреляцию уровней, однако при этом могут иметь убывающую тенденцию.

Последовательность коэффициентов автокорреляции уровней первого, второго и т. д. порядков называют автокорреляционной функцией временного ряда. График зависимости ее значений от величины лага (порядка коэффициента автокорреляции) называется коррелограммой.

Анализ автокорреляционной функции и коррелограммы позволяет определить лаг, при котором автокорреляция наиболее высокая, а следовательно, и лаг, при котором связь между текущим и предыдущими уровнями ряда наиболее тесная, т. е. при помощи анализа автокорреляционной функции и коррелограммы можно выявить структуру ряда.

Если наиболее высоким оказался коэффициент автокорреляции первого порядка, исследуемый ряд содержит только тенденцию. Если наиболее высоким оказался коэффициент автокорреляции порядка , то ряд содержит циклические колебания с периодичностью в font-size:14.0pt; line-height:150%">рассматривается как указание на значимость корреляции с

соответствующим лагом.

Сглаживание временных рядов

Сглаживание временного ряда используется для удаления из него

высокочастотных компонент (которые обычно являются

несущественными, так как вызваны случайными факторами). Один из

простейших методов сглаживания - метод скользящих или подвижных

средних (MA в англоязычной нотации), он является одним из наиболее

старых и широко известных. Этот метод основан на переходе от

начальных значений временного ряда к их средним значениям на

некотором заданном интервале времени (длина которого называется

шириной окна). Этот интервал времени как бы скользит вдоль ряда, с

чем и связано название метода. В каждый момент этого скольжения мы

видим только часть ряда, чем и вызвана “оконная” терминология.

Полученный в результате такого сглаживания новый временной

ряд обычно ведет себя более регулярно (гладко), что связано с

удалением в процессе сглаживания резких случайных отклонений,

попадающих в окно. Сглаживание полезно применять даже в самом

начале исследования временного ряда, так как при этом часто

удается прояснить вопрос о наличии и характере тренда, а также

выявить сезонные колебания.

Несколько слов нужно сказать о сезонных колебаниях. Они

проявляются во многих временных рядах, в частности, в экономике,

метеорологии. Сезонными колебаниями называют все такие изменени,

которые соответствуют определенному (почти) строго периодическому

ритму (не обязательно равному одному году, как для обычных

сезонов), присущему Вселенной, природе или человеческой

деятельности. Такая периодичность может ярко проявляться в

процессах человеческой деятельности, например, в изменениях объема

перевозок местным транспортом в последние дни каждой недели или же

утром и вечером в течение каждого дня, в росте ошибок при

выполнении производственных операций по понедельникам и др. Но

наиболее типичные сезонные колебания связаны именно со сменой

сезонов года. Они затрагивают огромное число параметров жизни

человека (как современного, так и в древности). Обычно при

исследовании временных рядов стремятся выделить сезонные колебания

для того, чтобы их изолировать и изучить другие, более сложные

периодические компоненты.

Простейшее сглаживание методом MA с шириной окна 2m+1

производится по следующим формулам:

x*k=(xk-m+xk-m+1+...+xk+xk+1+...+xk+m)/2m+1.

Выбор ширины окна диктуется содержательными сображениями,

связанными с предполагаемым периодом сезонных колебаний или

с желательным исключением определенного рода высокочастотных

колебаний. На практике обычно при отсутствии сезонности ширину

окна берут равной 3, 5 или 7. Не рекомендуется брать окно шире,

чем в четверть числа анализируемых данных. Чем шире окно, тем

больше колебательных компонент будет исключено и тем более гладкий

вид полученного при сглаживании ряда. Однако при слишком больших

окнах полученный ряд уже значительно отличается от исходного,

теряются многие индивидуальные особенности и ряд все более

приближается к постоянному. Если взять ширину окна максимально

возможной (равной общему числу данных значений x1,x2,...), то

приходим просто к постоянной величине, равной среднему значению

всех этих xi.

Подвижные средние могут, к сожалению, искажать кратковременные колебания и порождать фиктивные гармонические

компоненты при гармоническом анализе временных рядов.

Имеются различные модификации метода MA. В некоторых из них

используются более сложные методы усреднения (с некоторыми весами

и др.), которые подчеркивают большую или меньшую значимость

отдельных слагаемых. Например, часто используемое экспоненциальное

сглаживание основано на приписывании больших весов непосредственно предшествующим значениям. Этот подход очень широко распространен в социологии, экономике и других дисциплинах.

В настоящее время метод MA (с различными модификациями)

реализован во всех статистических пакетах программ, а также в

многих специализированных программах, предназначенных для

обработки экономической и деловой информации.

Для случайных процессов тоже имеются разнообразные методы

сглаживания. Здесь число методов чрезвычайно велико, это связано с

тем, что усреднение может производиться с помощью интегрирования с

некоторой весовой функцией, которую можно выбирать достаточно

произвольно. Поэтому окно здесь задается не только своей шириной,

а и видом усредняющей функции. Правильный выбор окна представляет собой весьма непростую задачу, этому посвящена обширная литература. Прямоугольное окно (используемое в классическом варианте метода MA) имеет целый ряд недостатков, которые в классической теории рядов Фурье связывают с явлением Гиббса, в технике именуемом вытеканием мощности. При исследовании случайных процессов часто говорят не о сглаживании, а о фильтрации (или о коррекции, очистке спектра), причем в области высоких частот

говорят о применении фильтра высоких частот (ФВЧ), а в области

низких частот – о фильтре низких частот (ФНЧ). Такого рода

терминология принята, в частности, в теории распознавания сигналов

и, вообще, в теории связи.

Другой (терминологически, но не по существу) подход к

сглаживанию временных рядов и случайных процессов основан на

модификации спектра. Если в спектре ряда просто полностью удалить

высокочастотные компоненты, то получится новый ряд, который ведет

себя более регулярно. Такого рода вычисление возможны только при

наличии компьютера и специальной программы для работы с рядами и

преобразованиями Фурье. Эти программы входят в состав большинства

универсальных математических пакетов (Mathcad, Matlab, Maple,

Mathematica) и многих статистических пакетов.

