Метод аналитического выравнивания. Методы сглаживания и выравнивания динамических рядов

Аналитическое выравнивание уровней динамического ряда не дает хороших результатов при прогнозировании, если уровни ряда имеют резкие периодические колебания. В этих случаях для определения тенденции развития явления используется сглаживание динамического ряда методом скользящих средних.

Суть различных приемов сглаживания сводится к замене фактических уровней временного ряда расчетными уровнями, которые подвержены колебаниям в меньшей степени. Это способствует более четкому проявлению тенденции развития.

Методы сглаживания можно условно разделить на два класса, опирающиеся на различные подходы:

Аналитический подход;

Алгоритмический подход.

Аналитический подход основан на допущении, что исследователь может задать общий вид функции, описывающей регулярную, неслучайную составляющую.

При использовании алгоритмического подхода отказываются от ограничения, свойственного аналитическому. Процедуры этого класса не предполагают описание динамики неслучайной составляющей с помощью единой функции, они предполагают описание динамики неслучайной составляющей с помощью единой функции, они предоставляют исследователю лишь алгоритм расчета неслучайной составляющей в любой данный момент времени . Методы сглаживания временных рядов с помощью скользящих средних относятся к этому подходу.

Иногда скользящие средние применяют как предварительный этап перед моделированием тренда с помощью процедур, относящихся к аналитическому подходу.

Скользящие средние позволяют сгладить как случайные, так и периодические колебания, выявить имеющуюся тенденцию в развитии процесса и поэтому служат важным инструментом при фильтрации компонент временного ряда.

Алгоритм сглаживания по простой скользящей средней может быть представлен в виде следующего алгоритма.

1. Определяют длину интервала сглаживания g, включающего в себя g последовательных уровней ряда (g

2. Разбивают весь период наблюдений на участки, при этом интервал сглаживания как бы скользит по ряду с шагом, равным 1.

3. Рассчитывают арифметические средние из уровней ряда, образующих каждый участок.

4. Заменяют фактические значения ряда, стоящие в центре каждого участка, на соответствующее среднее значение

При этом удобно брать длину интервала сглаживания g в виде нечетного числа g=2p+1, т.к. в этом случае полученные значения скользящей средней приходятся на средний член интервала.

Наблюдения, которые берутся для расчета среднего значения, называются активным участком сглаживания.

При нечетном значении g все уровни активного участка могут быть представлены в виде:

а скользящая средняя определяется по формуле

,

где − фактические значение -го уровня;

− значение скользящей средней в момент ;

− длина интервала сглаживания.

Процедура сглаживания приводит к полному устранению периодических колебаний во временном ряду, если длина интервала сглаживания берется равной или кратной периоду колебаний.

Для устранения сезонных колебаний желательно использовать четырех- и двенадцатичленную скользящую среднюю.

При четном числе уровней принято первое и последнее наблюдение на активном участке брать с половинными весами:

Тогда для сглаживания колебаний при работе с временными рядами квартальной или месячной динамики можно использовать следующие скользящие средние:

,

.

Рассмотрим применение скользящей средней по данным общей площади жилых помещений, приходящихся в среднем на 1 жителя по Хабаровскому краю (таблица 2.1.1).

Поскольку период сглаживания не обосновать, расчеты начинают с 3-членной скользящей средней. Первый сглаженный уровень получим для 1993 г.:

.

Последовательно сдвигая на один год начало периода скольжения, находим сглаженные уровни для последующих лет.

Для 1994 г. скользящая средняя составит

,

для 1995 г. , и т.д.

Так как скользящая средняя относится к середине интервала, за который она рассчитана, то динамический ряд сглаженных уровней сокращается на уровень при нечетном периоде скольжения и на уровней при четном периоде скольжения. Поэтому в нашем примере сглаженный ряд стал короче на два члена для трехчленной средней и на четыре – для пятичленной (таблица 2.1.1).

При расчете по четным скользящим средним (в нашем примере 4-членная скользящая средняя) вычисления производятся следующим образом:

Для 1994 г. ;

1995 г. ;

1996 г. .

