Использование теории игр в практике управления. Теория игр: Введение

Использование математических методов, к числу которых относится теория игр, в анализе экономических процессов позволяет выявить такие тенденции, взаимосвязи, которые остаются скрытыми при применении других методов.

В экономической действительности на каждом шагу встречаются ситуации, когда отдельные люди, фирмы или целые страны пытаются обойти друг друга в борьбе за первенство. Такими ситуациями и занимается ветвь экономического анализа, называемая "теория игр".

"Теория игр изучает то, каким образом двое или более игроков выбирают отдельные действия или целые стратегии. Название этой теории настраивает на несколько отвлеченный лад, поскольку оно ассоциируется с игрой в шахматы и бридж или с ведением войн. На самом деле выводы этой дисциплины весьма глубоки. Теория игр была разработана выходцем из Венгрии, гениальным математиком Джоном фон Нейманом (1903-1957). Эта теория сравнительно молодая математическая дисциплина.

В дальнейшем теория игр была дополнена такими разработками, как равновесие Нэша (по имени математика Джона Нэша). Равновесие по Нэшу возникает, когда ни один из игроков не может улучшить своего положения, если его противники не изменят своих стратегий. Стратегия каждого игрока является лучшим ответом на стратегию его противника. Иногда равновесие по Нэшу называют также некооперативным равновесием, поскольку участники совершают свой выбор, не вступая ни в какие соглашения друг с другом и не принимая во внимание никаких других соображений (интересы общества или интересы других сторон), кроме собственной выгоды.

Равновесие совершенно конкурентного рынка также является равновесием по Нэшу, или некооперативным равновесием, при котором каждая фирма и каждый потребитель принимают решения исходя из уже существующих цен как не зависящих от его воли. Мы уже знаем, что в условиях, когда каждая фирма стремится максимизировать прибыль, а каждый потребитель - полезность, равновесие возникает, когда цены равны предельным издержкам, а прибыль - нулю. " Мамаева Л.Н. Институциональная экономика: Курс лекций - М.: Издательско-торговая корпорация «Дашков и К», 2012. - 200 с.

Вспомним концепцию "невидимой руки" Адама Смита: "Преследуя собственные интересы, он (индивид) часто в большей степени способствует процветанию общества, чем если бы он к этому сознательно стремился" Смит А. Исследование о природе и причинах богатства народов // Антология экономической классики. - М.: Эконов-ключ, 19931. Парадокс "невидимой руки" заключается в том, что, хотя каждый и действует как самостоятельная сила, в конечном итоге общество остается в выигрыше. При этом конкурентное равновесие является равновесием по Нэшу еще и в том смысле, что ни у кого нет повода изменять свою стратегию, если и все остальные придерживаются своей. В условиях совершенно конкурентной экономики некооперативное поведение является экономически эффективным с точки зрения интересов общества.

Напротив, когда члены некоторой группы решают кооперироваться и совместно прийти к монопольной цене, такое поведение нанесет ущерб экономической эффективности. Государство вынуждено создавать антимонопольное законодательство и тем самым урезонивать тех, кто пытается завысить цены и поделить рынок. Однако не всегда разобщенность в поведении является экономически эффективной. Соперничество между фирмами ведет к низким ценам и конкурентному объему производства. "Невидимая рука" оказывает почти волшебное воздействие на совершенно конкурентные рынки: эффективное распределение ресурсов происходит в результате действий индивидов, стремящихся к максимизации прибыли.

Однако во многих случаях некооперативное поведение приводит к экономической неэффективности или даже представляет угрозу для общества (например, гонка вооружений). Некооперативное поведение как со стороны США, так и со стороны СССР заставляло обе стороны вкладывать огромные средства в военную область и привело к созданию арсенала, состоящего из почти 100000 ядерных боеголовок. Существует также опасение, что чрезмерная доступность оружия в Америке может стать причиной своего рода внутренней гонки вооружений. Одни люди вооружают себя против других - и этот "бег наперегонки" может продолжаться до бесконечности. Здесь в действие вступает вполне "видимая рука", направляющая это разрушительное состязание и не имеющая ничего общего с "невидимой рукой" Адама Смита. Еще один важный экономический пример - "игры в загрязнения" (окружающей среды). Здесь объектом нашего внимания станет такой вид побочных эффектов, как загрязнение. Если бы фирмы никогда и никого не спрашивали о том, как им поступить, любая из них скорее предпочла бы создавать загрязнения, чем устанавливать дорогостоящие очистители. Если же какая-нибудь фирма из благородных побуждений решилась бы уменьшить вредные выбросы, то издержки, а следовательно, и цены на ее продукцию, возросли бы, а спрос упал. Вполне возможно, эта фирма просто обанкротилась бы. Живущие в жестоком мире естественного отбора, фирмы скорее предпочтут оставаться в условиях равновесия по Нэшу Ни одной фирме не удастся повысить прибыль, уменьшая загрязнение.

Вступив в смертоносную экономическую игру, каждая неконтролируемая государством и максимизирующая прибыль сталелитейная фирма будет производить загрязнения воды и воздуха. Если какая-либо фирма попытается очищать свои выбросы, то тем самым она будет вынуждена повысить цены и потерпеть убытки. Некооперативное поведение установит равновесие по Нэшу в условиях высоких выбросов. Правительство может предпринять меры, с тем чтобы равновесие переместилось. В этом положении загрязнение будет незначительным, прибыли же останутся теми же. Мамаева Л.Н. Институциональная экономика: Курс лекций - М.: Издательско-торговая корпорация «Дашков и К», 2012. - 203 с.

Игры в загрязнения - один из случаев того, как механизм действия "невидимой руки" не срабатывает. Это ситуация, когда равновесие по Нэшу неэффективно. Иногда подобные неконтролируемые игры становятся угрожающими, и здесь может вмешаться правительство. Установив систему штрафов и квот на выбросы, правительство может побудить фирмы выбрать исход, соответствующий низкому уровню загрязнения. Фирмы зарабатывают ровно столько же, сколько и прежде, при больших выбросах, мир же становится несколько чище.

Теория игр применима и к макроэкономической политике. Экономисты и политики в США часто поругивают существующую денежно-кредитную и налогово-бюджетную политику: дефицит федерального бюджета слишком велик и уменьшает национальные сбережения, тогда как кредитно-денежная политика порождает такие процентные ставки, которые ограничивают инвестиции. Более того, этот "бюджетно-денежный синдром" является свойством макроэкономического "ландшафта" уже более десяти лет. Почему же Америка так упорно проводит оба вида политики, хотя ни один из них нежелателен?

Можно попытаться объяснить этот синдром с точки зрения теории игр. Стало привычным в современной экономике разделять данные разновидности политики. Центральный банк Америки - Федеральная резервная система - определяет независимо от правительства денежно-кредитную политику, назначая процентные ставки. Налогово-бюджетной политикой, налогами и расходами - заведуют законодательные и исполнительные власти. Однако каждый из этих видов политики имеет разные цели. Центральный банк стремится ограничить рост предложения денег и обеспечить низкие темпы инфляции.

Артур Берне, специалист по экономическим циклам и бывший глава ФРС, писал: "Чиновники центрального банка склонны, в силу традиции, а возможно, и в силу личного склада, держать цены в узде. Их ненависть к инфляции еще более разгорается после общения с единомышленниками из частных финансовых кругов". Власти же, заведующие налогово-бюджетной политикой, больше озабочены такими вопросами, как полная занятость, собственная популярность, сохранение низких налогов и грядущие выборы.

Лица, проводящие налогово-бюджетную политику, предпочитают минимально возможную величину безработицы, увеличение государственных расходов в сочетании с понижением налогов и не заботятся об инфляции и частных инвестициях.

В бюджетно-денежной игре кооперативная стратегия приводит к умеренной инфляции и безработице в сочетании с большим объемом инвестиций, стимулирующим экономический рост. Однако желание уменьшить безработицу и реализовать социальные программы побуждает руководство страны прибегать к увеличению бюджетного дефицита, тогда как неприятие инфляции заставляет центральный банк поднимать процентные ставки. Некооперативное равновесие означает наименьший возможный объем инвестиций.

Они выбирают "большой бюджетный дефицит". С другой стороны, центральный банк пытается уменьшить инфляцию, не подвержен влиянию профсоюзов и лоббирующих группировок и выбирает "высокие процентные ставки". Результатом является некооперативное равновесие с умеренными величинами инфляции и безработицы, но с низким уровнем инвестиций.

Возможно, что именно благодаря "бюджетно-денежной игре" президент Клинтон выдвинул экономическую программу по уменьшению бюджетного дефицита, снижению процентных ставок и расширению объема инвестиций.

Существуют разные способы описания игр. Один из них состоит в том, что рассматриваются все возможные стратегии игроков и определяются платежи, соответствующие любой возможной комбинации стратегий игроков. Игра, описанная таким способом, называется игрой в нормальной форме.

Нормальная форма игры двух участников состоит из двух платежных матриц, показывающих, какую сумму получит каждый из игроков при любой из возможных пар стратегий. Обычно эти матрицы выражают в форме единой матрицы, которую называют биматрицей. Элементами биматрицы являются пары чисел, первое из которых определяет величину выигрыша первого игрока, а второе - величину выигрыша второго. Первый игрок (государство) выбирает одну из m стратегий, при этом каждой стратегии соответствует строка матрицы I (i= 1,…,m). Второй игрок (бизнес) выбирает одну из n стратегий, при этом каждой стратегии соответствует столбец матрицы j (j= 1,…,n). Пара чисел на пересечении строки и столбца, которые соответствуют стратегиям, выбранным игроками, показывает величину выигрыша каждого из них. В общем случае, если игрок I выбирает стратегию i а игрок II - стратегию j, то выигрыши первого и второго игроков соответственно равны и (i= 1,…,m; j= 1,…,n), где m,n - число конечных стратегий соответственно игроков I и II. Предполагается, что каждому из игроков известны все элементы биматрицы выигрышей. В этом случае их стратегия называется определенной и имеет конечное число вариантов.

Если игроку неизвестны какие-либо варианты стратегий противника (элементы матрицы), то игра называется неопределенной и может иметь бесконечное число вариантов (стратегий).

Существуют и другие классы игр, где игроки выигрывают и проигрывают одновременно.