Заключение

Эконометрика – это наука, которая дает количественное выражение

взаимосвязей экономических явлений и процессов. Эта наука возникла в результате взаимодействия и объединения трех компонент: экономической теории, статистических и экономических методов. Становление и развитие эконометрики происходили на основе так называемой высшей статистики, когда в уравнение регрессии начали включаться переменные не только в первой, но и во второй степени. В ряде случаев это необходимо для отражения свойства оптимальности экономических переменных, т. е. наличия значений, при которых достигается минимальное или максимальное воздействие на зависимую переменную. Таково, например, влияние внесения в почву удобрений на урожайность: до определенного уровня насыщение почвы удобрениями способствует росту урожайности, а по достижении оптимального уровня насыщения удобрениями его дальнейшее наращивание не приводит к росту урожайности и даже может вызвать ее снижение.

Описание экономических систем математическими методами, или эконометрика, дает заключение о реальных объектах и связях по результатам выборочного обследования или моделирования. Вместе с тем, чтобы сделать вывод о том, какие из полученных результатов являются достоверными, а какие сомнительными или просто необоснованными, необходимо уметь оценивать их надежность и величину погрешности. Все перечисленные аспекты и составляют содержание эконометрики как науки.

Таким образом, сердцевиной познания в экономике является эксперимент, предполагающий либо непосредственное наблюдение (измерение), либо математическое моделирование.

Литература

Основная:

1. Эконометрика: Учебник / Под ред. . – М.: Финансы и статистика, 2002. – 344 с.

2. Практикум по эконометрике: Учебн. пособие / Под ред. . – М.: Финансы и статистика, 2003. – 192 с.

3. Эконометрика в вопросах и ответах /учебное пособие, Москва 2005 . Изд-во Проспект, 208с.

4. , Путко: Учебник для вузов / Под ред. проф. . – М.: ЮНИТИ-ДАНА, 2002. – 311 с.

5. , Пересецкий. Начальный курс: Учебник. – М.: Дело, 2001. – 400 с.

6. Эконометрия / Москва «Финансы и статистика» 2001, -304с.

Временной ряд - это совокупность значений какого-либо показателя за несколько последовательных моментов или периодов времени. Каждое значение (уровень) временного ряда формируется под воздействием большого числа факторов, которые можно условно разделить на три группы:

  • 1) факторы, формирующие тенденцию ряда;
  • 2) факторы, формирующие циклические колебания ряда;
  • 3) случайные факторы.

Тенденция характеризует долговременное воздействие факторов на динамику показателя. Тенденция может быть возрастающей (рис. 4.1,а) или убывающей (рис. 4.1,6).

Циклические колебания могут носить сезонный характер или отражать динамику конъюнктуры рынка (рис. 4.2), а также фазу бизнес- цикла, в которой находится экономика страны.

Рис. 4.1. Тенденции временного ряда: а -возрастающая; б - убывающая

Рис. 4.2.

Реальные данные часто содержат все три компоненты. В большинстве случаев временной ряд можно представить как сумму или произведение трендовой Т, циклической S и случайной Е компонент. В случае их суммы имеет место аддитивная модель временного ряда:

в случае произведения - мультипликативная модель:

Основные задачи эконометрического исследования отдельного временного ряда - получение количественного выражения каждой из компонент и использование этой информации для прогноза будущих значений ряда или построение модели взаимосвязи двух или более временных рядов.

Сначала рассмотрим основные подходы к анализу отдельного временного ряда. Такой ряд помимо случайной составляющей может содержать либо только тенденцию, либо только сезонную (циклическую) компоненту, либо все компоненты вместе. Для того чтобы выявить наличие той или иной неслучайной компоненты, исследуется корреляционная зависимость между последовательными уровнями временного ряда, или автокорреляция уровней ряда. Основная идея такого анализа заключается в том, что при наличии во временном ряде тенденции и циклических колебаний значения каждого последующего уровня ряда зависят от предыдущих.

Количественно автокорреляцию можно измерить с помощью линейного коэффициента корреляции между уровнями исходного временного ряда и уровнями этого ряда, сдвинутыми на несколько шагов во времени. Коэффициент автокорреляции уровней ряда первого порядка позволяет измерить зависимость между соседними уровнями ряда tut - 1, т.е. при лаге 1, и вычисляется по следующей формуле:

где в качестве средних величин берутся значения:

В первом случае в формуле (4.4) усредняются значения ряда, начиная со второго до последнего, во втором - значения ряда с первого до предпоследнего.

Формулу (4.3) можно представить как формулу выборочного коэффициента корреляции:

где в качестве переменной х берется ряд у { , у 2 , ..., у„, а в качестве переменной у - ряду ь у2. -,Уп- 1 -

Если значение коэффициента (4.3) (или (4.5)) близко к единице, это указывает на очень тесную зависимость между соседними уровнями временного ряда и наличие во временном ряде сильной линейной тенденции.

Аналогично определяются коэффициенты автокорреляции более высоких порядков. Так, коэффициент автокорреляции второго порядка, который характеризует тесноту связи между уровнями у, иу,_ 2 , определяется по формуле:

В качестве одной средней величины в (4.6) берут среднюю уровней ряда с третьего до последнего, а в качестве другой - среднюю всех уровней ряда, кроме последних двух:

Величина сдвига между уровнями ряда, относительно которой рассчитывается коэффициент автокорреляции, называется лагом. С возрастанием лага число пар значений, по которым рассчитывается коэффициент автокорреляции, уменьшается. Для обеспечения статистической достоверности максимальный лаг, как считают некоторые известные эконометристы, не должен превышать четверти общего объема выборки.

Коэффициент автокорреляции строится по аналогии с линейным коэффициентом корреляции, и поэтому он характеризует тесноту только линейной связи текущего и предыдущего уровней ряда. По нему можно судить о наличии линейной или близкой к линейной тенденции. Однако для некоторых временных рядов с сильной нелинейной тенденцией (например, параболической или экспоненциальной), коэффициент автокорреляции уровней ряда может приближаться к нулю.

Кроме того, по знаку коэффициента автокорреляции нельзя делать вывод о возрастающей или убывающей тенденции в уровнях ряда. Большинство временных рядов экономических данных имеют положительную автокорреляцию уровней, однако при этом не исключается убывающая тенденция.