Таблица 2.1.1 – Результаты сглаживания по методу скользящих средних

Годы Общая пло-щадь жилых помещений, приходящаяся в среднем на 1 жителя.кв.м, Сглаженные уровни
Простая скользящая средняя
3-член-ная, 4-член-ная, 5-член-ная, 3-член-ная 4-член-ная 5-член-ная
15,4 - - - - - -
16,1 16,0 - - 0,01 - -
16,5 16,4 16,3 16,3 0,01 0,026 0,040
16,6 16,7 16,6 16,6 0,004 0,001 0,000
16,9 16,8 16,8 16,8 0,004 0,006 0,006
17,0 17,0 17,1 17,1 0,003 0,010
17,1 17,3 17,4 17,4 0,05 0,083 0,102
17,9 17,7 17,7 17,7 0,03 0,026 0,026
18,2 18,2 18,2 18,2 0,00 0,000 0,000
18,5 18,7 18,7 18,7 0,03 0,031 0,032
19,3 19,1 19.1 19,0 0,04 0,056 0,068
19,5 19,5 19,4 19,4 0,006 0,014
19,7 19,7 - - - -
19,9 - - - - - -
Итого 248,6 - - - 0,179 0,239 0,299

Как видно из таблицы 2.1.1, трехчленная скользящая средняя демонстрирует выравненный динамический ряд с однонаправленной тенденцией движения уровней. Сглаживание по трехчленной скользящей средней дало более сглаженный ряд, так как для трехчленной скользящей средней оказалась меньше сумма квадратов отклонений фактических данных () от сглаженных () ( = 0,179) (таблица 2.1.1). Иными словами, трехчленная скользящая средняя лучше всего представляет закономерность движения уровней динамического ряда.

Предсказание на основе временных рядов – необходимый элемент любой инвестиционной деятельности. Сама идея инвестиций – вложение денег сейчас с целью получения дохода в будущем – основывается на идее прогнозирования будущего. Соответственно, предсказание финансовых временных рядов лежит в основе деятельности всей индустрии инвестиций – всех бирж и внебиржевых систем торговли ценными бумагами.

Динамические процессы, происходящие в экономических системах, чаще всего проявляются в виде ряда последовательно расположенных в хронологическом порядке значений того или иного показателя, который в своих изменениях отражает ход развития изучаемого явления в экономике. Эти значения, в частности, могут служить для обоснования (или отрицания) различных моделей социально-экономических систем. Они служат также основой для разработки прикладных моделей прогнозирования особого вида.

Если во временном ряду проявляется длительная тенденция изменения экономического показателя, то говорят, что имеет место тренд. Таким образом, под трендом понимается изменение, определяющее общее направление развития, основную тенденцию временных рядов. В связи с этим экономико-математическая динамическая модель, в которой развитие моделируемой экономической системы отражается через тренд ее основных показателей, называется трендовой моделью. Для выявления тренда во временных рядах, а также для построения и анализа трендовых моделей используется аппарат теории вероятностей и математической статистики.

Во временных рядах экономических процессов могут иметь место более или менее регулярные колебания. Если они носят строго периодический или близкий к нему характер и завершаются в течение одного года, то их называют сезонными колебаниями. В тех случаях, когда период колебаний составляет несколько лет, то говорят, что во временном ряде присутствует циклическая компонента. Тренд, сезонная и циклическая компоненты называются регулярными, или систематическими компонентами временного ряда. Составная часть временного ряда, остающаяся после выделения из него регулярных компонент, представляет собой случайную, нерегулярную компоненту. Она является обязательной составной частью любого временного ряда в экономике, так как случайные отклонения неизбежно сопутствуют любому экономическому явлению.

Временной ряд экономических показателей можно разложить на четыре структурно образующих элемента:

· тренд, составляющие которого обозначаются Ut, t = 1, 2 , ..., n;

· сезонная компонента, обозначаемая через Vt, t = 1, 2, ..., n;

· циклическая компонента, обозначаемая через Ct, t = 1, 2 , ..., n;

· случайная компонента, которую обозначают εt, t = 1, 2 , ..., n.

Если систематические компоненты временного ряда определены правильно, то та, которая осталась (остаточная последовательность) после выделения из временного ряда этих компонент, будет случайной компонентой ряда. Эта компонента будет обладать следующими свойствами: случайностью колебаний уровней остаточной последовательности; соответствием распределения случайной компоненты нормальному закону распределения; равенством математического ожидания случайной компоненты нулю; независимостью значений уровней случайной последовательности, то есть отсутствием существенной автокорреляции.