Антагонистические игры двух лиц связаны с тем, что один из игроков выигрывает ровно столько, сколько проигрывает другой. В таких играх интересы ее игроков прямо противоположны друг другу.

В качестве примера рассмотрим игру, в которой участвуют два игрока, каждый из них имеет по две стратегии. Выигрыши каждого из игроков определяются такими правилами: если оба игрока выбирают стратегии с одинаковыми номерами (игрок I - , игрок II -), то первый игрок выигрывает, а второй проигрывает (государство повышает налоги - бизнес платит их, т.е. выигрыш государства определяет проигрыш бизнеса); если оба игрока выбирают разные стратегии (игрок I - і 1 игрок II - j 2 то первый проигрывает, а второй выигрывает (государство повышает налоги на бизнес - бизнес уклоняется от них; проигрыш государства - выигрыш бизнеса).

Теория игр есть теория математических моделей таких явлений, в которых участники ("игроки") имеют различные интересы и располагают для достижения своих целей более или менее свободно выбираемыми путями (стратегиями). В большинстве работ по теории игр предполагается, что интересы участников игры поддаются количественному измерению и являются вещественными функциями ситуаций, т.е. набором стратегий, получаемых при выборе каждым из игроков некоторой своей стратегии. Для получения результатов необходимо рассматривать те или иные классы игр, выделенные некоторыми ограничительными предположениями. Такие ограничения можно накладывать несколькими путями.

Можно выделить несколько способов (путей) наложения ограничений.

1. Ограничения возможностей взаимоотношений игроков между собой. Простейшим случаем является такой, когда игроки действуют совершенно разобщено и не могут сознательно помогать или мешать друг другу действием или бездействием, информацией или дезинформацией. Такое положение дел неизбежно наступает, когда в игре участвуют только два игрока (государство и бизнес), имеющие диаметрально противоположные интересы: увеличение выигрыша одного из них означает уменьшение выигрыша другого, и притом на ту же сумму, при условии, что выигрыши обоих игроков выражаются в одинаковых единицах измерения. Не нарушая общности, можно принять суммарный выигрыш обоих игроков равным нулю и трактовать выигрыш одного из них как проигрыш другого.

Эти игры называют антагонистическими (или играми с нулевой суммой, или нулевыми играми двух лиц). Они предполагают, что никаких взаимоотношений между игроками, никаких компромиссов, обменов информацией и другими ресурсами не может быть по самой своей природе вещей, по сути игры, поскольку каждое сообщение, получаемое игроком о намерениях другого, может лишь увеличить выигрыш первого игрока и тем самым увеличить проигрыш его противника.

Таким образом, сделаем вывод, что в антагонистических играх игрокам можно не иметь непосредственных взаимоотношений и вместе с тем находиться в состоянии игры (противостоянии) по отношению друг к другу.

2. Ограничения или упрощающие предположения на множестве стратегий игроков. В наиболее простом случае эти множества стратегий конечны, что устраняет ситуации, связанные с возможными совпадениями (сходимостями) в множествах стратегий, избавляет от необходимости вводить на множествах какую-либо технологию.

Игры, в которых множества стратегий каждого из игроков конечны, называются конечными играми.

3. Предложения о внутреннем строении каждой стратегии, т.е. о ее содержании. Так, например, в качестве стратегий можно рассматривать функции времени (непрерывного или дискретного), значениями которых являются действия игрока в соответствующий момент. Эти и подобные им игры принято называть динамическими (позиционными).

Ограничениями стратегий игроков могут быть и их целевые функции, т.е. определение тех целей, на реализацию которых направлена та или иная стратегия. Можно предположить, что ограничения на стратегию связаны и со способами достижения этих целей в тех или иных временных интервалах, например стремление бизнеса добиться снижения размеров обязательных продаж валютной выручки в течение ближайших трех месяцев (или одного года). Если же предположений о природе стратегий не делается, то они считаются некоторым абстрактным множеством. Такого рода игры в самой простой постановке вопроса называются играми в нормальной форме.

Конечные антагонистические игры в нормальной форме называются матричными. Это название объясняется возможностью следующей интерпретации игр такого типа. Будем понимать стратегии первого игрока (игрок I - государство) как строки некоторой матрицы, а стратегии второго игрока (игрок II - бизнес) - как ее столбцы. Для краткости стратегиями игроков называют не сами строки или столбцы матрицы, а их номера. Тогда ситуациями игры оказываются клетки этой матрицы, стоящие на пересечениях каждой строки с каждым из столбцов. Заполнив эти клетки-ситуации числами, описывающими выигрыши игрока I в этих ситуациях, мы завершим задание игры. Полученная матрица называется матрицей выигрыша игры, или матрицей игры. Ввиду антагонистичности матричной игры выигрыш игрока II в каждой ситуации вполне определяется выигрышем игрока I в этой ситуации, отличаясь от него только знаком. Поэтому дополнительных указаний о функции выигрыша игрока II в матричной игре не требуется.

Матрицу, имеющую m строк и n столбцов, называют (m*n) - матрицей, а игру с этой матрицей - (m*n) - игрой.

Процесс (m*n) - игры с матрицей можно представить следующим образом:

Игрок I фиксирует номер строки i, а игрок II - номер столбца j, после чего первый игрок получает от своего противника сумму

Целью игрока I в матричной игре является получение максимального выигрыша, цель игрока II состоит в том, чтобы дать игроку I минимальный выигрыш.

Пусть игрок I (государство) выбирает некоторую свою стратегию i. Тогда в наихудшем случае он получит выигрыш min . В теории игр игроки предполагаются осторожными, рассчитывающими на наименее благоприятный для себя поворот событий.

Такое наименее благоприятное для игрока I положение дел может наступить, например, в том случае, когда стратегия i станет известной игроку II (бизнес). Предвидя такую возможность, игрок I должен выбирать свою стратегию так, чтобы максимизировать этот минимальный выигрыш:

min = max min (I)

Значение, стоящее в правой части равенства, является гарантированным выигрышем игрока I. Игрок II (бизнес) должен выбрать такую стратегию, что

max = min max (II)

Значение, стоящее в правой части равенства, является выигрышем игрока I, больше которого он при правильных действиях противника получить не может.

Фактический выигрыш игрока I должен при разумных действиях партнеров находиться в интервале между значениями выигрыша в первом и втором случаях. Если эти значения равны, то выигрыш игрока I является вполне определенным числом, сами игры называются вполне определенными. Выигрыш игрока I называется значением игры, и он равен элементу матрицы.

У игроков могут быть дополнительные возможности - выбор своих стратегий случайно и независимо друг от друга (стратегии соответствуют строкам и столбцам матрицы). Случайный выбор игроком своих стратегий называется смешанной стра тегии этого игрока. В (m*n) - игрё смешанные стратегии игрока I определяются наборами вероятностей: X = (,…), с которыми этот игрок выбирает свои первоначальные, чистые стратегии.

В основе теории матричных игр лежит теорема Неймана активных стратегиях: "Если один из игроков придерживается своей оптимальной стратегии, то выигрыш остается неизменным и равным цене игры независимо от того, что делает другой игрок, если он не выходит за пределы своих активных стратегий (т.е. пользуется любой из них в чистом виде или смешивает их в любых пропорциях" Neumann J. Contributions to the theory of games. 1995.. - 155 с.). Отметим, что активной называется чистая стратегия игрока, входящая в его оптимальную смешанную стратегию с отличной от нуля вероятностью.

Главная цель игры - нахождение оптимальной стратегии для обоих игроков, если не с максимальным выигрышем одного из них, то тогда с минимальным проигрышем для обоих. Метод нахождения оптимальных стратегий дает часто больше, чем это необходимо для практических целей. В матричной игре не обязательно, чтобы игрок знал все свои оптимальные структуры, поскольку они все взаимозаменяемы и игроку для успешной игры, достаточно знать одну из них. Поэтому применительно к матричным играм актуальным является вопрос о нахождении хотя бы одной оптимальной стратегии для каждого из игроков.

Основная теорема о матричных играх устанавливает существование значения игры и оптимальных смешанных стратегий для обоих игроков. Оптимальная стратегия не обязана быть единичной. Это очень важный вывод, полученный на основе теории игр.

Для играющего в матричную игру субъекта характерны следующие качества:

элементы матрицы интерпретируются как денежные платежи и соответственно их выигрыш и проигрыш оцениваются в денежной форме;

каждый из игроков применяет к этим элементам функцию полезности;

в игре каждый игрок действует так, как если бы функция полезности его оппонента оказывала на матрицу точно такое же воздействие, т.е. каждый смотрит на игру "со своей колокольни".

Эти предположения приводят к играм с нулевой суммой, в которых возникают отношения кооперирования, торгов и другого типа взаимодействий между игроками как до начала игры, так и в ее процессе. Мамаева Л.Н. Институциональная экономика: Курс лекций - М.: Издательско-торговая корпорация «Дашков и К», 2012. - 210 - 211с.

Обобщение теории игр, имеющее целью включение в нее других возможностей анализа, приводит к интересным, но достаточно трудным задачам. При развитии теории игр необходимо применять функцию полезности не только к денежным исходам, но и к суммам с ожидаемыми будущими исходами. Эти предположения являются спорными, но они существуют. В данном случае мы исходим из того, что это предположение о подобной операции имеет сходство с поведением игроков в определенных ситуациях принятия решений и допускает возможность, что способ ведения игры данным игроком зависит от состояния его капитала во время ведения им игры.

Рассмотрим это на следующем примере. Пусть первый игрок к моменту начала игры G обладает капиталом в x долларов. Тогда его капитал в конце игры будет равен + x, где - получаемый им от игры фактический выигрыш. Полезность, которую он приписывает такому исходу, равна f (+ х), где f - функция полезности.

Эти несколько примеров иллюстрируют только часть огромного разнообразия результатов, которые можно получить, используя теорию игр. Данный раздел экономической теории является чрезвычайно полезным (для экономистов и других представителей общественных наук) инструментом анализа ситуаций, при которых небольшое число людей хорошо информировано и пытается перехитрить друг друга на рынках, в сфере политики или в военных действиях.

Муниципальное образовательное учреждение
средняя общеобразовательная школа №___

городского округа - город Волжский Волгоградской области

Городская конференция творческих и исследовательских работ обучающихся

«С математикой по жизни»

Научное направление – математика

«Теория игр и её практическое применение»

обучающаяся 9б класса

МОУ СОШ №2

Научный руководитель:

учитель математики Григорьева Н.Д.