Последовательность коэффициентов автокорреляции уровней различных порядков, начиная с первого, называется автокорреляционной функцией временного ряда. График зависимости ее значений от величины лага называется коррелограммой. Анализ автокорреляционной функции и коррелограммы помогает выявить структуру ряда. Здесь уместно привести следующие качественные рассуждения.

Если наиболее высоким является коэффициент автокорреляции первого порядка, очевидно, исследуемый ряд содержит только тенденцию. Если наиболее высоким оказался коэффициент автокорреляции порядка т, ряд содержит циклические колебания с периодичностью в т моментов времени. Если ни один из коэффициентов автокорреляции не является значимым, то ряд либо не содержит тенденции и циклические колебания и имеет только случайную составляющую, либо содержит сильную нелинейную тенденцию, для исследования которой нужно провести дополнительный анализ.

Пример (И.И. Елисеева ). Пусть имеются данные об объеме потребления электроэнергии жителями района у, (млн кВт-ч) за период t (квартал) (табл. 4.1).

Таблица 4.1

Исходный временной ряд потребления электроэнергии

Нанесем эти значения на график (рис. 4.3).

Рис. 4.3.

Определим автокорреляционную функцию данного временного ряда. Рассчитаем коэффициент автокорреляции первого порядка. Для этого определим средние значения:

С учетом этих значений построим вспомогательную таблицу (табл. 4.2).

Таблица 4.2

Вспомогательные расчеты при вычислении коэффициента автокорреляции

У,-Ух

У,-Уг

(У,-Ух?

(У,-Ух)

С помощью итоговых сумм подсчитаем величину коэффициента автокорреляции первого порядка:

Это значение свидетельствует о слабой зависимости текущих уровней ряда от непосредственно им предшествующих. Однако из графика очевидно наличие возрастающей тенденции уровней ряда, на которую накладываются циклические колебания.

Продолжая аналогичные расчеты для второго, третьего и т.д. порядков, получим автокорреляционную функцию, значения которой сведем в таблицу (табл. 4.3) и построим по ней коррелограмму (рис. 4.4).

Таблица 4.3

Значения автокорреляционной функции временного ряда

Рис. 4.4.

Из коррелограммы видно, что наиболее высокий коэффициент корреляции наблюдается при значении лага, равном четырем, следовательно, ряд имеет циклические колебания периодичностью в четыре квартала. Это подтверждается и графическим анализом структуры ряда.

В случае если при анализе структуры временного ряда обнаружена только тенденция и отсутствуют циклические колебания (случайная составляющая присутствует всегда), следует приступать к моделированию тенденции. Если же во временном ряде имеют место и циклические колебания, прежде всего следует исключить именно циклическую составляющую и лишь затем приступать к моделированию тенденции. Выявление тенденции состоит в построении аналитической функции, характеризующей зависимость уровней ряда от времени, или тренда. Этот способ называют аналитическим выравниванием временного ряда.

Зависимость от времени может принимать разные формы, поэтому для ее формализации используют различные виды функций:

  • линейный тренд: у, =а + Ы
  • гиперболу: у, = a + b /1;
  • экспоненциальный тренд: у,=е а ~ ь " (или y t =ab")
  • степенной тренд: y,=at b ;
  • параболический тренд второго и более высоких порядков:

Параметры каждого из трендов можно определить обычным МНК, используя в качестве независимой переменной время t = 1,2, «,

а в качестве зависимой переменной - фактические уровни временного ряда у, (или уровни за вычетом циклической составляющей, если таковая была обнаружена). Для нелинейных трендов предварительно проводят стандартную процедуру их линеаризации.

Существует несколько способов определения типа тенденции. Чаще всего используют качественный анализ изучаемого процесса, построение и визуальный анализ графика зависимости уровней ряда от времени, расчет некоторых основных показателей динамики. В этих же целях можно использовать и коэффициенты автокорреляции уровней ряда. Тип тенденции можно определить путем сравнения коэффициентов автокорреляции первого порядка, рассчитанных по исходным и преобразованным уровням ряда. Если временной ряд имеет линейную тенденцию, то его соседние уровни у, и у, _ i тесно коррелируют. В этом случае коэффициент автокорреляции первого порядка уровней исходного ряда должен быть высоким. Если временной ряд содержит нелинейную тенденцию, например в форме экспоненты, то коэффициент автокорреляции первого порядка по логарифмам уровней исходного ряда будет выше, чем соответствующий коэффициент, рассчитанный по уровням ряда. Чем сильнее выражена нелинейная тенденция в изучаемом временном ряде, тем в большей степени будут различаться значения указанных коэффициентов.

Выбор наилучшего уравнения, в случае если ряд содержит нелинейную тенденцию, можно осуществить путем перебора основных форм тренда, расчета по каждому уравнению скорректированного коэффициента детерминации R 2 и выбора уравнения тренда с максимальным значением этого коэффициента. Реализация этого метода относительно проста при компьютерной обработке данных.

При анализе временных рядов, содержащих сезонные или циклические колебания, наиболее простым подходом является расчет значений сезонной компоненты методом скользящей средней и построение аддитивной или мультипликативной модели временного ряда в форме (4.1) или (4.2).

Если амплитуда колебаний приблизительно постоянна, строят аддитивную модель (4.1), в которой значения сезонной компоненты предполагаются постоянными для различных циклов. Если амплитуда сезонных колебаний возрастает или уменьшается, строят мультипликативную модель (4.2), которая ставит уровни ряда в зависимость от значений сезонной компоненты.

Построение модели (4.1) или (4.2) сводится к расчету значений Т, S или Е для каждого уровня ряда. Процесс построения модели включает в себя следующие шаги.

  • 1. Выравнивание исходного ряда методом скользящей средней.
  • 2. Расчет значений сезонной компоненты S.
  • 3. Устранение сезонной компоненты из исходных уровней ряда и получение выровненных данных + Е) в аддитивной или (Т х Е) в мультипликативной модели.
  • 4. Аналитическое выравнивание уровней (Т + Е) или (Тх Е) и расчет значений Т с использованием полученного уравнения тренда.
  • 5. Расчет полученных по модели значений (Т + S) или (Тх S).
  • 6. Расчет абсолютных и относительных ошибок.