Проверка адекватности трендовых моделей основана на проверке выполняемости у остаточной последовательности указанных четырех свойств. Если не выполняется хотя бы одно из них, модель признается неадекватной; при выполнении всех четырех свойств модель адекватна.

Предварительный анализ временных рядов экономических показателей заключается в основном в выявлении и устранении аномальных значений уровней ряда, а также в определении наличия тренда и его характера в исходном временном ряде. К предварительной обработке временных рядов относятся методы изменения временных рядов с целью более четкого выделения тенденций развития, сглаживания временного ряда.

Под аномальным уровнем понимается отдельное значение уровня временного ряда, которое не отвечает потенциальным возможностям исследуемой экономической системы и которое, оставаясь в качестве уровня ряда, оказывает существенное влияние на значения основных характеристик временного ряда, в том числе на соответствующую трендовую модель. Причинами аномальных наблюдений могут быть ошибки технического порядка, или ошибки при передаче информации.

С целью более четко выявить тенденцию развития исследуемого процесса, в том числе для дальнейшего применения методов прогнозирования на основе трендовых моделей, производят сглаживание (выравнивание) временных рядов.

Методы сглаживания временных рядов делятся на две основные группы:

1) аналитическое выравнивание с использованием кривой, проведенной между конкретными уровнями ряда так, чтобы она отображала тенденцию, присущую ряду, и одновременно освобождала его от незначительных колебаний;

2) механическое выравнивание отдельных уровней временного ряда с использованием фактических значений соседних уровней.

Суть методов механического сглаживания заключается в следующем. Берется несколько первых уровней временного ряда, образующих интервал сглаживания. Для них подбирается полином, степень которого должна быть меньше числа уровней, входящих в интервал сглаживания; с помощью полинома определяются новые, выровненные значения уровней в середине интервала сглаживания. Далее интервал сглаживания сдвигается на один уровень ряда вправо, вычисляется следующее сглаженное значение и т. д.

Таким образом, можно сказать, для финансовой активности любого субъекта хозяйствования необходимо уметь правильно и с максимальной точностью распланировать свои ресурсы для получения экономической полезности, в чем ему поможет правильное применение математико-экономических показателей.

При аналитическом выравнивании временного ряда теоретические (расчетные) значения ряда определяют исходя из предположения об их зависимости от времени, т.е. y = f (t ). При таком подходе изменение исследуемого показателя связывается только с течением времени. Аналитическое выравнивание временного ряда состоит из следующих основных этапов:

1) выбор вида функциональной зависимости (формы тренда), выражающей сущность изучаемого процесса;

2) расчет неизвестных параметров уравнения тренда;

3) расчет выравненных значений уровней ряда на основе уравнения тренда.

Тренд – это основная тенденция развития явления во времени, некоторое общее направление развития. Для аналитического выравнивания могут использоваться разнообразные формы трендов, например:

Полином первой степени (линейная функция, прямая): у = a + bt;

Полином второй степени (парабола): у = a + bt + ct 2 ;

Полином третьей степени (кубическая парабола): у = a + bt + ct 2 + dt 3 ;

Степенная функция: у = t a и др.

Для определения наилучшей формы тренда могут быть использованы различные подходы, например:

1) визуальный, на основе графического изображения временного ряда. Если на графике исходного ряда тенденция развития недостаточно четко просматривается, то можно провести некоторые стандартные преобразования ряда, например, сглаживание. Потом подобрать функцию, отвечающую графику преобразованного ряда.

2) критериальный, временной ряд выравнивают с помощью нескольких видов трендов. Полученные результаты сравнивают между собой. В качестве лучшей формы тренда может выступать та, для которой достигается оптимальное значение некоторого критерия, например, минимум среднего квадратического отклонения.

После выбора формы тренда осуществляется оценка параметров уравнения на основе метода наименьших квадратов (МНК).

Стремление провести кривую, к которой бы в целом наиболее тесно примыкали отдельные точки – фактические данные, трансформируется в МНК в критерий, согласно которому параметры функции должны быть подобраны так, чтобы сумма квадратов отклонений фактических данных от тренда была минимальной, т.е.:



где y i – фактические уровни ряда;

– выравненные уровни ряда (точки на тренде).

