Решение матричных уравнений. Хосин Канри

Матричным уравнением называется уравнение вида

A X = B

X A = B ,

где A и B - известные матрицы, X - неизвестная матрица, которую требуется найти.

Как решить матричное уравнение в первом случае? Для того, чтобы решить матричное уравнение вида A X = B , обе его части следует умножить на обратную к A матрицу слева:

По определению обратной матрицы, произведение обратной матрицы на данную исходную матрицу равно единичной матрице: , поэтому

.

Так как E - единичная матрица, то E X = X . В результате получим, что неизвестная матрица X равна произведению матрицы, обратной к матрице A , слева, на матрицу B :

Как решить матричное уравнение во втором случае? Если дано уравнение

X A = B ,

то есть такое, в котором в произведении неизвестной матрицы X и известной матрицы A матрица A находится справа, то нужно действовать аналогично, но меняя направление умножения на матрицу, обратную матрице A , и умножать матрицу B на неё справа:

,

Как видим, очень важно, с какой стороны умножать на обратную матрицу, так как . Обратная к A матрица умножается на матрицу B с той стороны, с которой матрица A умножается на неизвестную матрицу X . То есть с той стороны, где в произведении с неизвестной матрицей находится матрица A .

Как решить матричное уравнение в третьем случае? Встречаются случаи, когда в левой части уравнения неизвестная матрица X находится в середине произведения трёх матриц. Тогда известную матрицу из правой части уравнения следует умножить слева на матрицу, обратную той, которая в упомянутом выше произведении трёх матриц была слева, и справа на матрицу, обратную той матрице, которая располагалась справа. Таким образом, решением матричного уравнения

A X B = C ,

является

.

Решение матричных уравнений: примеры

Пример 1. Решить матричное уравнение

.

A X = B A и неизвестной матрицы X матрица A B A A .

A :

.

A :

.

A :

Теперь у нас есть всё, чтобы найти матрицу, обратную матрице A :

.

Наконец, находим неизвестную матрицу:

Решить матричное уравнение самостоятельно, а затем посмотреть решение

Пример 3. Решить матричное уравнение

.

Решение. Данное уравнение имеет вид X A = B , то есть в произведении матрицы A и неизвестной матрицы X матрица A B на матрицу, обратную матрице A A .

Сначала найдём определитель матрицы A :

.

Найдём алгебраические дополнения матрицы A :

Составим матрицу алгебраических дополнений:

.

Транспонируя матрицу алгебраических дополнений, находим матрицу, союзную с матрицей A :

A :

.

Находим неизвестную матрицу:

До сих пор мы решали уравнения с матрицами второго порядка, а теперь настала очередь матриц третьего порядка.

Пример 4. Решить матричное уравнение

.

Решение. Это уравнение первого вида: A X = B , то есть в произведении матрицы A и неизвестной матрицы X матрица A находится слева. Поэтому решение следует искать в виде , то есть неизвестная матрица равна произведению матрицы B на матрицу, обратную матрице A слева. Найдём матрицу, обратную матрице A .

Сначала найдём определитель матрицы A :

Найдём алгебраические дополнения матрицы A :

Составим матрицу алгебраических дополнений:

Транспонируя матрицу алгебраических дополнений, находим матрицу, союзную с матрицей A :

.

Находим матрицу, обратную матрице A , и делаем это легко, так как определитель матрицы A равен единице:

.

Находим неизвестную матрицу:

Пример 5. Решить матричное уравнение

.

Решение. Данное уравнение имеет вид X A = B , то есть в произведении матрицы A и неизвестной матрицы X матрица A находится справа. Поэтому решение следует искать в виде , то есть неизвестная матрица равна произведению матрицы B на матрицу, обратную матрице A справа. Найдём матрицу, обратную матрице A .

Сначала найдём определитель матрицы A :

Найдём алгебраические дополнения матрицы A :

Составим матрицу алгебраических дополнений:

.

Транспонируя матрицу алгебраических дополнений, находим матрицу, союзную с матрицей A .