Введение

Актуальность выбранной темы предопределена широтой сфер ее применения. Теория игр играет центральную роль в теории отраслевой организации, теории контрактов, теории корпоративных финансов и многих других областях. Область применения теории игр включает не только экономические дисциплины, но и биологию, политологию, военное дело и др.

Целью данного проекта является разработка исследования существующих типов игр, а также возможность их практического применения в различных отраслях.

Цель проекта предопределила его задачи:

Ознакомиться с историей зарождения теории игр;

Определить понятие и сущность теории игр;

Дать характеристику основным типам игр;

Рассмотреть возможные сферы применения данной теории на практике.

Объектом проекта выступила теория игр.

Предмет исследования – сущность и применение теории игр на практике.

Теоретической основой написания работы явилась экономическая литература таких авторов, как Дж. фон Нейман, Оуэн Г., Васин А.А., Морозов В.В., Замков О.О., Толстопятенко А.В., Черемных Ю.Н.

1. Введение в теорию игр

1.1 История

Игра, как особая форма отображения деятельности, возникла необычайно давно. Археологические раскопки обнаруживают предметы, служившие для игры. Наскальные рисунки показывают нам первые признаки межплеменных тактических игр. Со временем, игра совершенствовалась, и достигла привычной формы конфликта нескольких сторон. Родственные связи игры с практической деятельностью становились менее заметными, игра превращалась в особую деятельность общества.

Если история шахмат или карточных игр насчитывает несколько тысячелетий, то первые наброски теории появились, лишь три столетия назад в работах Бернулли. Сначала работы Пуанкаре и Бореля частично давали нам сведения о природе теории игр, и лишь фундаментальный труд Дж. фон Неймана и О. Моргенштерна представил нам всю целостность и многогранность данного раздела науки.

Принято считать монографию Дж. Неймана и О. Моргенштерна “Теория игр и экономическое поведение”, моментом рождения теории игр. После её публикации в 1944 г., многие ученые предсказали революцию в экономических науках благодаря использованию нового подхода. Эта теория описывала рациональное поведение принятия решений во взаимосвязанных ситуациях, помогая решать многие актуальные проблемы в разных научных областях. Монография подчеркивала, что стратегическое поведение, конкуренция, кооперация, риск и неопределенность, являются главными элементами в теории игр и непосредственно связаны с задачами управления.

Начальные работы по теории игр отличались простотой предположений, что делало их менее пригодными для практического использования. За последние 10 – 15 лет положение резко изменилось. Прогресс в промышленности показал плодотворность методов игр в прикладной деятельности.

В последнее время эти методы проникли и в практику управления. Следует отметить, что уже в конце 20 века М. Портер ввел в обиход некоторые понятия теории, такие, как “стратегический ход” и “игрок”, которые впоследствии стали одними из ключевых.

В настоящее время значение теории игр значительно возросло во многих областях экономических и социальных наук. В экономике она применима не только для решения разных задач общехозяйственного значения, но и для анализа стратегических проблем предприятий, разработок структур управления и систем стимулирования.

В 1958-1959 гг. к 1965-1966 гг. была создана советская школа в теории игр, для которой была характерно скопление усилий в области антагонистических игр и строго военных приложений. Изначально это стало причиной отставания от американской школы, так как в то время основные открытия в антагонистических играх уже были сделаны. В СССР математиков до середины 1970-х гг. не допускали в область управления и экономики. И даже тогда, когда советская экономическая система начала рушиться, экономика не стала главным направлением для теоретико-игровых исследований. Профильный институт, занимавшийся и сейчас занимающийся теорией игр - Институт системного анализа РАН.

1.2 Определение теории игр

Теорией игр называют математический метод изучения оптимальных стратегий в играх. Под игрой понимается процесс, в котором участвуют две и более сторон, ведущих борьбу за осуществление своих интересов. Каждая из сторон имеет свою цель и использует некоторую стратегию, которая может вести к выигрышу или проигрышу - в зависимости от своего поведения и поведения других игроков. Теория игр помогает выбрать наиболее выгодные стратегии с учётом соображений о других участниках, их ресурсах и их предполагаемых действиях.

Эта теория представляет собой раздел математики, изучающий конфликтные ситуации.

Как поделить пирог, чтобы все члены семьи признали это справедливым? Как разрешить спор о зарплате между спортивным клубом и профсоюзом игроков? Как предотвратить ценовые войны при проведении аукционов? Это всего лишь три примера задач, которыми занимается одно из главных направлений экономической науки - теория игр

Данный раздел науки анализирует конфликты, используя математические методы. Теория получила своё название, так как простейшим примером конфликта является игра (например, шахматы или крестики-нолики). Как в игре, так и в конфликте каждый игрок имеет свои цели и пытается их достигнуть, принимая разные стратегические решения.

1.3 Виды конфликтных ситуаций

Одна из характерных черт всякого общественного, социально - экономического явления состоит в количестве и разнообразии интересов, а также наличии сторон, которые способны выразить эти интересы. Классическими примерами здесь являются ситуации, где, с одной стороны, имеется один покупатель, с другой - продавец, когда на рынок выходят несколько производителей, обладающих достаточной силой для воздействия на цену товара. Более сложные ситуации возникают, когда имеются объединения или группы лиц, участвующих в столкновении интересов, например, в том случае, когда ставки заработной платы определяются союзами или объ­единениями рабочих и предпринимателей, при анализе результатов голосования в парламенте и т.п.

Конфликт может возникнуть также из различия целей, которые отражают интересы различных сторон, но и многосторонние интересы одного и того же лица. Например, раз­работчик экономической политики обычно преследует разные цели, согласуя противоречивые требования, предъявляемые к ситуации (рост объемов производства, повышение доходов, сниже­ние экологической нагрузки и т.п.). Конфликт может проявляться не только в результате сознательных действий различных участни­ков, но и как результат действия тех или иных "стихийных сил" (случай так называемых "игр с природой")

Игра – математическая модель описания конфликта.

Игры представляют собой строго определённые математические объекты. Игра образуется игроками, набором стратегий для каждого игрока и указания выигрышей, или платежей, игроков для каждой комбинации стратегий.

И наконец, примерами игр являются обычные игры: салонные, спортивные, карточные и др. Математическая теория игр начиналась именно с анализа подобных игр; они и по сей день служат прекрасным материалом для изображения утверждений и выводов этой теории. Эти игры актуальны и на сегодняшний день.

Итак, каждая математическая модель социально-экономического явления, должна иметь при­сущие ему черты конфликта, т.е. описывать:

а) множество заинтересованных сторон. В случае, если число игроков ограниченно (конечно), они различаются по своим номерам или по присваиваемым им именам;

б) возможные действия каждой из сторон, именуемые также стратегиями или ходами;

в) интересы сторон, представленные функциями выигрыша (платежа) для каждого из игроков.

В теории игр предполагается, что функции выигрыша и множес­тво стратегий, доступных каждому из игроков, общеизвестны, т.е. каждый игрок знает свою функцию выигрыша и набор имеющихся в его распоряжении стратегий, а также функции выиграша и стра­тегии всех остальных игроков, и в соответствии с этой информа­цией формирует свое поведение.

2 Виды игр

2.1 Дилемма заключенного

Одним из самых известных и классических примеров теории игр, который способствовал её популяризации, - дилемма заключенного. В теории игрдилемма заключённого (реже употребляется название «дилемма бандита ») - некооперативная игра, в которой игроки стремятся получить выгоду, при этом они либо сотрудничают, либо предают друг друга. Как во всей теории игр , предполагается, что игрок максимизирует, т.е увеличивает свой собственный выигрыш, не заботясь о выгоде других.

Рассмотрим такую ситуацию. Двое подозреваемых находятся под следствием. У следствия недостаточно улик, поэтому разделив подозреваемых, каждому из них предложили сделку. Если один из них будет по-прежнему молчать, а другой свидетельствовать против него, то первый получит 10 лет, а второго отпустят за содействие следствию. Если они оба будут молчать, то получат по 6 месяцев. Наконец, если они оба заложат друг друга, то они получат по 2 года. Вопрос: какой выбор они сделают?

Таблица 1 – Матрица выигрышей в игре «Дилемма заключенного»

Предположим, что эти двое - рациональные люди, которые хотят минимизировать свои потери. Тогда первый может рассуждать так: если второй меня заложит, то мне лучше тоже его заложить: так мы получим по 2 года, а иначе я получу 10 лет. Но если второй меня не будет закладывать, то мне всё равно лучше его заложить - тогда меня отпустят сразу. Поэтому не зависимо от того, что будет делать другой, мне выгоднее его заложить. Второй также понимает, что в любом случае ему лучше заложить первого. В результате оба из них получают по два года. Хотя если бы они не свидетельствовали друг против друга, то получили бы только по 6 месяцев.

В дилемме заключённого предательство строго доминирует над сотрудничеством, поэтому единственное возможное равновесие - предательство обоих участников. Проще говоря, неважно, что сделает другой игрок, каждый выиграет больше, если предаст. Поскольку в любой ситуации предать выгоднее, чем сотрудничать, все рациональные игроки выберут предательство.

Ведя себя по отдельности рационально, вместе участники приходят к нерациональному решению. В этом и заключается дилемма.

Конфликты, подобные этой дилемме, часто встречаются в жизни, например, в экономике (определение бюджета на рекламу), политике (гонка вооружений), спорте (использование стероидов). Поэтому дилемма заключенного и грустное предсказание теории игр получили широкую известность, а работа в области теории игр - единственная возможность для математика получить Нобелевскую премию.

2.2 Классификация игр

Классификацию различных игр проводят, основываясь на некотором принципе: по числу игроков, по числу стратегий, по свойствам функций выигрыша, по возможности предварительных переговоров и взаимодействия между игроками в ходе игры.

Различают игры с двумя, тремя и более участниками - в зависимости от количества игроков. В принципе возможны также игры с бесконечным числом игроков.

Согласно другому принципу классификации различают игры по количеству стра­тегий - конечные и бесконечные. В конечных играх участники имеют конечное число возможных стратегий (на­пример, в игре в орлянку игроки имеют по два возможных хода - они могут выбрать "орел" или "решку"). Сами стратегии в конеч­ных играх зачастую называются чистыми стратегиями. Соответственно, в бесконечных играх игроки имеют бесконечное число возможных стратегий - так, в ситуации Продавец-Покупатель каждый из игроков может назвать любую устраивающую его цену и количество продаваемого (поку­паемого) товара.