Например, для уравнения прямой:

.

Необходимым условием существования точки минимума функции нескольких переменных является равенство частных производных нулю, т.е.

Система нормальных уравнений для нахождения параметров МНК уравнения прямой имеет следующий вид:

Решая данную систему уравнений получаем параметры функции a и b , т.е. искомое уравнение прямой. Расчет параметров уравнения можно упростить, если ввести условное обозначение времени таким образом, чтобы . Для этого в случае нечетного числа уровней ряда динамики время обозначается следующим образом:

t = … -3; -2; -1; 0; 1; 2; 3;…

При этом параметры будут находиться по следующим формулам:

Пример аналитического выравнивания временного ряда представлен на рис. 9.3.

Рис. 9.3. Выравнивание временного ряда по уравнению прямой

Анализ сезонности

Одна из задач анализа временных рядов состоит в выявлении сезонности. К сезонным относят все явления, которые обнаруживают в своем развитии отчетливо выраженную закономерность внутригодичных изменений, т. е. устойчиво повторяющиеся из года в год колебания уровней.

Кзадачам исследования сезонности относят следующие:

1) определение наличия сезонных колебаний;

2) выявление их силы и характера в различных фазах годичного цикла;

3) характеристика факторов, вызывающих сезонные колебания;

4) математическое моделирование сезонности;

5) оценка и учет экономических последствий, к которым приводит наличие сезонных колебаний.

Наиболее распространенным методом изучения сезонности является расчет индексов сезонности.

Индексы сезонности являются показателями, характеризующими результаты сравнения фактических уровней данного месяца или квартала с расчетными уровнями, которые могут быть определены различными способами.

Индивидуальные индексы сезонности характеризуют сезонность в границах конкретного года. Общие (средние) индексы сезонности характеризуют устойчивую тенденцию сезонности для нескольких лет. Т. е. общие индексы сезонности – это среднее из индивидуальных индексов сезонности для каждого месяца или квартала за n лет.

; ,

где – индивидуальный индекс сезонности i -го месяца или квартала в t -м году;

I сез i – общий индекс сезонности i -го месяца или квартала;

i – номер месяца или квартала;

i = 1–12 (если i – номер месяца) или i = 1–4 (если i – номер квартала);

y i – фактические уровни ряда;

– выравненные уровни ряда;

Существуют различные способы нахождения выравненных значений временного ряда () при анализе сезонности. К наиболее распространенным относят определение средней (среднего уровня ряда), выравнивание на основе скользящей средней, выделение тренда.

При анализе сезонных колебаний на основе средней следует соблюдать следующий порядок расчетов:

1) Рассчитываются среднемесячные или среднеквартальные значения уровней временного ряда в каждом году:

где L – длина сезонного цикла: L = 12 для месяцев года, L = 4 для кварталов года.

2) За каждый год вычисляются отношения месячных уровней к среднемесячному (или квартальных к среднеквартальному), т.е. находятся индивидуальные индексы сезонности:

3) Для получения типичной картины сезонных колебаний эти отношения для каждого месяца (квартала) усредняются за ряд лет, т.е. находятся общие индексы сезонности:

.

Нанесение индексов сезонности на график позволяет получить изображение сезонной волны .

Одним из наиболее распространенных способов моделирования тенденции временного ряда является построение аналитической функции (тренда, либо тренда с циклической или (и) сезонной компонентой) , характеризующей зависимость уровней ряда от времени. Этот способ называют аналитическим выравниванием временного ряда.

Для решения этой задачи вначале необходимо выбрать вид функции . Наиболее часто используются следующие функции:

· линейная -

· полиномиальная -

· экспоненциальная -

· логистическая -

· Гомперца -

Это весьма ответственный этап исследования. При выборе соответствующей функции используют содержательный анализ (который может установить характер динамики процесса), визуальные наблюдения (на основе графического изображения временного ряда). При выборе полиномиальной функции может быть применен метод последовательных разностей (состоящий в вычислении разностей первого порядка , второго порядка и т.д.), и порядок разностей, при котором они будут примерно одинаковыми, принимается за степень полинома.