Пример. Построение аддитивной модели временного ряда. Рассмотрим данные об объеме потребления электроэнергии жителями района из ранее приведенного примера. Результаты анализа автокорреляционной функции показали, что данный временной ряд содержит сезонные колебания периодичностью в четыре квартала. Объемы потребления электроэнергии в осенне-зимний период (I и IV кварталы) выше, чем весной и летом (И и III кварталы). По графику этого ряда можно установить наличие приблизительно равной амплитуды колебаний. Это говорит о возможном наличии аддитивной модели. Рассчитаем ее компоненты.

Шаг 1. Проведем выравнивание исходных уровней ряда методом скользящей средней.

Поскольку циклические колебания имеют периодичность в четыре квартала, просуммируем уровни ряда последовательно за каждые четыре квартала со сдвигом на один момент времени и определим условные годовые объемы потребления электроэнергии (колонка 3 в табл. 4.4).

Разделив полученные суммы на 4, найдем скользящие средние (колонка 4 табл. 4.4). Полученные таким образом выровненные значения уже не содержат сезонной компоненты.

Поскольку скользящие средние получены осреднением четырех соседних уровней ряда, т.е. четного числа значений, они соответствуют серединам подынтервалов, состоящих из четверок чисел, т.е. должны располагаться между третьим и четвертым значениями четверок исходного ряда. Для того чтобы скользящие средние располагались на одних временных отметках с исходным рядом, пары соседних скользящих средних еще раз усредняются и получаются центрированные скользящие средние (колонка 5 табл. 4.4). При этом теряются первые две и последние две отметки временного ряда, что связано с осреднением по четырем точкам.

Таблица 4.4

Расчет оценок сезонных компонент

квартала

Потребление электроэнергии (у,)

Итого за четыре квартала

Центрированная

скользящая

сезонной

компоненты

Шаг 2. Найдем оценки сезонной компоненты как разность между фактическими уровнями ряда (колонка 2 табл. 4.4) и центрированными скользящими средними (колонка 5). Эти значения помещаем в колонку 6 табл. 4.4 и используем для расчета значений сезонной компоненты (табл. 4.5), которые представляют собой средние за каждый квартал (по всем годам) оценки сезонной компоненты S,. В моделях с сезонной компонентой обычно предполагается, что сезонные воздействия за период (в данном случае за год) взаимопогашаются. В аддитивной модели это выражается в том, что сумма значений сезонной компоненты по всем точкам (здесь - по четырем кварталам) должна быть равна нулю.

Таблица 4.5

Корректировка сезонной компоненты

Для данной модели сумма средних оценок сезонной компоненты будет:

Эта сумма оказалась не равной нулю, поэтому каждую оценку уменьшим на величину поправки, равной одной четверти полученного значения:

Рассчитаем скорректированные значения сезонной компоненты (они записаны в последней строке табл. 4.5):

Эти значения при суммировании уже равны нулю:

Шаг 3. Исключаем влияние сезонной компоненты, вычитая ее значения из каждого уровня исходного временного ряда. Получаем величины:

Эти значения рассчитываются в каждый момент времени и содержат только тенденцию и случайную компоненту (колонка 4 табл. 4.6).

Таблица 4.6

Расчет сезонной, трендовой и случайной компонент временного ряда

Т+Е = у,- S,

E = y,-(T+S)

Шаг 4. Определим трендовую компоненту данной модели. Для этого проведем выравнивание ряда (Т + Е) с помощью линейного тренда:

Подставляя в это уравнение значения / = 1, 2,..., 16, найдем уровни Т для каждого момента времени (колонка 5 табл. 4.6).

Шаг 5. Найдем значения уровней ряда, полученные по аддитивной модели. Для этого прибавим к уровням Т значения сезонной компоненты для соответствующих кварталов, т.е. к значениям в колонке 5 табл. 4.6 прибавим значения в колонке 3. Результаты операции представлены в колонке 6 там же.

Шаг 6. В соответствии с методикой построения аддитивной модели расчет ошибки производим по формуле:

Это абсолютная ошибка. Численные значения абсолютных ошибок приведены в колонке 7 табл. 4.6.

По аналогии с моделью регрессии для оценки качества построения модели или для выбора наилучшей модели можно применять сумму квадратов полученных абсолютных ошибок. Для данной аддитивной модели сумма квадратов абсолютных ошибок равна 1,10. По отношению к общей сумме квадратов отклонений уровней ряда от его среднего уровня, равной 71,59, эта величина составляет чуть более 1,5%. Следовательно, можно сказать, что аддитивная модель объясняет 98,5% общей вариации уровней временного ряда потребления электроэнергии за последние 16 кварталов.

Пример (И.И. Елисеева ). Построение мультипликативной модели временного ряда. Пусть имеются поквартальные данные о прибыли компании за последние четыре года (табл. 4.7).

Таблица 4.7

Исходные данные временного ряда с мультипликативной моделью

График временного ряда свидетельствует о наличии сезонных колебаний периодичностью четыре квартала и обшей убывающей тенденции уровней ряда (рис. 4.5).

Рис.

Прибыль компании в весенне-летний период выше, чем в осенне- зимний. Поскольку амплитуда сезонных колебаний уменьшается, можно предположить существование мультипликативной модели. Определим ее компоненты.

Шаг 1. Проведем выравнивание исходных уровней ряда методом скользящей средней. Методика, применяемая на этом шаге, полностью совпадает с методикой аддитивной модели. Результаты расчетов оценок сезонной компоненты представлены в табл. 4.8.

Таблица 4.8

Расчет оценок сезонной компоненты

квартала

компании

Итого за четыре квартала

Скользящая средняя за четыре квартала

Центрированная скользящая средняя

сезонной

компоненты

Шаг 2. Найдем оценки сезонной компоненты как частное от деления фактических уровней ряда на центрированные скользящие средние (колонка 6 табл. 4.8). Используем эти оценки для расчета значений сезонной компоненты S. Для этого найдем средние за каждый квартал оценки сезонной компоненты 5,. Взаимопогашаемость сезонных воздействий в мультипликативной модели выражается в том, что сумма значений сезонной компоненты по всем кварталам должна равняться числу периодов в цикле. В нашем случае число периодов одного цикла (год) равно четырем кварталам. Результаты расчетов сведем в табл. 4.9.