Третьим по счету является способ классификации игр - по свойствам функций выигрыша (платежных функций). Важным случаем в теории игр явля­ется ситуация, когда выигрыш одного из игроков равен проигрышу другого, т.е. налицо виден прямой конфликт между игроками. Такие игры называют играми с нулевой суммой, или антагонистическими играми. Игры в орлянку или в очко - типичные примеры антаго­нистических игр. Прямой противоположностью играм такого типа являются игры с постоянной разностью, а которых игроки и выиг­рывают, и проигрывают одновременно, так что им выгодно дей­ствовать сообща. Между этими крайними случаями имеется мно­жество игр с ненулевой суммой, где имеются и конфликты, и согла­сованные действия игроков.

В зависимости от возможности предварительных переговоров между игроками различают кооперативные и некооперативные игры. Кооперативной – называется игра, в которой до её начала игроки образуют коалиции и принимают взаимообязывающие соглашения о своих стратегиях. Некооперативной – называется такая игра, в которой игроки не могут координировать свои стратегии подобным образом. Очевид­но, что все антагонистические игры могут служить примером некооперативных игр. Примером кооперативной игры может служить ситуация образования коалиций в парламенте для принятия путем голосования решения, так или иначе затрагивающего интересы учас­тников голосования.

2.3 Типы игр

Симметричные и несимметричные

А Б
А 1, 2 0, 0
Б 0, 0 1, 2
Несимметричная игра

Игра будет симметричной тогда, когда соответствующие стратегии у игроков будут иметь одинаковые платежи, то есть будут равны. Т.е. если выигрыши за одни и те же ходы не изменятся, при том, что игроки поменяются местами. Многие изучаемые игры для двух игроков - симметричные. В частности, таковыми являются: «Дилемма заключённого», «Охота на оленя», «Ястребы и голуби». В качестве несимметричных игр можно привести «Ультиматум» или «Диктатор».

В примере справа игра, на первый взгляд может показаться симметричной из-за похожих стратегий, но это не так - ведь выигрыш второго игрока при любой из стратегий (1, 1) и (2, 2) будет больше, чем у первого.

С нулевой суммой и с ненулевой суммой

Игры с нулевой суммой - особый вид игр с постоянной суммой, то есть таких, где игроки не могут увеличить или уменьшить имеющиеся ресурсы, или фонд игры. В этом случае сумма всех выигрышей равна сумме всех проигрышей при любом ходе. Посмотрите направо - числа означают платежи игрокам - и их сумма в каждой клетке равна нулю. Примерами таких игр может служить покер, где один выигрывает все ставки других; реверси, где захватываются фишки противника; либо банальное воровство.

Многие изучаемые математиками игры, в том числе уже упоминавшаяся «Дилемма заключённого», иного рода: в играх с ненулевой суммой выигрыш какого-то игрока не обязательно означает проигрыш другого, и наоборот. Исход такой игры может быть меньше или больше нуля. Такие игры могут быть преобразованы к нулевой сумме - это делается введением фиктивного игрока, который «присваивает себе» избыток или восполняет недостаток средств.

Также игрой с отличной от нуля суммой является торговля, где каждый участник извлекает выгоду. К этому виду относятся такие игры, как шашки и шахматы; в двух последних игрок может превратить свою рядовую фигуру в более сильную, получив преимущество. Во всех этих случаях сумма игры увеличивается.

Кооперативные и некооперативные

Игра называется кооперативной, или коалиционной, если игроки могут объединяться в группы, беря на себя некоторые обязательства перед другими игроками и координируя свои действия. Этим она отличается от некооперативных игр, в которых каждый обязан играть за себя. Развлекательные игры редко являются кооперативными, однако такие механизмы нередки в повседневной жизни.

Часто предполагают, что кооперативные игры отличаются именно возможностью общения игроков друг с другом. Но это не всегда верно, так как существуют игры, где коммуникация разрешена, но участники преследуют личные цели, и наоборот.

Из двух типов игр, некооперативные описывают ситуации в мельчайших деталях и выдают более точные результаты. Кооперативные рассматривают процесс игры в целом.

Гибридные игры включают в себя элементы кооперативных и некооперативных игр.

Например, игроки могут образовывать группы, но игра будет вестись в некооперативном стиле. Это значит, что каждый игрок будет преследовать интересы своей группы, вместе с тем стараясь достичь личной выгоды.

Параллельные и последовательные

В параллельных играх игроки ходят одновременно, или они не информированы о выборе других до тех пор, пока все не сделают свой ход. В последовательных, или динамических, играх участники могут делать ходы в заранее установленном либо случайном порядке, но при этом они получают некоторую информацию о предыдущих действиях других. Эта информация может быть даже не совсем полной, например, игрок может узнать, что его противник из десяти своих стратегий точно не выбрал пятую, ничего не узнав о других.

С полной или неполной информацией

Важное подмножество последовательных игр составляют игры с полной информацией. В такой игре участники знают все ходы, сделанные до текущего момента, равно как и возможные стратегии противников, что позволяет им в некоторой степени предсказать последующее развитие игры. Полная информация недоступна в параллельных играх, так как в них неизвестны текущие ходы противников. Большинство изучаемых в математике игр - с неполной информацией. Например, вся суть «Дилеммы заключённого» заключается в ее неполноте.

В то же время есть интересные примеры игр с полной информацией: шахматы, шашки и другие.

Зачастую понятие полной информации путают со сходным понятием - совершенной информации. Для последнего достаточно лишь знание всех доступных противникам стратегий, знание всех их ходов необязательно.

Игры с бесконечным числом шагов

Игры в реальном мире или изучаемые в экономике игры, как правило, длятся конечное число ходов. Математика не так ограничена, и в частности, в теории множеств рассматриваются игры, способные продолжаться бесконечно долго. Причём победитель и его выигрыш не определены до окончания всех ходов…

Здесь вопрос обычно состоит в том, чтобы найти не оптимальное решение, а хотя бы выигрышную стратегию. (Используя аксиому выбора можно доказать, что иногда даже для игр с полной информацией и двумя исходами - «выиграл» или «проиграл» - ни один из игроков не имеет такой стратегии.)

Дискретные и непрерывные игры

В большинстве изучаемых игр число игроков, ходов, исходов и событий конечно, т.е. они - дискретны. Однако эти составляющие могут быть расширены на множество вещественных (материальных) чисел. Игры, включающие такие элементы, часто называются дифференциальными. Они всегда связаны с какой-то вещественной шкалой (обычно - шкалой времени), хотя происходящие в них события могут быть дискретными по природе. Дифференциальные игры находят своё применение в технике и технологиях, физике .

3. Применение теории игр

Теория игр - это раздел прикладной математики. Чаще всего методы теории игр находят применение в экономике, чуть реже в других общественных науках - социологии, политологии, психологии, этике и других. Начиная с 1970-х годов её взяли на вооружение биологи для исследования поведения животных и теории эволюции. Очень важное значение этот раздел математики имеет для искусственного интеллекта и кибернетики, особенно с проявлением интереса к интеллектуальным агентам.

Нейман и Моргенштерн на­писали оригинальную книгу, которая содержала главным образом экономические примеры, поскольку экономическому конфликту легче всего придать численную форму. Во время второй мировой войны и сразу после неё теорией игр серьезно заинтересовались военные, которые увидели в ней аппарат для исследования страте­гических решений. Далее главное внимание снова стало уделяться экономическим проблемам. В наше время ведется большая работа, направ­ленная на расширение сферы применения теории игр.

Двумя основными областями применения являются военное дело и экономика. Теоретико-игровые разработки применяются при проектировании автоматических систем управления для ракетного/противоракетного оружия, выборе форм аукционов по продаже радиочастот, прикладном моделировании закономерностей денежного обращения в интересах центральных банков, и т.п. Международные отношения и стратегическая безопасность обязаны теории игр (и теории принятия решений) в первую очередь концепцией гарантированного взаимного уничтожения. Это заслуга плеяды блестящих умов (в том числе связанных с RAND Corporation в Санта Монике, Калиф.), дух которой до высших руководящих постов дошел в лице Роберта Макнамары. Следует, правда, признать, что сам Макнамара теорией игр не злоупотреблял.

3.1 В военном деле

Информация – один из наиболее значимых в настоящее время ресурсов. И сейчас все

также справедливо высказывание «Кто владеет информацией, тот владеет миром». Более того, на первый план выходит необходимость эффективно использовать имеющуюся информацию. Теория игр в купе с теорией оптимального управления позволяют принимать правильные решения в разнообразных конфликтных и неконфликтных ситуациях.

Теория игр – математическая дисциплина, касающаяся конфликтных задач. Военное

дело, как ярко выраженное существо конфликта, стало одним из первых полигонов применения на практике разработок теории игр.

Изучение задач военных сражений с помощью теории игр (в том числе дифференциальных) – это большой и трудный предмет. Применение теории игр к задачам военного дела означает, что для всех участников могут быть найдены эффективные решения – оптимальные действия, позволяющие максимально решить поставленные задачи.

Попытки разбирать военные игры на настольных моделях делались много раз. Но эксперимент в военном деле (как и во всякой другой науке) есть средство, как для подтверждения теории, так и для нахождения новых путей для анализа.

Военный анализ есть вещь гораздо более неопределенная в смысле законов, предсказаний и логики, нежели физические науки. По этой причине моделирование с подробно и тщательно подобранными реалистическими деталями не может дать общего достоверного результата, если партия не будет повторена очень большое число раз. С точки зрения дифференциальных игр единственное, на что можно надеяться, – это на подтверждение заключений теории. Особенно важен случай, когда такие заключения выведены исходя из упрощенной модели (по необходимости это случается всегда).

В некоторых случаях дифференциальные игры в задачах военного дела играют совершенно явную и не требующую особых комментариев роль. Это верно, например, для

большинства моделей, включающих преследование, отступление и другое маневрирование подобного рода. Так, в случае управления автоматизированными сетями связи в условиях сложной радиоэлектронной обстановки были предприняты попытки использовать лишь стохастические многошаговые антагонистические игры. Целесообразным представляется использование дифференциальных игр, поскольку их применение позволяет во многих случаях с большой долей достоверности описать необходимые процессы и найти оптимальное решение задачи.