Из двух функций предпочтение обычно отдается той, при которой меньше сумма квадратов отклонений фактических данных от расчетных на основе этих функций. Но этот принцип нельзя доводить до абсурда: так, для любого ряда из точек можно подобрать полином -ой степени, проходящей через все точки, и соответственно с минимальной – нулевой – суммой квадратов отклонений, но в этом случае, очевидно, не следует говорить о выделении основной тенденции, учитывая случайный характер этих точек. Поэтому при прочих равных условиях предпочтение следует отдавать более простым функциям.

Параметры основной тенденции можно определить, используя метод наименьших квадратов. При этом, значения временного ряда рассматриваются как зависимая переменная, а время - как объясняющая:

где – возмущения, удовлетворяющие основным предпосылкам регрессионного анализа, т.е. представляющие независимые и одинаково распределенные случайные величины, распределение которых предполагаем нормальным.

Согласно методу наименьших квадратов параметры прямой находятся из системы нормальных уравнений (2.5), в которой в качестве берем :

(7.10)

Учитывая, что значения переменной образуют натуральный ряд чисел от 1 до , суммы можно выразить через число членов ряда по известным в математике формулам:

(7.11)

В рассмотренном примере 2 на странице 79 система нормальных уравнений имеет вид:

,

откуда и уравнение тренда , т.е. спрос ежегодно увеличивается в среднем на 25,7 ед.

Проверим значимость полученного уравнения тренда по F -критерию на 5%-ном уровне значимости вычислим с помощью формулы (3.40) суммы квадратов:

а) обусловленную регрессией –

б) общую –

в) остаточную

Найдем значение статистики:

.

Так как , то уравнение тренда значимо.

Другим методом выравнивания (сглаживания) временного ряда, т.е. выделения неслучайной составляющей, является метод скользящих средних. Он основан на переходе от начальных значений членов ряда к их средним значениям на интервале времени, длина которого определена заранее. При этом сам выбранный интервал времени «скользит» вдоль ряда.

Получаемый таким образом ряд скользящих средних ведет себя более гладко, чем исходный ряд, из-за усреднения отклонений ряда.

Аналитическое выравнивание временного ряда представляет из себя построение аналитической функции, модели тренда. Для этого применяются различного рода функции: линейные, степные, параболические и т.д.

Параметры тренда определяются как и в случае линейной регрессии методом наименьших квадратов, где в качестве независимой переменной выступает время, а в качестве зависимой переменной - уровни временного ряда. Критерием отбора наилучшей формы тренда служит наибольшее значение коэффициента детерминации, критерии Фишера и Стьюдента.

Допустим, что некоторая теоретическая модель предполагает линейную зависимость одной из характеристик системы от других:

y = У i k i ·x i

(i - число независимых переменных). Задача заключается в следующем: при фиксируемых параметрах x и измеренных значениях y рассчитать вектор параметров k , удовлетворяющий некоторому критерию оптимальности.

В методе наименьших квадратов этим критерием является минимум суммы квадратов отклонений расчитанных значений y от наблюдаемых (экспериментальных):

min У i (y s,i - y i )І.

Чтобы найти минимум функции, это выражение надо продифференцировать по параметрам и приравнять нулю (условие минимума). В результате поиск минимума суммы квадратов сводиться в простым операциям с матрицами.

Если теоретическая модель представляет собой линейную зависимость от одного параметра (y = a + b ·x ), то решение выражается в виде простых формул:

Z = n Уx i І - (Уx i )І;

a = (Уy i Уx i І - Уy i x i Уx i ) / Z ; S a І = S y І Уx i І / Z ;

b = (n Уy i x i - Уy i Уx i ) / Z ; S b І = S y І n / Z ;

S y І = У(y s,i - y i )І / (n - 2)

(y s,i - рассчитанное значение, y i - эксперементально измеренное значение)

При расчете погрешностей предполагается, что точность значений x значительно превосходит точность измеряемых значений y , погрешность измерения которых подчиняется нормальному распределению.

Автокорреляция в остатках - корреляционная зависимость между значениями остатков за текущий и предыдущие моменты времени.