Здесь сумма средних оценок сезонных компонент по всем четырем кварталам будет

т.е. не равна четырем. Чтобы эта сумма равнялась четырем, умножим каждое слагаемое на поправочный коэффициент

Таблица 4.9

Корректировка сезонных коэффициентов мультипликативной модели

Значения скорректированных сезонных компонент записаны в последней строке табл. 4.9. Теперь их сумма равна четырем. Занесем эти значения в новую таблицу (колонка 3 табл. 4.10).

Шаг 3. Разделим каждый уровень исходного ряда на соответствующие значения сезонной компоненты. Тем самым мы получим величины

Шаг 4. Определим трендовую компоненту в мультипликативной модели. Для этого рассчитаем параметры линейного тренда, используя уровни (Т+ Е). Уравнение тренда имеет вид:

Подставляя в это уравнение значения /= 1, 2,..., 16, найдем уровни Т для каждого момента времени (колонка 5 табл. 4.10).

Шаг 5. Найдем уровни ряда по мультипликативной модели, умножив уровни Т на значения сезонной компоненты для соответствующих кварталов (колонка 6 табл. 4.10).

Таблица 4.10

Расчет компонент мультипликативной модели

Шаг 6. Расчет ошибок в мультипликативной модели произведем по формуле:

Численные значения ошибок приведены в колонке 7 таблицы. Для того чтобы сравнить мультипликативную модель и другие модели временного ряда, можно по аналогии с аддитивной моделью использовать сумму квадратов абсолютных ошибок. Абсолютные ошибки в мультипликативной модели определяются как:

В данной модели сумма квадратов абсолютных ошибок составляет 207,4. Общая сумма квадратов отклонений фактических уровней этого ряда от среднего значения равна 5023. Таким образом, доля объясненной дисперсии уровней ряда составляет 95,9%.

Прогнозирование по аддитивной или мультипликативной модели временного ряда сводится к расчету будущего значения временного ряда по уравнению модели без случайной составляющей в виде:

Для аддитивной

или у, = TS

Для мультипликативной модели.

Временнoй ряд - это совокупность значений, какого - либо показателя за несколько последовательных моментов или периодов времени. Каждое значение (уровень) временного ряда формируется под воздействием большого числа факторов, которые можно условно разделить на три группы:

Факторы, формирующие тенденцию ряда;

Факторы, формирующие циклические колебания ряда;

Случайные факторы.

Тенденция характеризует долговременное воздействие факторов на динамику показателя. Тенденция может быть возрастающей или убывающей.

Циклические колебания могут носить сезонный характер или отражать динамику конъюнктуры рынка, а также фазу бизнес - цикла, в которой находится экономика страны.

Реальные данные часто содержат все три компоненты. В большинстве случаев временной ряд можно представить как сумму или произведение трендовой, циклической и случайной компонент. В случае суммы имеет место аддитивная модель временного ряда:

в случае произведения - мультипликативная модель:

Основная задача эконометрического исследования отдельного временного ряда - выявление количественного выражения кждой из компонент и использование полученной информации для прогноза будущих значений ряда или построение модели взаимосвязи двух или более временных рядов.

Сначала рассмотрим основные подходы к анализу отдельного временного ряда. Такой ряд может содержать, помимо случайной составляющей, либо только тенденцию, либо только сезонную (циклическую) компоненту, либо все компоненты вместе. Для того, чтобы выявить наличие той или иной неслучайной компоненты, исследуется корреляционная зависимость между последовательными уровнями временного ряда, или автокорреляция уровней ряда. Основная идея такого анализа заключается в том, что при наличии во временном ряде тенденции и циклических колебаний значения каждого последующего уровня ряда зависят от предыдущих.

Количественно автокорреляцию можно измерить с помощью линейного коэффициента корреляции между уровнями исходного временного ряда и уровнями этого ряда, сдвинутыми на несколько шагов во времени.

Коэффициент автокорреляции уровней ряда первого порядка измеряет зависимость между соседними уровнями ряда и т.е. при лаге 1.

Он вычисляется по следующей формуле:

где в качестве средних величин берутся значения:

В первом случае усредняются значения ряда, начиная со второго до последнего, во втором случае - значения ряда с первого до предпоследнего.

Формулу (3) можно представить как формулу выборочного коэффициента корреляции:

где в качестве переменной берется ряд а в качестве переменной ряд

Если значение коэффициента (3) близко к единице, это указывает на очень тесную зависимость между соседними уровнями временного ряда и о наличии во временном ряде сильной линейной тенденции.

Аналогично определяются коэффициенты автокорреляции более высоких порядков. Так, коэффициент автокорреляции второго порядка характеризует тесноту связи между уровнями и и определяется по формуле:

где в качестве одной средней величины берут среднюю уровней ряда с третьего до последнего, а в качестве другой - среднюю с первого уровня до

Число периодов, по которым рассчитывается коэффициент автокорреляции, называют лагом. С увеличением лага число пар значений, по которым рассчитывается коэффициент автокорреляции, уменьшается. Для обеспечения статистической достоверности максимальный лаг, как считают некоторые известные эконометристы, не должен превышать четверти общего объема выборки.

Коэффициент автокорреляции строится по аналогии с линейным коэффициентом корреляции, и поэтому он характеризует тесноту только линейной связи текущего и предыдущего уровней ряда. По нему можно судить о наличии линейной или близкой к линейной тенденции. Однако для некоторых временных рядов с сильной нелинейной тенденцией (например, параболической или экспоненциальной), коэффициент автокорреляции уровней ряда может приближаться к нулю.

Кроме того, по знаку коэффициента автокорреляции нельзя делать вывод о возрастающей или убывающей тенденции в уровнях ряда. Большинство временных рядов экономических данных имеют положительную автокорреляцию уровней, однако при этом не исключается убывающая тенденция.

Последовательность коэффициентов автокорреляции уровней различных порядков, начиная с первого, называется автокорреляционной функцией временного ряда. График зависимости ее значений от величины лага называется коррелограммой. Анализ автокорреляционной функции и коррелограммы помогает выявить структуру ряда. Здесь уместно привести следующие качественные рассуждения.