Довольно таки часто в конфликтных ситуациях противоборствующие стороны объединяются в союзы для достижения лучших результатов. Поэтому возникает необходимость изучения коалиционных дифференциальных игр. Кроме того, идеальных ситуаций, не имеющих каких-либо помех, в мире не существует. А значит, целесообразно исследовать коалиционные дифференциальные игры при неопределенности. Существуют различные подходы к построению решений дифференциальных игр .

Во время второй мировой войны научные разработки фон Неймана оказались бесценными для американской армии – военные начальники говорили, что для Пентагона ученый представляет такое же значение, как целая армейская дивизия. Вот пример использования Теории игр в военном деле. На американских торговых судах устанавливались зенитные установки. Однако за все время войны этими установками так и не был сбит ни один вражеский самолет. Возникает справедливый вопрос: стоит ли вообще оснащать суда, не предназначенные для ведения боевых действий, таким оружием. Группа ученых под руководством фон Неймана, изучив вопрос, пришла к выводу - само знание неприятелем о наличии таких орудий на торговых судах резко уменьшает вероятность и точность их обстрелов и бомбежек, а потому размещение «зениток» на этих судах, вполне доказало свою эффективность .

ЦРУ, Министерство обороны США и крупнейшие корпорации из списка Fortune 500 активно сотрудничают с футурологами. Разумеется, речь идёт о строго научной футурологии, то есть о математических вычислениях объективной вероятности будущих событий. Этим занимается теория игр - одна из новых областей математической науки, применимой практически ко всем областям человеческой жизни. Возможно, вычисления будущего, которые раньше велись в условиях строгой секретности для «элитных» клиентов, скоро выйдут на общедоступный коммерческий рынок. По крайней мере, об этом говорит то, что в одно время сразу два крупных американских журнала опубликовали материалы на данную тему, и оба напечатали интервью с профессором Нью-йоркского университета Брюсом Буэно де Мескита (BruceBuenodeMesquita). Профессору принадлежит консалтинговая фирма, которая занимается компьютерными вычислениями на основе теории игр. За двадцать лет сотрудничества с ЦРУ учёный точно вычислил несколько важных и неожиданных событий (например, приход Андропова к власти в СССР и захват Гонконга китайцами). В общей сложности он рассчитал более тысячи событий с точностью более 90%.Сейчас Брюс консультирует американские спецслужбы относительно политики в Иране. Например, его расчёты показывают, что США не имеет никаких шансов предотвратить запуск Ираном ядерного реактора для гражданских нужд .

3.2 В управлении

В качестве примеров применения теории игр в управлении можно назвать решения по поводу проведения принципиальной ценовой политики, вступления на новые рынки, кооперации и создания совместных предприятий, определения лидеров и исполнителей в области инноваций и т.д. Положения данной теории в принципе можно использовать для всех видов решений, если на их принятие влияют другие действующие лица. Этими лицами, или игроками, необязательно должны быть рыночные конкуренты; в их роли могут выступать субпоставщики, ведущие клиенты, сотрудники организаций, а также коллеги по работе.

Какую пользу могут извлечь компании из анализа на базе теории игр? Известен, например, случай столкновения интересов компаний IВМ и Telex. Компания Telex объявила о вступлении на рынок продаж, в связи с этим состоялось “кризисное” совещание руководства IВМ, на котором были проанализированы действия, направленные на то, чтобы заставить нового конкурента отказаться от намерения проникнуть на новый рынок. Об этих действиях, видимо, стало известно компании Telex. Но проведенный анализ на базе теории игр показал, что угрозы IВМ из-за высоких затрат безосновательны. Это доказывает, что компаниям полезно обдумывать возможные реакции партнеров по игре. Изолированные хозяйственные расчеты, даже опирающиеся на теорию принятия решений, часто носят, как в изложенной ситуации, ограниченный характер. Так, компания-аутсайдер могла бы и выбрать ход “невступление”, если бы предварительный анализ убедил ее в том, что проникновение на рынок вызовет агрессивную реакцию компании-монополиста. В этой ситуации разумно выбрать ход “невступление” при вероятности агрессивного ответа 0,5, в соответствии с критерием ожидаемой стоимости.

Важный вклад в использование теории игр вносят экспериментальные работы . Многие теоретические выкладки отрабатываются в лабораторных условиях, а полученные результаты служат важным элементом для практиков. Теоретически было выяснено, при каких условиях двум эгоистически настроенным партнерам выгодно сотрудничать и добиваться лучших для себя результатов.

Эти знания можно использовать в практике предприятий, чтобы помочь двум фирмам достичь ситуации “выигрыш/выигрыш”. Сегодня консультанты с подготовкой в области игр быстро и однозначно выявляют возможности, которыми предприятия могут воспользоваться для заключения стабильных и долгосрочных договоров с клиентами, субпоставщиками, партнерами по разработкам и т.п. .

3.3 Применение в прочих областях

В биологии

Очень важное направление - это попытки применить теорию игр в биологии и понять, как сама эволюция строит оптимальные стратегии. Здесь, в сущности, тот же метод, который помогает нам объяснить человеческое поведение. Ведь теория игр не говорит, что люди всегда действуют осознанно, стратегически, рационально. Скорее речь идет об эволюции определенных правил, которые дают более полезный результат, если их придерживаться. То есть люди зачастую не просчитывают свою стратегию, она постепенно формируется сама по мере накопления опыта. Эта идея воспринята теперь и в биологии.

В компьютерных технологиях

Еще больше востребованы исследования в сфере компьютерных технологий, например анализ аукционов, которые проводятся компьютерами в автоматическом режиме. Кроме того, теория игр сегодня позволяет еще раз задуматься над тем, как работают компьютеры, каким образом строится кооперация между ними. Скажем, серверы в сети можно рассматривать как игроков, которые пытаются скоординировать свои действия.

В играх (шахматы)

Шахматы - это предельный случай теории игр, поскольку все, что вы делаете, направлено исключительно на вашу победу и вам не нужно заботиться о том, как на это отреагирует партнер. Достаточно убедиться, что он не сможет отреагировать эффективно. То есть это игра с нулевой суммой. И конечно, в других играх культура может иметь определенное значение.

Примеры из другой области

Теория игр используется при поиске подходящей пары донора и реципиента почки. Один человек хочет отдать почку другому, но оказывается, что их группы крови несовместимы. И что следует сделать в этом случае? Прежде всего – расширить список доноров и реципиентов, а потом применить методы подбора, которые дает теория игр. Это очень похоже на брак по расчету. Вернее, на брак это совсем не похоже, но математическая модель этих ситуаций одинакова, применяются те же методы и расчеты. Сейчас на идеях таких теоретиков, как Дэвид Гейл, Ллойд Шапли и другие, выросла настоящая индустрия – практические применения теории в кооперативных играх.

3.4 Почему теорию игр не применяют еще шире

И в политике, и в экономике, и в военном деле специалисты-практики натолкнулись на принципиальные ограничения фундамента современной теории игр – Нэшевской рациональности.

Во-первых, человек не настолько совершенен, чтобы все время мыслить стратегически. Для преодоления этого ограничения теоретики начали исследовать эволюционные формулировки равновесия, для которых свойственны более слабые допущения по уровню рациональности.

В-вторых, исходные предпосылки теории игр по информированности игроков о структуре игры и платежах в реальной жизни соблюдаются не так часто, как хотелось бы. Теория игр весьма болезненно реагирует на малейшие (с точки зрения обывателя) изменения в правилах игры резкими сдвигами в предсказываемых равновесиях.

Как следствие этих проблем, современная теория игр находится в "плодотворном тупике". Лебедь, рак и щука предлагаемых решений тянут теорию игр в разные стороны. По каждому направлению пишутся десятки работ... однако "воз и ныне там".

Примеры задач

Определения, необходимые для решения задач

1. Ситуация называется конфликтной, если в ней участвуют стороны, интересы которых полностью или частично противоположны.

2. Игра - это действительный или формальный конфликт, в котором имеется по крайней мере два участника (игрока), каждый из которых стремиться к достижению собственных целей.

3. Допустимые действия каждого из игроков, направленные на достижение некоторой цели, называются правилами игры.

4. Количественная оценка результатов игры называется платежом.

5. Игра называется парной, если в ней участвуют только две стороны (два лица).

6. Парная игра называется игрой с нулевой суммой, если сумма платежей равна нулю, т.е. если проигрыш одного игрока равен выигрышу другого.

7. Однозначное описание выбора игрока в каждой из возможных ситуаций, при которой он должен сделать личный ход, называется стратегией игрока.

8. Стратегия игрока называется оптимальной, если при многократном повторении игры она обеспечивает игроку максимально возможный выигрыш (или, что то же самое, минимально возможный средний проигрыш).

Пусть имеются два игрока, один из которых может выбрать i-ю стратегию из m возможных стратегий (i=1,m), а второй, не зная выбора первого, выбирает j-ю стратегию из n возможных стратегий (j=1,n) В результате первый игрок выигрывает величину aij, а второй проигрывает эту величину.

Из чисел aij составим матрицу

Строки матрицы A соответствуют стратегиям первого игрока, а столбцы - стратегиям второго. Эти стратегии называются чистыми.

9. Матрица A называется платежной (или матрицей игры).

10. Игру, определяемую матрицей A, имеющей m строк и n столбцов, называют конечной игрой размерности m x n.

11. Число называется нижней ценой игры или максимином, а соответствующая ему стратегия (строка) - максиминной.

12. Число называется верхней ценой игры или минимаксом, а соответствующая ему стратегия (столбец) - минимаксной.

13. Если α=β=v, то число v называется ценой игры.

14. Игра, для которой α=β, называется игрой с седловой точкой.

Для игры с седловой точкой нахождение решения состоит в выборе максиминной и минимаксной стратегией, которые являются оптимальными.

Если игра, заданная матрицей, не имеет седловой точки, то для нахождения ее решения используют смешанные стратегии.
Задачи

1.Орлянка. Это игра с нулевой суммой. Принцип состоит в том, что, когда игроки выбирают одинаковые стратегии, то первый выигрывает один рубль, а когда разные – проигрывает один рубль.

Если рассчитывать стратегии по принципу maxmin и minmax, то можно увидеть, что нельзя высчитать оптимальную стратегию, в этой игре вероятности проигрыша и выигрыша равны.