Линейные регрессионные модели с гомоскедастичными и гетероскедастичными, независимыми и автокоррелированными остатками. Как мы видим из привиденного выше, основное - это "очистка" временного ряда от случайных отклонений, т.е. оценивание математического ожидания. Отсюда естественным образом появляются более сложные модели. Например, дисперсия может зависеть от времени. Такие модели называют гетероскедастичными, а те, в которых нет зависимости от времени - гомоскедастичными. (Точнее говоря, эти термины могут относиться не только к переменной "время", но и к другим переменным.) В случае, если погрешности никак не связаны между собой автокорреляционная функция должна быть вырожденной - равняться 1 при равенстве аргументов и 0 при их неравенстве. Понятно, что для реальных временных рядов так бывает далеко не всегда. Если естественный ход изменений наблюдаемого процесса является достаточно быстрым по сравнению с интервалом между последовательными наблюдениями, то можно предсказать "затухания" автокорреляции" и получения практически независимых остатков, в противном случае остатки будут автокоррелированы.

Под идентификацией моделей обычно понимается выявление их структуры и оценивание параметров. Так как структура - это тоже параметр, хотя и нечисловой, то речь идет об одной из типовых задач эконометрики - оценивании параметров.

Наиболее просто решается задача оценивания для линейных (по параметрам) моделей с гомоскедастичными независимыми остатками. Восстановление зависимостей во временных рядах может быть проведено на основе методов наименьших квадратов и наименьших модулей, на случай временных рядов переносятся результаты, связанные с оцениванием необходимого набора регрессоров, в частности, легко получить предельное геометрическое распределение оценки степени тригонометрического полинома.

Тем не менее, на более общую ситуацию такого простого переноса делать не рекомендуется. Рассмотрим, например, в случае временного ряда с гетероскедастичными и автокоррелированными остатками снова можно воспользоваться общим подходом метода наименьших квадратов, однако система уравнений метода наименьших квадратов и, естественно, ее решение будут иными. Формулы будут отличаться. В связи с чем данный метод называется "обобщенный метод наименьших квадратов (ОМНК)"

Проанализируем эконометрическую модель временного ряда, описывающего рост индекса потребительских цен (индекса инфляции). Пусть I(t)- рост цен в месяц t. Тогда, по мнению некоторых экономистов, естественно предположить, что:

I(t)=cI(t-1)+a+dS(t-4)+

Где I(t-1) - рост цен в предыдущий месяц (а c- некоторый коэффициент затухания, предполагающий, что при отсутствии внешний воздействий рост цен прекратится), a- константа (она соответствует линейному изменению величины I(t)со временем), bS(t-4) - слагаемое, соответствующее влиянию эмиссии денег (т.е. увеличения объема денег в экономике страны, осуществленному Центральным Банком) в размере S(t-4) и пропорциональное эмиссии с коэффициентом b, причем это влияние проявляется не сразу, а через 4 месяца; наконец, - это неизбежная погрешность.

Модель, даже, несмотря на свою простоту, демонстрирует многие характерные черты гораздо более сложных эконометрических моделей. Во-первых, обратим внимание на то, что некоторые переменные определяются (рассчитываются) внутри модели, как I(t). Их называют эндогенными (внутренними). Другие задаются извне (это экзогенные переменные). Иногда, как в теории управления, среди экзогенных переменных, выделяют управляемые переменные - те, с помощью которых менеджер может привести систему в нужное ему состояние.

Во-вторых, в соотношении появляются переменные новых типов - с лагами, т.е. аргументы в переменных относятся не к текущему моменту времени, а к некоторым прошлым моментам.

В-третьих, составление эконометрической модели такого типа - это отнюдь не рутинная операция. Например, запаздывание именно на 4 месяца в связанном с эмиссией денег слагаемом - это результат достаточно сложной предварительной статистической обработки.

От решения этого вопроса зависит конкретная реализация процедуры метода наименьших квадратов.

С другой стороны, в модели (1) всего 3 неизвестных параметра, и постановку метода наименьших квадратов выписать нетрудно:

Далее рассмотри модель такого типа с большим числом эндогенных и экзогенных переменных, с лагами и сложной внутренней структурой. Иначе говоря, ниоткуда не следует, что существует хотя бы одно решение у такой системы. В связи с чем возникает не одна, а две проблемы. Существует ли хоть одно решение? Если да, то как найти наилучшее решение из возможных? (Это - проблема статистической оценки параметров.)