Если наиболее высоким является коэффициент автокорреляции первого порядка, очевидно, исследуемый ряд содержит только тенденцию. Если наиболее высоким оказался коэффициент автокорреляции порядка ф,ряд содержит циклические колебания с периодичностью в ф моментов времени. Если ни один из коэффициентов автокорреляции не является значимым, то либо ряд не содержит тенденции и циклических колебаний и имеет только случайную составляющую, либо ряд содержит сильную нелинейную тенденцию, для исследования которой нужно провести дополнительный анализ.

Пример 1. Пусть имеются данные об объёмах потребления электроэнергии жителями района за 16 кварталов, млн. квт.-ч:

Нанесем эти значения на график:

Определим автокорреляционную функцию данного временного ряда. Рассчитаем коэффициент автокорреляции первого порядка. Для этого определим средние значения:

С учетом этих значений можно построить вспомогательную таблицу:

С помощью итоговых сумм подсчитаем величину коэффициента автокорреляции первого порядка: .

Это значение свидетельствует о слабой зависимости текущих уровней ряда от непосредственно им предшествующих. Однако из графика очевидно наличие возрастающей тенденции уровней ряда, на которую накладываются циклические колебания.

Продолжая аналогичные расчеты для второго, третьего и т.д. порядков, получим автокорреляционную функцию, значения которой сведем в таблицу и построим по ней коррелограмму:

Из коррелограммы видно, что наиболее высокий коэффициент корреляции наблюдается при значении лага, равном четырем, следовательно, ряд имеет циклические колебания периодичностью в четыре квартала. Это подтверждается и графическим анализом структуры ряда.

В случае если при анализе структуры временного ряда обнаружена только тенденция и отсутствуют циклические колебания (случайная составляющая присутствует всегда), следует приступать к моделированию тенденции. Если же во временном ряде имеют место и циклические колебания, прежде всего, следует исключить именно циклическую составляющую, и лишь затем приступать к моделированию тенденции. Выявление тенденции состоит в построении аналитической функции, характеризующей зависимость уровней ряда от времени, или тренда. Этот способ называют аналитическим выравниванием временного ряда.

Зависимость от времени может принимать разные формы, поэтому для её формализации используют различные виды функций:

Линейный тренд: ;

Гипербола: ;

Экспоненциальный тренд: (или);

Степенной тренд: ;

Параболический тренд второго и более высоких порядков:

Параметры каждого из трендов можно определить обычным МНК, используя в качестве независимой переменной время, а в качестве зависимой переменной - фактические уровни временного ряда y t (или уровни за вычетом циклической составляющей, если таковая была обнаружена). Для нелинейных трендов предварительно проводят стандартную процедуру их линеаризации.

Существует несколько способов определения типа тенденции. Чаще всего используют качественный анализ изучаемого процесса, построение и визуальный анализ графика зависимости уровней ряда от времени, расчет некоторых основных показателей динамики. В этих же целях можно использовать и коэффициенты автокорреляции уровней ряда. Тип тенденции можно определить путем сравнения коэффициентов автокорреляции первого порядка, рассчитанных по исходным и преобразованным уровням ряда. Если временной ряд имеет линейную тенденцию, то его соседние уровни y t и y t-1 тесно коррелируют. В этом случае коэффициент автокорреляции первого порядка уровней исходного ряда должен быть высоким. Если временной ряд содержит нелинейную тенденцию, например, в форме экспоненты, то коэффициент автокорреляции первого порядка по логарифмам уровней исходного ряда будет выше, чем соответствующий коэффициент, рассчитанный по уровням ряда. Чем сильнее выражена нелинейная тенденция в изучаемом временном ряде, тем в большей степени будут различаться значения указанных коэффициентов.

Выбор наилучшего уравнения в случае, если ряд содержит нелинейную тенденцию, можно осуществить путем перебора основных форм тренда, расчета по каждому уравнению скорректированного коэффициента детерминации и выбора уравнения тренда с максимальным значением этого коэффициента. Реализация этого метода относительно проста при компьютерной обработке данных.

При анализе временных рядов, содержащих сезонные или циклические колебания, наиболее простым подходом является расчет значений сезонной компоненты методом скользящей средней и построение аддитивной или мультипликативной модели временнoго ряда в форме (1) или (2).

Если амплитуда колебаний приблизительно постоянна, строят аддитивную модель (1), в которой значения сезонной компоненты предполагаются постоянными для различных циклов. Если амплитуда сезонных колебаний возрастает или уменьшается, строят мультипликативную модель (2), которая ставит уровни ряда в зависимость от значений сезонной компоненты.

Построение модели (1) или (2) сводится к расчету значений Т, S или Е для каждого уровня ряда. Процесс построения модели включает в себя следующие шаги:

Выравнивание исходного ряда методом скользящей средней.

Расчет значений сезонной компоненты S.

Устранение сезонной компоненты из исходных уровней ряда и получение выровненных данных (Т+Е) в аддитивной или (Т·Е) в мультипликативной модели.

Аналитическое выравнивание уровней (Т+Е) или (Т·Е) и расчет значений Т с использованием полученного уравнения тренда.

Расчет полученных по модели значений (Т+S) или (Т·S)

Расчет абсолютных и относительных ошибок.

Пример 2. Построение аддитивной модели временного ряда. Рассмотрим данные об объёме потребления электроэнергии жителями района из ранее приведенного примера. Из анализа автокорреляционной функции было показано, что данный временнoй ряд содержит сезонные колебания периодичностью в 4 квартала. Объёмы потребления электроэнергии в осенне - зимний период (I и IV кварталы) выше, чем весной и летом (II и III кварталы). По графику этого ряда можно установить наличие приблизительно равной амплитуды колебаний. Это говорит о возможном наличии аддитивной модели. Рассчитаем её компоненты.

Шаг 1. Проведем выравнивание исходных уровней ряда методом скользящей средней.

Поскольку циклические колебания имеют периодичность в 4 квартала, просуммируем уровни ряда последовательно за каждые 4 квартала со сдвигом на один момент времени и определим условные годовые объёмы потребления электроэнергии (колонка 3 в таблице 1).

Разделив полученные суммы на 4, найдем скользящие средние (колонка 4 таблицы 1). Полученные таким образом выровненные значения уже не содержат сезонной компоненты.