2. Числа. Суть игры состоит, в том, что каждый из игроков загадывает целые числа от 1 до 4, причем выигрыш первого игрока равен разности загаданного им числа и числа, загаданного другим игроком.

имена Игрок В
Игрок А стратегии 1 2 3 4
1 0 -1 -2 -3
2 1 0 -1 -2
3 2 1 0 -1
4 3 2 1 0

Решаем задачу по теории maxmin и minmax, аналогично предыдущей задаче получается, что maxmin = 0, minmax = 0, появилась седловая точка, т.к. верхняя и нижняя цены равны. Стратегии обоих игроков равны 4.

3. Рассмотрим задачу эвакуации людей в пожарном случае.

Пожарная ситуация 1:Время возникновения пожара - 10 часов, лето.

Плотность людского потока D = 0,2 ч /м 2 , скорость движения потока v = 60

м /мин. Необходимое время эвакуации Tэв = 0,5 мин.

Пожарная ситуация 2:Время возникновения пожара 20 ч, лето. Плотность людского потока D = 0,83 ч /мин. скорость движения потока

v = 17 м /мин. Необходимое время эвакуации Tэв = 1,6 мин.

Возможны различные варианты эвакуации Li которые определяются

конструкционными и планировочными особенностями здания, наличием

незадымляемых лестничных клеток, этажностью здания и другими факторами.

В примере мы рассматриваем вариант эвакуации как маршрут, по которому должны пройти люди при эвакуации из здания. Пожарной ситуации 1 будет соответствовать такой вариант эвакуации L1, при котором эвакуация происходит по коридору в две лестничные клетки. Но возможен и худший вариант эвакуации – L2, при котором эвакуация

происходит в одну лестничную клетку и путь эвакуации максимальный.

Для ситуации 2, очевидно, подходят варианты эвакуации L1 и L2, хотя

L1 предпочтительней. Описание возможных пожарных ситуаций на объекте защиты и вариантов эвакуации оформляется в виде платежной матрицы, при этом:

N - возможные ситуации на пожаре:

L - варианты эвакуации;

а 11 – а nm результат эвакуации: "a" меняется от 0 (абсолютный проигрыш) - до 1 (максимальный выигрыш).

Например, при пожарных ситуациях:

N1- задымление общего коридора и охват его пламенем происходят

через 5 мин. после возникновения пожара;

N2 - задымление и охват пламенем коридора происходят через 7 мин;

N3 - задымление и охват коридора пламенем происходят через 10 мин.

Возможны следующие варианты эвакуации:

L1 - обеспечивающий эвакуацию за 6 мин;

L2 - обеспечивающий эвакуацию за 8 мин;

L3 - обеспечивающий эвакуацию за 12 мин.

а 11 = N1 / L1 = 5/ 6 = 0,83

а 12 = N1 / L2 = 5/ 8 = 0,62

а 13 = N1 / L3 = 5/ 12 = 0,42

а 21 = N2 / L1 = 7/ 6 = 1

а 22 = N2 / L2 = 7/ 8 = 0,87

а 23 = N2 / L3 = 7/ 12 = 0,58

а 31 = N3 / L1 = 10/ 6 = 1

а 32 = N3 / L2 = 10/ 8 = 1

а 33 = N3 / L3 = 10/ 12 = 0,83

Таблица. Платёжная матрица результатов эвакуации

L1 L2 L3
N1 0,83 0,6 0,42
N2 1 0,87 0,58
N3 1 1 0,83

Необходимое время эвакуации рассчитывать в процессе руководства

эвакуацией нет необходимости, его можно заложить в программу в готовом виде.

Данная матрица заносится в ЭВМ и по численному значению величины а ij подсистема автоматически подбирает оптимальный вариант эвакуации.

Заключение

В заключение следует особо подчеркнуть, что теория игр является очень сложной областью знания. При обращении с ней надо соблюдать известную осторожность и четко знать границы применения. Слишком простые толкования, принимаемые фирмой самостоятельно или с помощью консультантов, таят в себе скрытую опасность. Анализ и консультации на основе теории игр из-за их сложности рекомендуются лишь для особо важных проблемных областей. Опыт фирм показывает, что использование соответствующего инструментария предпочтительно при принятии однократных, принципиально важных плановых стратегических решений, в том числе при подготовке крупных кооперационных договоров. Однако применение теории игр облегчает нам понимание сущности происходящего, а многогранность данного раздела науки позволяет нам успешно использовать методы и свойства этой теории в различных областях нашей деятельности.

Теория игр прививает человеку дисциплину ума. От лица, принимающего решения, она требует систематической формулировки возможных альтернатив поведения, оценки их результатов, и самое главное - учета поведения других объектов. Человек, знакомый с теорией игр, реже считает других глупее себя, - и потому избегает многих непростительных ошибок. Однако теория игр не может, да и не рассчитана на то, чтобы придать решительности, настойчивости в достижении целей, невзирая на неопределенность и риск. Знание основ теории игр не дает нам явного выигрыша, но оберегает нас от свершения глупых и ненужных ошибок.

Теория игр всегда имеет дело с особым типом мышления, стратегическим.


Библиографический список

1. Дж. фон Нейман, О. Моргенштерн. «Теория игр и экономическое поведение», Наука, 1970.

2. Замков О.О., Толстопятенко А.В., Черемных Ю.Н. «Математические методы в экономике», Москва 1997, изд. «ДИС».

3. Оуэн Г. «Теория Игр». – М.: Мир, 1970.

4. Раскин М. А. «Введение в теорию игр» // Летняя школа «Современная математика». – Дубна: 2008.

5. http://ru.wikipedia.org/wiki

6. http://dic.academic.ru/dic.nsf/ruwiki/104891

7. http://ru.wikipedia.org/wiki

8. http://www.rae.ru/zk/arj/2007/12/Stepanenko.pdf

9. http://banzay-kz.livejournal.com/13890.html

10. http://propolis.com.ua/node/21

11. http://www.cfin.ru/management/game_theory.shtml

12. http://konflickt.ru/16/

13. http://www.krugosvet.ru/enc/nauka_i_tehnika/matematika/IGR_TEORIYA.html

14. http://matmodel.ru/article.php/20081126162627533

15. http://www.nsu.ru/ef/tsy/ec_cs/kokgames/prog3k.htm


Теория игр является математическим методом исследования оптимальных стратегий в играх. Под термином «игра» следует понимать взаимодействие двух или более сторон, которые стремятся реализовать свои интересы. У каждой стороны есть и своя стратегия, способная привести к победе или поражению, что зависит от того, каким образом ведут себя игроки. Благодаря теории игр появляется возможность найти максимально эффективную стратегию, беря во внимание представления о других игроках и их потенциале.

Теория игр представляет собой особый раздел исследования операций. В большинстве случаев методы теории игр используются в экономике, но иногда и в других социальных науках, например, в , политологии, социологии, этике и некоторых других. С 70-х годов XX века она также стала использоваться и биологами с целью изучения поведения животных и теории эволюции. Кроме того, сегодня теория игр имеет очень большое значение в области кибернетики и . Именно поэтому мы и хоти вам о ней рассказать.

История теории игр

Наиболее оптимальные стратегии в области математического моделирования учёные предлагали ещё в XVIII веке. В XIX веке задачи ценообразования и производства в условиях рынка с малой конкуренцией, впоследствии ставшие классическими примерами теории игр, рассматривались такими учёными, как Жозеф Бертран и Антуан Курно. А в начале XX столетия выдающимися математиками Эмилем Борелем и Эрнстом Цермело была выдвинута идея математической теории конфликта интересов.

Истоки математической теории игр следует искать в неоклассической экономике. Изначально основы и аспекты этой теории излагались в работе Оскара Моргенштерна и Джона фон Неймана «Теория игр и экономическое поведение» в 1944 году.

Представленная математическая область также нашла некоторое отражение и в социальной культуре. Например, в 1998 году Сильвия Назар (американская журналистка и писательница) выпустила книгу, посвящённую Джону Нэшу – лауреату Нобелевской премии по экономике и специалисту по теории игр. В 2001 году по мотивам данной работы сняли фильм «Игры разума». А ряд американских телешоу, таких как «NUMB3RS», «Alias» и «Friend or Foe» время от времени в своих эфирах также ссылаются на теорию игр.

Но отдельно следует сказать о Джоне Нэше.

В 1949 году им была написана диссертация на тему теории игр, а через 45 лет он был удостоен Нобелевской премии по экономике. В самых первых концепциях теории игр подвергались анализу игры антагонистического типа, в которых имеются игроки, выигравшие за счёт проигравших. Но Джон Нэш разработал такие аналитические методы, согласно которым все игроки либо проигрывают, либо выигрывают.

Разработанные Нэшем ситуации впоследствии назвали «равновесием по Нэшу». Отличаются они тем, что все стороны игры применяют наиболее оптимальные стратегии, благодаря чему и создаётся устойчивое равновесие. Сохранять равновесие очень выгодно для игроков, ведь в противном случае какое-то одно изменение может негативно сказаться на их положении.

Благодаря деятельности Джона Нэша теория игр получила мощный толчок в своём развитии. Кроме того, были подвергнуты серьёзному пересмотру математические инструменты экономического моделирования. Джон Нэш смог доказать, что классическая точка зрения на вопрос конкуренции, где каждый играет только за себя, не является оптимальной, и самыми эффективными стратегиями являются такие, в которых игроки делают лучше себе, изначально делая лучше другим.

Несмотря на то, что изначально в поле зрения теории игр находились и экономические модели, до 50-х годов прошлого века она была лишь формальной теорией, ограниченной рамками математики. Однако со второй половины XX века предпринимаются попытки её использования и в экономике, и в антропологии, и в технике, и в кибернетике, и в биологии. В период Второй мировой войны и по её окончании теорию игр начали рассматривать военные, разглядевшие в ней серьёзный аппарат в деле развития стратегических решений.

В период 60-70-х годов интерес к данной теории угас, невзирая даже на то, что она давала хорошие математические результаты. Но с 80-х годов начинается активное применение теории игр на практике, главным образом, в менеджменте и экономике. В течение же нескольких последних десятилетий актуальность её значительно выросла, а некоторые современные экономические направления и вовсе невозможно представить без неё.