Определители матриц часто используются в вычислениях, в линейной алгебре и аналитической геометрии. Вне академического мира определители матриц постоянно требуются инженерам и программистам, в особенности тем, кто работает с компьютерной графикой. Если вы уже знаете, как найти определитель матрицы размерностью 2x2, то из инструментов для нахождения определителя матрицы 3x3 вам будут необходимы только сложение, вычитание и умножение.

Шаги

Поиск определителя

    Запишите матрицу размерностью 3 x 3. Запишем матрицу размерностью 3 x 3, которую обозначим M, и найдем ее определитель |M|. Далее приводится общая форма записи матрицы, которую мы будем использовать, и матрица для нашего примера:

    • M = (a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33) = (1 5 3 2 4 7 4 6 2) {\displaystyle M={\begin{pmatrix}a_{11}&a_{12}&a_{13}\\a_{21}&a_{22}&a_{23}\\a_{31}&a_{32}&a_{33}\end{pmatrix}}={\begin{pmatrix}1&5&3\\2&4&7\\4&6&2\end{pmatrix}}}
  1. Выберите строку или столбец матрицы. Эта строка (или столбец) будет опорной. Результат будет одинаков, независимо от того, какую строку или какой столбец вы выберете. В данном примере давайте возьмем первую строку. Чуть позже вы найдете несколько советов касательно того, как выбирать строку или столбец, чтобы упростить вычисления.

    • Давайте выберем первую строку матрицы M в нашем примере. Обведите числа 1 5 3. В общей форме обведите a 11 a 12 a 13 .
  2. Зачеркните строку или столбец с первым элементом. Обратитесь к опорной строке (или к опорному столбцу) и выберите первый элемент. Проведите горизонтальную и вертикальную черту через этот элемент, вычеркнув таким образом столбец и строку с этим элементом. Должно остаться четыре числа. Будем считать эти элементы новой матрицей размерностью 2 x 2.

    • В нашем примере, опорной строкой будет 1 5 3. Первый элемент находится на пересечении первого столбца и первой строки. Вычеркните строку и столбец с этим элементом, то есть первую сроку и первый столбец. Запишите оставшиеся элементы в виде матрицы 2 x 2 :
    • 1 5 3
    • 2 4 7
    • 4 6 2
  3. Найдите определитель матрицы 2 x 2. Запомните, что определитель матрицы (a b c d) {\displaystyle {\begin{pmatrix}a&b\\c&d\end{pmatrix}}} вычисляется как ad - bc . Опираясь на это, вы можете вычислить определитель полученной матрицы 2 x 2, которую, если хотите, можете обозначить как X. Умножьте два числа матрицы X, соединенных по диагонали слева направо (то есть так: \). Затем вычтите результат умножения двух других чисел по диагонали справа налево (то есть так: /). Используйте эту формулу, чтобы вычислить определитель матрицы, которую вы только что получили.

    Умножьте полученный ответ на выбранный элемент матрицы M. Вспомните, какой элемент из опорной строки (или столбца) мы использовали, когда вычеркивали другие элементы строки и столбца, чтобы получить новую матрицу. Умножьте этот элемент на полученный минор (определитель матрицы 2x2, которую мы обозначили X).

    • В нашем примере мы выбирали элемент a 11 , который равнялся 1. Умножим его на -34 (определитель матрицы 2x2), и у нас получится 1*-34 = -34 .
  4. Определите знак полученного результата. Далее вам понадобится умножить полученный результат на 1, либо на -1, чтобы получить алгебраическое дополнение (кофактор) выбранного элемента. Знак кофактора будет зависеть от того, в каком месте матрицы 3x3 стоит элемент. Запомните эту простую схему знаков, чтобы знать знак кофактора:

  5. Повторите все вышеописанные действия со вторым элементом опорной строки (или столбца). Вернитесь к исходной матрице размерностью 3x3 и строке, которую мы обвели в самом начале вычислений. Повторите все действия с этим элементом:

    • Вычеркните строку и столбец с этим элементом. В нашем примере мы должны выбрать элемент a 12 (равный 5). Вычеркнем первую строку (1 5 3) и второй столбец (5 4 6) {\displaystyle {\begin{pmatrix}5\\4\\6\end{pmatrix}}} матрицы.
    • Запишите оставшиеся элементы в виде матрицы 2x2. В нашем примере матрица будет иметь вид (2 7 4 2) {\displaystyle {\begin{pmatrix}2&7\\4&2\end{pmatrix}}}
    • Найдите определитель этой новой матрицы 2x2. Воспользуйтесь вышеприведенной формулой ad - bc. (2*2 - 7*4 = -24)
    • Умножьте полученный определитель на выбранный элемент матрицы 3x3. -24 * 5 = -120
    • Проверьте, нужно ли умножить результат на -1. Воспользуемся формулой (-1) ij , чтобы определить знак алгебраического дополнения. Для выбранного нами элемента a 12 в таблице указан знак «-», аналогичный результат дает и формула. То есть мы должны изменить знак: (-1)*(-120) = 120 .
  6. Повторите с третьим элементом. Далее вам понадобится найти еще одно алгебраическое дополнение. Вычислите его для последнего элемента опорной строки или опорного столбца. Далее приводится краткое описание того, как вычисляется алгебраическое дополнение для a 13 в нашем примере:

    • Зачеркните первую строку и третий столбец, чтобы получить матрицу (2 4 4 6) {\displaystyle {\begin{pmatrix}2&4\\4&6\end{pmatrix}}}
    • Ее определитель равен 2*6 - 4*4 = -4.
    • Умножьте результат на элемент a 13: -4 * 3 = -12.
    • Элемент a 13 имеет знак + в приведенной выше таблице, поэтому ответ будет -12 .
  7. Сложите полученные результаты. Это последний шаг. Вам необходимо сложить полученные алгебраические дополнения элементов опорной строки (или опорного столбца). Сложите их вместе, и вы получите значение определителя матрицы 3x3.

    • В нашем примере определитель равен -34 + 120 + -12 = 74 .

    Как упростить задачу

    1. Выбирайте в качестве опорной строки (или столбца) ту, что имеет больше нулей. Помните, что в качестве опорной вы можете выбрать любую строку или столбец. Выбор опорной строки или столбца не влияет на результат. Если вы выберете строку с наибольшим количеством нулей, вам придется выполнять меньше вычислений, поскольку вам будет необходимо вычислить алгебраические дополнения только для ненулевых элементов. Вот почему:

      • Допустим, вы выбрали 2 строку с элементами a 21 , a 22 , and a 23 . Чтобы найти определитель, вам будет необходимо найти определители трех различных матриц размерностью 2x2. Давайте назовем их A 21 , A 22 , and A 23 .
      • То есть определитель матрицы 3x3 равен a 21 |A 21 | - a 22 |A 22 | + a 23 |A 23 |.
      • Если оба элемента a 22 и a 23 равны 0, то наша формула становится намного короче a 21 |A 21 | - 0*|A 22 | + 0*|A 23 | = a 21 |A 21 | - 0 + 0 = a 21 |A 21 |. То есть необходимо вычислить только алгебраическое дополнение одного элемента.
    2. Используйте сложение строк, чтобы упростить матрицу. Если вы возьмете одну строку и прибавите к ней другую, то определитель матрицы не изменится. То же самое верно и для столбцов. Подобные действия можно выполнять несколько раз, кроме того, вы можете умножать значения строки на постоянную (перед сложением) для того, чтобы получить как можно больше нулей. Подобные действия могут сэкономить массу времени.

      • Например, у нас есть матрица из трех строк: (9 − 1 2 3 1 0 7 5 − 2) {\displaystyle {\begin{pmatrix}9&-1&2\\3&1&0\\7&5&-2\end{pmatrix}}}
      • Чтобы избавиться от 9 на месте элемента a 11 , мы можем умножить вторую строку на -3 и прибавить результат к первой. Новая первая строка будет + [-9 -3 0] = .
      • То есть мы получаем новую матрицу (0 − 4 2 3 1 0 7 5 − 2) {\displaystyle {\begin{pmatrix}0&-4&2\\3&1&0\\7&5&-2\end{pmatrix}}} Попробуйте проделать то же самое со столбцами, чтобы получить на месте элемента a 12 нуль.
    3. Помните, что вычислять определитель треугольных матриц намного проще. Определитель треугольных матриц вычисляется как произведение элементов на главной диагонали, от a 11 в верхнем левом углу до a 33 в нижнем правом углу. Речь в данном случае идет о треугольных матрицах размерностью 3x3. Треугольные матрицы могут быть следующих видов, в зависимости от расположения ненулевых значений:

      • Верхняя треугольная матрица: Все ненулевые элементы находятся на главной диагонали и выше нее. Все элементы ниже главной диагонали равны нулю.
      • Нижняя треугольная матрица: Все ненулевые элементы находятся ниже главной диагонали и на ней.
      • Диагональная матрица: Все ненулевые элементы находятся на главной диагонали. Является частным случаем вышеописанных матриц.
      • Описанный метод распространяется на квадратные матрицы любого ранга. Например, если вы используете его для матрицы 4x4, то после «вычеркивания» будут оставаться матрицы 3x3, для которых определитель будет вычисляться вышеупомянутым способом. Будьте готовы к тому, что вычислять определитель для матриц таких размерностей вручную - очень трудоемкая задача!
      • Если все элементы строки или столбца равны 0, то определитель матрицы тоже равен 0.

Занятие № 1. Матрицы. Операции над матрицами.

1. Что называется матрицей.

2. Какие две матрицы называются равными.

3. Какая матрица называется квадратной, диагональной, единичной.

4. Как выполнить операции сложения матриц и умножение матрицы на число.

5. Для каких матриц вводится операция умножения и правило ее выполнения.

6. Какие преобразования над матрицами являются элементарными.

7. Какую матрицу называют канонической.

Типовые примеры Действия над матрицами

Задача № 1. Даны матрицы

Найти матрицу D=
(1)

Решение. По определению произведения матрица на число получаем:

D=

Задача № 2 . Найти произведение АВ двух квадратных матриц:

Решение. Обе матрицы являются квадратными матрицами 2-го порядка. Такие матрицы можно умножить, используя формулу

Формула (2) имеет следующий смысл: чтобы получить элемент матрицы С = АВ, стоящий на пересечении строки истолбца нужно взять сумму произведений элементов-ой строки матрицы А на соответствующие элементы-го столбца матрицы В.

В соответствии с формулой (2) найдем:

Следовательно, произведение С = АВ будет иметь вид:

Задача № 3. Найти произведение АВ и ВА матриц:

Решение. Согласно формуле (2),элементы матриц АВ и ВА будут иметь вид:

Вывод: Сравнивая матрицы АВ и ВА и пользуясь определением равенства матриц, делаем вывод, что АВВА, т. е. умножение матриц не подчиняется переместительному закону.

Задача № 4 (устно). Даны матрицы
Существуют ли произведения (в скобках даны правильные ответы): АВ (да), ВА (нет), АС (да), СА (нет), АВС (нет), АСВ (да), СВА (нет).

Задача № 5. Найти произведение АВ и ВА двух матриц вида:

Решение. Приведенные матрицы вида
следовательно, существуют произведения АВ и ВА данных матриц, которые будут иметь вид:

Задача № 6 . Найти произведение АВ матриц:

Ответ:

Задачи для самостоятельного решения:

    Даны матрицы

Найти матрицу D=2А-4В+3С.

2. Найти произведения АВ и ВА квадратных матриц:

    Найти произведение матриц:

    Найти произведение матриц:



7. Найти произведение матриц:

8.Найти матрицу: В=6А 2 +8А, если
.

9. Дана матрица
.Найти все матрицы В, перестановочные с матрицей А.

10. Доказать, что если А - диагональная матрица и все элементы ее главной диагонали различны между собой, то любая матрица, перестановочная с А, тоже диагональная.

Занятие 2. Определители квадратных матриц и их вычисление. Обратная матрица.

Для усвоения практического материала нужно ответить на следующие теоретические вопросы:

    Что называется определителем n-го порядка? Правила вычисления приn=1,2,3.

    Свойства определителей.

    Какая матрица называется невырожденной?

    Какая матрица называется единичной?

    Какая матрица называется обратной по отношению к данной?