Поскольку скользящие средние получены осреднением четырех соседних уровней ряда, т.е. четного числа значений, они соответствуют серединам подынтервалов, состоящих из четверок чисел, т.е. должны располагаться между третьим и четвертым значениями четверок исходного ряда. Для того, чтобы скользящие средние располагались на одних временных отметках с исходным рядом, пары соседних скользящих средних ещё раз усредняются и получаются центрированные скользящие средние (колонка 5 таблицы 1). При этом теряются первые две и последние две отметки временного ряда, что связано с осреднением по четырем точкам.

Таблица 1

квартала

Потребление электроэнергии y t

за четыре квартала

Скользящая

Средняя за четыре квартала

Центрированная скользящая

сезонной

компоненты

Шаг 2. Найдем оценки сезонной компоненты как разность между фактическими уровнями ряда (колонка 2 таблицы 1) и центрированными скользящими средними (колонка 5). Эти значения помещаем в колонку 6 таблицы 1 и используем для расчета значений сезонной компоненты (таблица 2), которые представляют собой средние за каждый квартал (по всем годам) оценки сезонной компоненты S i . В моделях с сезонной компонентой обычно предполагается, что сезонные воздействия за период (в данном случае - за год) взаимопогашаются. В аддитивной модели это выражается в том, что сумма значений сезонной компоненты по всем точкам (здесь - по четырем кварталам) должна быть равна нулю.

Таблица 2

Для данной модели сумма средних оценок сезонной компоненты равна:

0,6-1,958-1,275+2,708=0,075.

Эта сумма оказалась не равной нулю, поэтому каждую оценку уменьшим на величину поправки, равной одной четверти полученного значения:

Д=0,075/4=0,01875.

Рассчитаем скорректированные значения сезонной компоненты (они записаны в последней строке таблицы 2):

Эти значения при суммировании уже равны нулю:

0,581-1,977-1,294+2,69=0.

Шаг 3. Исключаем влияние сезонной компоненты, вычитая её значения из каждого уровня исходного временного ряда. Получаем величины:

T +E=Y-S(9)

Эти значения рассчитываются в каждый момент времени и содержат только тенденцию и случайную компоненту (колонка 4 следующей таблицы):

Таблица 3

Шаг 4. Определим трендовую компоненту данной модели. Для этого проведем выравнивание ряда (Т+Е) с помощью линейного тренда:

Подставляя в это уравнение значения, найдем уровни Т для каждого момента времени (колонка 5 таблицы 3).

Шаг 5. Найдем значения уровней ряда, полученные по аддитивной модели. Для этого прибавим к уровням Т значения сезонной компоненты для соответствующих кварталов, т.е. к значениям в колонке 5 таблицы 3 прибавим значения в колонке 3. Результаты операции представлены в колонке 6 таблицы 3.

Шаг 6. В соответствии с методикой построения аддитивной модели расчет ошибки производим по формуле:

Это абсолютная ошибка. Численные значения абсолютных ошибок приведены в колонке 7 таблицы 3. По аналогии с моделью регрессии для оценки качества построения модели или для выбора наилучшей модели можно применять сумму квадратов полученных абсолютных ошибок. Для данной аддитивной модели сумма квадратов абсолютных ошибок равна 1,10. По отношению к общей сумме квадратов отклонений уровней ряда от его среднего уровня, равной 71,59, эта величина составляет чуть более 1,5%. Следовательно, можно сказать, что аддитивная модель объясняет 98,5% общей вариации уровней временного ряда потребления электроэнергии за последние 16 кварталов. Пример 3. Построение мультипликативной модели временного ряда. Пусть имеются поквартальные данные о прибыли компании за последние четыре года:

График временного ряда свидетельствует о наличии сезонных колебаний периодичностью 4 квартала и общей убывающей тенденции уровней ряда:

Прибыль компании в весенне-летний период выше, чем в осенне-зимний период. Поскольку амплитуда сезонных колебаний уменьшается, можно предположить существование мультипликативной модели. Определим её компоненты.

Шаг 1. Проведем выравнивание исходных уровней ряда методом скользящей средней. Методика, применяемая на этом шаге, полностью совпадает с методикой аддитивной модели. Результаты расчетов оценок сезонной компоненты представлены в таблице:

Таблица 5

квартала

Прибыль компании

за четыре квартала

Скользящая средняя за четыре квартала

Центрированная скользящая средняя

Оценка сезонной компоненты

Шаг 2. Найдем оценки сезонной компоненты как частное от деления фактических уровней ряда на центрированные скользящие средние (колонка 6 таблицы). Используем эти оценки для расчета значений сезонной компоненты S. Для этого найдем средние за каждый квартал оценки сезонной компоненты S i . Взаимопогашаемость сезонных воздействий в мультипликативной модели выражается в том, что сумма значений сезонной компоненты по всем кварталам должна равняться числу периодов в цикле. В нашем случае число периодов одного цикла (год) равно четырем кварталам. Результаты расчетов сведем в таблицу:

Таблица 6

Здесь сумма средних оценок сезонных компонент по всем четырем кварталам

не равна четырем. Чтобы эта сумма равнялась четырем, умножим каждое слагаемое на поправочный коэффициент

Значения скорректированных сезонных компонент записаны в последней строке таблицы 6. Теперь их сумма равна четырем. Занесем эти значения в новую таблицу (колонка 3 таблицы 7):

Таблица 7

Шаг 3. Разделим каждый уровень исходного ряда на соответствующие значения сезонной компоненты. Тем самым мы получим величины

Шаг 4. Определим трендовую компоненту в мультипликативной модели. Для этого рассчитаем параметры линейного тренда, используя уровни (Т+Е). Уравнение тренда имеет вид:

Подставляя в это уравнение значения, найдем уровни Т для каждого момента времени (колонка 5 таблицы).

Шаг 5. Найдем уровни ряда по мультипликативной модели, умножив уровни Т на значения сезонной компоненты для соответствующих кварталов (колонка 6 таблицы).