Не будет лишним сказать также и о том, что существенный вклад в развитие теории игр внёс труд «Стратегия конфликта» 2005 года лауреата Нобелевской премии по экономике Томаса Шеллинга. В своей работе Шеллинг рассмотрел множество стратегий, которыми пользуются участники конфликтного взаимодействия. Данные стратегии совпали с тактиками конфликт-менеджмента и аналитическими принципами, применяющимися в , а также с тактиками, которые используются для управления конфликтами в организациях.

В психологической науке и ряде других дисциплин понятие «игра» имеет несколько иной смысл, чем в математике. Культурологическая интерпретация термина «игра» была представлена в книге «Homo Ludens» Йохана Хёйзинга, где автор толкует о применении игр в этике, культуре и правосудии, а также указывает на то, что сама игра существенно превосходит человека по возрасту, ведь и животные тоже склонны играть.

Также понятие «игра» можно встретить в концепции Эрика Бёрна, известного по книге « ». Здесь, правда, идёт речь об исключительно психологических играх, основой которых является трансакционный анализ.

Применение теории игр

Если говорить о математической теории игр, то в настоящее время она находится на стадии активного развития. Но математическая база по своей сути является очень затратной, по причине чего применяется она, главным образом, только если цели оправдывают средства, а именно: в политике, экономике монополий и распределения рыночной власти и т.д. В остальном же, теория игр применяется в исследованиях поведения людей и животных в огромном количестве ситуаций.

Как уже и было сказано, сначала теория игр развивалась в пределах границ экономической науки, благодаря чему стало возможным определить и интерпретировать поведение в различных ситуациях экономических агентов. Но позже область её применения значительно расширилась и стала включать в себя множество социальных наук, благодаря чему с помощью теории игр сегодня объясняется поведение человека в психологии, социологии и политологии.

Специалисты используют теорию игр не только для того чтобы объяснить и предсказать человеческое поведение – было предпринято множество попыток по использованию этой теории с целью разработать эталонное поведение. Кроме того, философы и экономисты долгое время при помощи неё старались как можно лучше понять хорошее или достойное поведение.

Таким образом, можно заключить, что теория игр стала настоящим переломным моментом в развитии множества наук, и сегодня является неотъемлемой частью процесса изучения различных аспектов поведения человека.

ВМЕСТО ЗАКЛЮЧЕНИЯ: Как вы заметили, теория игр довольно тесно взаимосвязана с конфликтологией – наукой, посвящённой изучению поведения людей в процессе конфликтного взаимодействия. И, на наш взгляд, эта область является одной из самых главных не только среди тех, в которых теория игр должна применяться, но и среди тех, которые должен изучать сам человек, ведь конфликты, как ни крути, являются частью нашей жизни.

Если у вас есть желание разобраться в том, и какие вообще существуют стратегии поведения в них, мы предлагаем вам пройти наш курс по самопознанию, который в полной мере предоставит вам такую информацию. Но, помимо этого, пройдя наш курс, вы сможете провести всестороннюю оценку своей личности вообще. А это значит, что вы будете знать и о том, как вести себя в случае конфликта, и каковы ваши личностные преимущества и недостатки, жизненные ценности и приоритеты, предрасположенности к работе и творчеству, и много чего ещё. В общем, это очень полезный и нужный инструмент для каждого, кто стремится к развитию.

Наш курс находится – смело приступайте к самопознанию и совершенствуйте себя.

Мы желаем вам успехов и умения быть победителем в любой игре!

3.4.1. Основные понятия теории игр

В настоящее время многие решения проблем в производственной,экономической или коммерческой деятельности зависят от субъективных качеств лица, принимающего решение. При выборе решений в условиях неопределенности всегда неизбежен элемент произвола, а следовательно, и риска.

Задачами о принятии решений в условиях полной или частичной неопределенности занимается теория игр и статистических решений. Неопределенность может принимать форму противодействия другой стороны, которая преследует противоположные цели, препятствует теми или другими действиями или состояниями внешней среды. В таких случаях приходится учитывать возможные варианты поведения противоположной стороны.

Возможные варианты поведения обеих сторон и их исходов для каждого сочетания альтернатив и состояний можно представить в виде математической модели, которая называется игрой. Обе стороны конфликта не могут точно предсказать взаимные действия. Несмотря на такую неопределенность, принимать решения приходится каждой стороне конфликта.

Теория игр - это математическая теория конфликтных ситуаций. Основными ограничениями этой теории являются предположение о полной ("идеальной") разумности противника и принятие при разрешении конфликта наиболее осторожного " перестраховочного" решения.

Конфликтующие стороны называются игроками , одна реализация игры партией, исход игры – выигрышем или проигрышем.

Ходом в теории игр называется выбор одного из предусмотренных правилами действия и его реализацию.

Личным ходом называют сознательный выбор игроком одного из возможных вариантов действия и его осуществление.

Случайным ходом называют выбор игроком, осуществляемый не волевым решением игрока, а каким либо механизмом случайного выбора (бросание монеты, сдача карт и т.п.) одного из возможных вариантов действия и его осуществление.

Стратегией игрока называется совокупность правил, определяющих выбор варианта действия при каждом личном ходе этого игрока в зависимости от ситуации, сложившейся в процессе игры

Оптимальной стратегией игрока называется такая стратегия, которая при многократном повторении игры, содержащей личные и случайные ходы, обеспечивает игроку максимально возможный средний выигрыш (или, что то же самое, минимально возможный средний проигрыш).

В зависимости от причин, вызывающих неопределенность исходов, игры можно разделить на следующие основные группы:

- Комбинаторные игры, в которых правила в принципе дают возможность каждому игроку проанализировать все разнообразные варианты поведения и, сравнив эти варианты выбрать из них наилучший. Неопределенность здесь состоит в слишком большом количестве вариантов, которые надо проанализировать.

- Азартные игры, в которых исход оказывается неопределенным в силу влияния случайных факторов.

- Стратегические игры, в которых неопределенность исхода вызвана тем, что каждый из игроков, принимая решение, не знает, какой стратегии будут придерживаться другие участники игры, так как отсутствует информация о последующих действиях противника (партнера).

- Игра называется парной , если в игре участвуют два игрока.

- Игра называется множественной , если в игре участвуют больше двух игроков.

- Игра называется с нулевой суммой , если каждый игрок выигрывает за счет других, а сумма выигрыша и проигрыша одной стороны равны другой.

- Парная игра с нулевой суммой называется антагонистической игрой.

- Игра называется конечной , если у каждого игрока имеется только конечное число стратегий. В противном случае - игра бесконечная.

- Одношаговые игры, когда игрок выбирает одну из стратегий и делает один ход.

- В многошаговых играх игроки для достижения своих целей делают ряд ходов, которые могут ограничиваться правилами игры или могут продолжаться до тех пор, пока у одного из игроков не останется ресурсов для продолжения игры.

- Деловые игры имитируют организационно-экономические взаимодействия в различных организациях и предприятиях. Преимущества игровой имитации перед реальным объектом таковы:

Наглядность последействий принимаемых решений;

Переменный масштаб времени;

Повторение имеющегося опыта с изменением установок;

Переменный охват явлений и объектов.

Элементами игровой модели являются:

- Участники игры.

- Правила игры.

- Информационный массив, отражающий состояние и движение моделируемой системы.

Проведение классификации и группировки игр позволяет для однотипных игр найти общие методы поиска альтернатив в принятии решения, выработать рекомендации по наиболее рациональному образу действий в ходе развития конфликтных ситуаций в различных сферах деятельности.

3.4.2. Постановка игровых задач

Рассмотрим конечную парную игру с нулевой суммой. Игрок А имеет m стратегий (А 1 А 2 А m), а игрок В – n стратегий (В 1 , В 2 Вn). Такая игра называется игрой размерностью m х n. Пусть а ij - выигрыш игрока А в ситуации, когда игрок А выбрал стратегию А i , а игрок В выбрал стратегию В j . Выигрыш игрока в данной ситуации обозначим b ij . Игра с нулевой суммой, следовательно, а ij = - b ij . Для проведения анализа достаточно знать выигрыш только одного из игроков, допустим А.

Если игра состоит только из личных ходов, то выбор стратегии (А i , В j),однозначно определяет исход игры. Если игра содержит также случайные ходы, то ожидаемый выигрыш – это среднее значение (математическое ожидание).

Предположим, что значения а ij известны для каждой пары стратегий(А i , В j). Составим прямоугольную таблицу, строки которой соответствуют стратегиям игрока А, а столбцы – стратегиям игрока В. Эта таблица называется платежной матрицей .

Цель игрока А максимизировать свой выигрыш, а цель игрока В минимизировать свой проигрыш.

Таким образом, платежная матрица имеет вид:

Задача состоит в определении:

1) Наилучшей (оптимальной) стратегии игрока А из стратегий А 1 А 2 А m ;

2) Наилучшей (оптимальной) стратегии игрока В из стратегий В 1 , В 2 Вn.

Для решения задачи применяется принцип, согласно которому участники игры одинаково разумны и каждый из них делает все для того, чтобы добиться своей цели.

3.4.3. Методы решения игровых задач

Принцип минимакса

Проанализируем последовательно каждую стратегию игрока А. Если игрок А выбирает стратегию А 1 , то игрок В может выбрать такую стратегию В j , при которой выигрыш игрока А будет равен наименьшему из чисел a 1j . Обозначим его a 1:

то есть a 1 – минимальное значение из всех чисел первой строки.

Это можно распространить на все строки. Поэтому игрок А должен выбрать ту стратегию, для которой число a i - максимально.

Величина a - гарантированный выигрыш, который может обеспечить себе игрок а при любом поведении игрока В. Величина a называется нижней ценой игры.

Игрок В заинтересован в том, чтобы уменьшить свой проигрыш, то есть обратить выигрыш игрока А в минимум. Для выбора оптимальной стратегии он должен найти максимальное значение выигрыша в каждом столбце и среди них выбрать наименьшее.

Обозначим через b j максимальное значение в каждом столбце:

Наименьшее значение b j обозначим b.

b = min max a ij

b называется верхней границей игры. Принцип, диктующий игрокам выбор игрокам соответствующих стратегий, называется принципом минимакса.

Существуют матричные игры, для которых нижняя цена игры равна верхней, такие игры называются играми с седловой точкой. В этом случае g=a=b называется чистой ценой игры, а стратегии А * i , В * j , позволяющие достичь этого значения - оптимальными. Пара (А * i , В * j)называется седловой точкой матрицы, так как элемент a ij .= g одновременно является минимальным в i-строке и максимальным в j- столбце. Оптимальные стратегии А * i , В * j , и чистая цена являются решением игры в чистых стратегиях, т. е. без привлечения механизма случайного выбора.