Обе задача достаточно сложны. Для решения обоих задач разработано множество методов, обычно достаточно сложных, лишь часть из которых имеет научное обоснование. В частности, достаточно часто пользуются статистическими оценками, не являющимися состоятельными (строго говоря, их даже нельзя назвать оценками).

Коротко опишем некоторые распространенные приемы при работе с системами линейных эконометрических уравнений.

Система линейных одновременных эконометрических уравнений. Чисто формально можно все переменные выразить через переменные, зависящие только от текущего момента времени. Например, в случае вышеприведенного уравнения достаточно положить

H(t)=I(t-1), G(t)=S(t-4)

Тогда уравнение пример вид

I(t)=cH(t)+a+bG(t)+

Отметим тут же возможность использования регрессионных моделей с переменной структурой путем введения фиктивных переменных. Данные переменные при одних значениях времени (скажем, начальных) принимают заметные значения, а при других - сходят на нет (становятся фактически равными 0). В результате формально (математически) одна и та же модель описывает совсем разные зависимости.

Как уже отмечалось выше, создана масса методов эвристического анализа систем эконометрических уравнений. Данные методы предназначены для решения тех или иных проблем, возникающих при попытках найти численные решения систем уравнений.

Одной из проблем является наличие априорных ограничений на оцениваемые параметры. Например, доходы домохозяйства могут быть потрачены либо на потребление, либо на сбережение. Отсюда, сумма долей этих двух видов трат априори равна 1. А в системе эконометрических уравнений эти доли могут участвовать независимо. Отсюда возникает мысль оценить их методом наименьших квадратов, не обращая внимания на априорное ограничение, а потом подкорректировать. Данный подход называется косвенным методом наименьших квадратов.

Двух шаговый метод наименьших квадратов заключается в том, что в приведенном методе производится оценка параметров отдельного уравнения системы, а не рассмотрение системы в целом. И так же трех шаговый метод наименьших квадратов применяется для оценки параметров системы одновременных уравнений в целом. Изначально к каждому уравнению применяется двух шаговый метод с единой целью оценить коэффициенты и погрешности каждого уравнения, а в дальнейшем построить оценку для ковариационной матрицы погрешностей. Затем для оценивания коэффициентов всей системы применяется обобщенный метод наименьших квадратов.

Менеджеру и экономисту не рекомендуется быть специалистом в области составления и решения систем эконометрических уравнений, даже с применением специальных программных обеспечений, однако, он должен быть проинформирован о возможности данного направления эконометрики, для того чтобы в случае производственной необходимости квалифицированно сформулировать задание для специалистов-эконометриков.

От оценивания тренда (основной тенденции) перейдем ко второй основной задаче эконометрики временных рядов - оцениванию периода (цикла).

Проблема гетероскедастичности. Для начала выделим стационарные модели. В них совместные функции распределения F(t 1 , t 2 ,…,t k) для любого числа моментов времени k, а потому и все перечисленные выше характеристики временного ряда не меняются со временем. В частности, математическое ожидание и дисперсия являются постоянными величинами, автокорреляционная функция зависит только от разности t-s. Временные ряды, не являющиеся стационарными, называются нестационарными.

Гетероскедастичность - свойство исходных, когда дисперсия ошибки зависит от номера наблюдения. На графике гетероскедастичность проявляется в том, что с увеличением или уменьшением порядкового номера измерения увеличивается рассеивание измерений около линии тренда. Это может привести к существенным погрешностям оценок коэффициентов уравнения регрессии. Гетероскедастичность возникает тогда, когда объекты как правило неоднородны. Существует несколько методов коррекции, решающих проблему гетероскедастичности. Наиболее эффективный из них - метод взвешенных наименьших квадратов.

Сущность метода чрезвычайно проста. Пусть исходная модель имеет вид

Тогда, делением каждого элемента системы на значение уt мы приходим к другой системе

где у t2 = у 2щ, взвешенная дисперсия;

Щt = n, n - число измерений.

Таким образом, с помощью этого преобразования мы устраняем гетероскедастичность.

Кроме того, логарифмирование исходных данных также в некоторых случаях снижает ошибки определения параметров модели, вызванные гетероскедастичностью.

Поделитесь с друзьями или сохраните для себя:

Загрузка...