Шаг 6. Расчет ошибок в мультипликативной модели произведем по формуле:

Численные значения ошибок приведены в колонке 7 таблицы. Для того, чтобы сравнить мультипликативную модель и другие модели временного ряда, можно по аналогии с аддитивной моделью использовать сумму квадратов абсолютных ошибок. Абсолютные ошибки в мультипликативной модели определяются как:

В данной модели сумма квадратов абсолютных ошибок составляет 207,4. Общая сумма квадратов отклонений фактических уровней этого ряда от среднего значения равна 5023. Таким образом, доля объясненной дисперсии уровней ряда составляет 95,9%.

Прогнозирование по аддитивной или мультипликативной модели временного ряда сводится к расчету будущего значения временного ряда по уравнению модели без случайной составляющей в виде

для аддитивной или

для мультипликативной модели.

Под временными рядами понимают экономические величины, зависящие от времени. При этом время предполагается дискретным, в противном случае говорят о случайных процессах, а не о временных рядах.

6.1. Модели стационарных и нестационарных временных рядов, их идентификация

Пусть Рассмотрим временной рядX(t). Пусть сначала временной ряд принимает числовые значения. Это могут быть, например, цены на батон хлеба в соседнем магазине или курс обмена доллара на рубли в ближайшем обменном пункте. Обычно в поведении временного ряда выявляют две основные тенденции - тренд и периодические колебания.

При этом под трендом понимают зависимость от времени линейного, квадратичного или иного типа, которую выявляют тем или иным способом сглаживания (например, экспоненциального сглаживания) либо расчетным путем, в частности, с помощью метода наименьших квадратов. Другими словами, тренд - это очищенная от случайностей основная тенденция временного ряда.

Временной ряд обычно колеблется вокруг тренда, причем отклонения от тренда часто обнаруживают правильность. Часто это связано с естественной или назначенной периодичностью, например, сезонной или недельной, месячной или квартальной (например, в соответствии с графиками выплаты заплаты и уплаты налогов). Иногда наличие периодичности и тем более ее причины неясны, и задача эконометрика - выяснить, действительно ли имеется периодичность.

Элементарные методы оценки характеристик временных рядов обычно достаточно подробно рассматриваются в курсах "Общей теории статистики" (см., например, учебники ), поэтому нет необходимости подробно разбирать их здесь. (Впрочем, о некоторых современных методах оценивания длины периода и самой периодической составляющей речь пойдет ниже.)

Характеристики временных рядов . Для более подробного изучения временных рядов используются вероятностно-статистические модели. При этом временной ряд X(t) рассматривается как случайный процесс (с дискретным временем) основными характеристиками являются математическое ожидание X(t) , т.е.

дисперсия X(t) , т.е.

и автокорреляционная функция временного ряда X(t)

т.е. функция двух переменных, равная коэффициенту корреляции между двумя значениями временного ряда X(t) и X(s).

В теоретических и прикладных исследованиях рассматривают широкий спектр моделей временных рядов. Выделим сначала стационарные модели. В них совместные функции распределения для любого числа моментов времениk , а потому и все перечисленные выше характеристики временного ряда не меняются со временем . В частности, математическое ожидание и дисперсия являются постоянными величинами, автокорреляционная функция зависит только от разности t-s. Временные ряды, не являющиеся стационарными, называются нестационарными.

Линейные регрессионные модели с гомоскедастичными и гетероскедастичными, независимыми и автокоррелированными остатками. Как видно из сказанного выше, основное - это "очистка" временного ряда от случайных отклонений, т.е. оценивание математического ожидания. В отличие от простейших моделей регрессионного анализа, рассмотренных в главе 5, здесь естественным образом появляются более сложные модели. Например, дисперсия может зависеть от времени. Такие модели называют гетероскедастичными, а те, в которых нет зависимости от времени - гомоскедастичными. (Точнее говоря, эти термины могут относиться не только к переменной "время", но и к другим переменным.)

Далее, в главе 5 предполагалось, что погрешности независимы между собой. В терминах настоящей главы это означало бы, что автокорреляционная функция должна быть вырожденной - равняться 1 при равенстве аргументов и 0 при их неравенстве. Ясно, что для реальных временных рядов так бывает отнюдь не всегда. Если естественный ход изменений наблюдаемого процесса является достаточно быстрым по сравнению с интервалом между последовательными наблюдениями, то можно ожидать "затухания" автокорреляции" и получения практически независимых остатков, в противном случае остатки будут автокоррелированы.

Идентификация моделей. Под идентификацией моделей обычно понимают выявление их структуры и оценивание параметров. Поскольку структура - это тоже параметр, хотя и нечисловой (см. главу 8), то речь идет об одной из типовых задач эконометрики - оценивании параметров.

Проще всего задача оценивания решается для линейных (по параметрам) моделей с гомоскедастичными независимыми остатками. Восстановление зависимостей во временных рядах может быть проведено на основе методов наименьших квадратов и наименьших модулей, рассмотренных в главе 5 моделей линейной (по параметрам) регрессии. На случай временных рядов переносятся результаты, связанные с оцениванием необходимого набора регрессоров, в частности, легко получить предельное геометрическое распределение оценки степени тригонометрического полинома.

Однако на более общую ситуацию такого простого переноса сделать нельзя. Так, например, в случае временного ряда с гетероскедастичными и автокоррелированными остатками снова можно воспользоваться общим подходом метода наименьших квадратов, однако система уравнений метода наименьших квадратов и, естественно, ее решение будут иными. Формулы в терминах матричной алгебры, о которых упоминалось в главе 5, будут отличаться. Поэтому рассматриваемый метод называется "обобщенный метод наименьших квадратов (ОМНК)" (см., например, ).

Замечание. Как уже отмечалось в главе 5, простейшая модель метода наименьших квадратов допускает весьма далекие обобщения, особенно в области системам одновременных эконометрических уравнений для временных рядов. Для понимания соответствующей теории и алгоритмов необходимо профессиональное владение матричной алгеброй. Поэтому мы отсылаем тех, кому это интересно, к литературе по системам эконометрических уравнений и непосредственно по временным рядам , в которой особенно много интересуются спектральной теорией, т.е. выделением сигнала из шума и разложением его на гармоники. Подчеркнем в очередной раз, что за каждой главой настоящей книги стоит большая область научных и прикладных исследований, вполне достойная того, чтобы посвятить ей много усилий. Однако из-за ограниченности объема книги мы вынуждены изложение сделать конспективным.

Поделитесь с друзьями или сохраните для себя:

Загрузка...