Пример 1.

Пусть дана платежная матрица. Найти решение игры, т. е. определить нижнюю и верхнюю цены игры и минимаксные стратегии.

Здесь a 1 =min a 1 j =min(5,3,8,2) =2

a =max min a ij = max(2,1,4) =4

b = min max a ij =min(9,6,8,7) =6

таким образом, нижней цене игры (a=4) соответствует стратегия А 3 .Выбирая эту стратегию, игрок А достигнет выигрыша не менее 4 при любом поведении игрока В. Верхней цене игры (b=6) соответствует стратегия игрока В. Эти стратегии являются минимаксными. Если обе стороны будут придерживаться этих стратегий, выигрыш будет равен 4 (a 33).

Пример 2.

Дана платежная матрица. Найти нижнюю и верхнюю цены игры.

a =max min a ij = max(1,2,3) =3

b = min max a ij =min(5,6,3) =3

Следовательно, a =b=g=3. Седловой точкой является пара (А * 3 , В * 3). Если матричная игра содержит седловую точку, то ее решение находится по принципу минимакса.

Решение игр в смешанных стратегиях

Если платежная матрица не содержит седловой точки (aсмешанной стратегией .

Для применения смешанных стратегий требуются следующие условия:

1) В игре отсутствует седловая точка.

2) Игроками используется случайная смесь чистых стратегий с соответствующими вероятностями.

3) Игра многократно повторяется в одних и тех же условиях.

4) При каждом из ходов игрок не информирован о выборе стратегии другим игроком.

5) Допускается усреднение результатов игр.

В теории игр доказано, что любая парная игра с нулевой суммой имеет по крайней мере одно решение в смешанных стратегиях, отсюда следует, что каждая конечная игра имеет цену g. g - средний выигрыш, приходящийся на одну партию, удовлетворяющий условию a<=g<=b . Оптимальное решение игры в смешанных стратегиях обладает следующим свойством: каждый из игроков не заинтересован в отходе от своей оптимальной смешанной стратегии.

Стратегии игроков в их оптимальных смешанных стратегиях называются активными.

Теорема об активных стратегиях.

Применение оптимальной смешанной стратегии обеспечивает игроку максимальный средний выигрыш(или минимальный средний проигрыш), равный цене игры g, независимо от того, какие действия предпринимает другой игрок, если он только не выходит за пределы своих активных стратегий.

Введем обозначения:

Р 1 Р 2 … Р m - вероятности использования игроком А стратегий А 1 А 2 ….. А m ;

Q 1 Q 2 …Q n вероятности использования игроком В стратегий В 1 , В 2….. Вn

Смешанную стратегию игрока А запишем в виде:

А 1 А 2 …. А m

Р 1 Р 2 … Р m

Смешанную стратегию игрока B запишем в виде:

B 1 B 2 …. B n

Зная платежную матрицу А, можно определить средний выигрыш (математическое ожидание) М(А,P,Q):

М(А,P,Q)=S Sa ij Р i Q j

Средний выигрыш игрока А:

a =max minМ(А,P,Q)

Средний проигрыш игрока В:

b = min maxМ(А,P,Q)

Обозначим через Р А * и Q В * векторы, соответствующие оптимальным смешанным стратегиям, при которых выполняется:

max minМ(А,P,Q) = min maxМ(А,P,Q)= М(А,P А * ,Q В *)

При этом выполняется условие:

maxМ(А,P,Q В *) <=maxМ(А,P А * ,Q В *)<= maxМ(А,P А * ,Q)

Решить игру – это означает найти цену игры и оптимальные стратегии.

Геометрический метод определения цены игры и оптимальных стратегий

(Для игры 2Х2)

На оси абсцисс откладывается отрезок длиной 1.Левый конец этого отрезка соответствует стратегии А 1 , правый – стратегии А 2 .

По оси ординат откладываются выигрыши а 11 и а 12 .

По линии, параллельной оси ординат из точки 1 откладываются выигрыши а 21 и а 22 .

Если игрок В применяет стратегию В 1 , то соединяем точки а 11 и а 21 , если – В 2, то – а 12 и а 22 .

Средний выигрыш изображается точкой N, точка пересечения прямых В 1 В 1 и В 2 В 2 .Абсцисса этой точки равна Р 2 , а ордината цене игры - g.

По сравнению с прежней технологией выигрыш составляет 55%.

В данной статье рассматривается применение теории игр в экономике. Теория игр является разделом математической экономики. Она разрабатывает рекомендации по рациональному действию участников процесса при несовпадении их интересов. Теория игр помогает предприятиям принять оптимальное решение в условиях конфликтной ситуации.

  • Активные операции коммерческих банков и их бухгалтерский учет
  • Совершенствование формирования фонда капитального ремонта в многоквартирных домах
  • Нормативно-правовое регулирование вопросов оценки качества предоставляемых государственных (муниципальных) услуг в России

Теория игр и экономика неразрывно связаны друг другом, так как методы решения задач теории игр помогают определить наилучшую стратегию различных экономических ситуаций. Так как же характеризуется понятие «теория игр»?

Теория игр представляет собой математическую теорию принятия решений в условиях конфликта. Теория игр есть важная часть теории исследования операций, изучающая вопросы принятия решений в конфликтных ситуациях .

Теория игр является разделом математической экономики. Целью теории игр является разработка рекомендаций по рациональному действию участников процесса при несовпадении их интересов, т. е. в условиях конфликтной ситуации. Игра является моделью конфликтной ситуации. Игроками в экономике являются партнеры, которые принимают участие в конфликте. Результат конфликта – выигрыш или проигрыш .

В общем, конфликт имеет место быть в разных областях человеческого интереса: в экономике, социологии, политологии, биологии, кибернетике, военном деле. Чаще всего теория игр и конфликтные ситуации применяется в экономике. Для каждого игрока присутствует определенный набор стратегий, которые игрок может применить. Пересекаясь, стратегии нескольких игроков создают определенную ситуацию, где каждый игрок получает определенный результат (выигрыш или проигрыш). При выборе стратегии важно учитывать не только получение максимального выигрыша для себя, но так же возможные шаги противника, и их влияние на ситуацию в целом.

Чтобы повысить качество, а также эффективность принимаемых экономических решений в условиях рыночных отношений и неопределенности разумно могут применяться методы теории игр.

В экономических ситуациях игры могут иметь полную информацию или же неполную. Чаще всего экономисты сталкиваются с неполной информацией для принятия решений. Поэтому необходимо принимать решения в условиях неопределенности, а также в условиях определенного риска. При решении экономических задач (ситуаций) обычно сталкиваются с одноходовыми и многоходовыми играми. Количество стратегий может быть конечным или же бесконечным .

Теория игр в экономике использует, в основном, матричные или прямоугольные игры, для которых составляют платежную матрицу (Таблица 1).

Таблица 1. Платежная матрица игры

Следует дать определение данному понятию. Платежная матрица игры – это матрица, которая показывает платеж одного игрока другому при условии, что первый игрок выбирает стратегию Аi, второй – Вi .

Какую цель за собой преследует решение экономических задач с помощью теории игр? Решить экономическую задачу – это найти оптимальную стратегию первого и второго игрока и найти цену игры.

Решим экономическую задачу, составленную мной.

В городе Г имеются две конкурирующие компании («Сладкий мир» и «Сладкоежка»), которые занимаются производством шоколада. Обе компании могут производить молочный шоколад и горький шоколад. Стратегию компании «Сладкий мир» обозначим Аi, компании «Сладкоежка» - Вi. Рассчитаем эффективность для всех возможных вариантов сочетаний стратегий компаний «Сладкий мир» и «Сладкоежка» и построим платежную матрицу (Таблица 2).

Таблица 2. Платежная матрица игры

У данной платежной матрицы нет седловой точки, поэтому она решается в смешанных стратегиях.

U1 = (а22-а21) / (а11+а22-а21-а12) = (6-3) / (5+6-3-4) =0,75.

U2 = (а11-а12) / (а11+а22-а21-а12) = (5-4) / (5+6-3-4) = 0,25.

Z1 = (а22-а12) / (а11+а22-а21-а12) = (6-4) / (5+6-3-4) = 0,4.

Z2 = (а11-а21) / (а11+а22-а21-а12) = (5-3) / (5+6-3-4) = 0,6.

Цена игры = (а11*а22-а12*а21) / (а11+а22-а21-а12) = (5*6-4*3) / (5+6-3-4) = 4,5.

Мы можем сказать, что компании «Сладкий мир» следует распределить производство шоколада следующим образом: 75% от общего объема производства отдать производству молочного шоколада, а 25% - производству горького шоколада. Компания «Сладкоежка» на 40% должна производить молочный шоколад и на 60% - горький.

Теория игр занимается принятием решений в условиях конфликтных ситуаций двумя и более разумными противниками, каждый из которых стремится оптимизировать свои решения за счет других .

Таким образом, в данной статье было рассмотрено применение теории игр в экономике. В экономике часто возникают моменты, когда необходимо принять оптимальное решение, а вариантов принятия решений несколько. Теория игр помогает принять решение в условиях конфликтной ситуации. Теория игр в экономике может помочь определить оптимальный выпуск продукции для предприятия, оптимальную выплату страховых взносов и т. п.

Список литературы

  1. Белолипецкий, А. А. Экономико-математические методы [Текст] : учебник для студ. Высш. Учеб. Заведений / А. А. Белолипецкий, В. А. Горелик. – М.: Издательский центр «Академия», 2010. – 368 с.
  2. Лугинин, О. Е. Экономико-математические методы и модели: теория и практика с решением задач [Текст] : учебное пособие / О. Е. Лугинин, В. Н. Фомишина. – Ростов н/Д: Феникс, 2009. – 440 с.
  3. Невежин, В. П. Теория игр. Примеры и задачи [Текст] : учебное пособие / В. П. Невежин. – М.: ФОРУМ, 2012. – 128 с.
  4. Слива, И. И. Применение метода теории игр для решения экономических задач [Текст] / И. И. Слива // Известия Московского государственного технического университета МАМИ. – 2013. - №1. – С. 154-162.
Поделитесь с друзьями или сохраните для себя:

Загрузка...