    Что является необходимым и достаточным условием для существования обратной матрицы?

    Сформулировать правило нахождения обратной матрицы.

    Ранг матрицы. Правила нахождения.

Типовые примеры Вычисление определителей

Задача № 1. Вычислить определитель
:

а) по правилу треугольника;

б) с помощью разложения по первой строке;

в) преобразованием, используя свойства определителей.

в)

Задача № 2 . Найти минор и алгебраическое дополнение элементаa 23 определителя
и вычислить его разложением по элементам строки или столбца.

Решение.

М 23
; А 23

Задача № 3. Вычислить определитель с помощью разложения по 2 строке:

Ответ:

Задача № 4. Решить уравнение

Задача № 5. Вычислить определитель 4-го порядка разложением по элементам строки или столбца:

1-й курс, высшая математика, изучаем матрицы и основные действия над ними. Здесь мы систематизируем основные операции, которые можно проводить с матрицами. С чего начать знакомство с матрицами? Конечно, с самого простого - определений, основных понятий и простейших операций. Заверяем, матрицы поймут все, кто уделит им хотя бы немного времени!

Определение матрицы

Матрица – это прямоугольная таблица элементов. Ну а если простым языком – таблица чисел.

Обычно матрицы обозначаются прописными латинскими буквами. Например, матрица A , матрица B и так далее. Матрицы могут быть разного размера: прямоугольные, квадратные, также есть матрицы-строки и матрицы-столбцы, называемые векторами. Размер матрицы определяется количеством строк и столбцов. Например, запишем прямоугольную матрицу размера m на n , где m – количество строк, а n – количество столбцов.

Элементы, для которых i=j (a11, a22, .. ) образуют главную диагональ матрицы, и называются диагональными.

Что можно делать с матрицами? Складывать/вычитать , умножать на число , умножать между собой , транспонировать . Теперь обо всех этих основных операциях над матрицами по порядку.

Операции сложения и вычитания матриц

Сразу предупредим, что можно складывать только матрицы одинакового размера. В результате получится матрица того же размера. Складывать (или вычитать) матрицы просто – достаточно только сложить их соответствующие элементы . Приведем пример. Выполним сложение двух матриц A и В размером два на два.

Вычитание выполняется по аналогии, только с противоположным знаком.

На произвольное число можно умножить любую матрицу. Чтобы сделать это, нужно умножить на это число каждый ее элемент. Например, умножим матрицу A из первого примера на число 5:

Операция умножения матриц

Перемножить между собой удастся не все матрицы. Например, у нас есть две матрицы - A и B. Их можно умножить друг на друга только в том случае, если число столбцов матрицы А равно числу строк матрицы В. При этом каждый элемент получившейся матрицы, стоящий в i-ой строке и j-м столбце, будет равен сумме произведений соответствующих элементов в i-й строке первого множителя и j-м столбце второго . Чтобы понять этот алгоритм, запишем, как умножаются две квадратные матрицы:

И пример с реальными числами. Умножим матрицы:

Операция транспонирования матрицы

Транспонирование матрицы – это операция, когда соответствующие строки и столбцы меняются местами. Например, транспонируем матрицу A из первого примера:

Определитель матрицы

Определитель, о же детерминант – одно из основных понятий линейной алгебры. Когда-то люди придумали линейные уравнения, а за ними пришлось выдумать и определитель. В итоге, разбираться со всем этим предстоит вам, так что, последний рывок!

Определитель – это численная характеристика квадратной матрицы, которая нужна для решения многих задач.
Чтобы посчитать определитель самой простой квадратной матрицы, нужно вычислить разность произведений элементов главной и побочной диагоналей.

Определитель матрицы первого порядка, то есть состоящей из одного элемента, равен этому элементу.

А если матрица три на три? Тут уже посложнее, но справиться можно.

Для такой матрицы значение определителя равно сумме произведений элементов главной диагонали и произведений элементов лежащих на треугольниках с гранью параллельной главной диагонали, от которой вычитается произведение элементов побочной диагонали и произведение элементов лежащих на треугольниках с гранью параллельной побочной диагонали.

К счастью, вычислять определители матриц больших размеров на практике приходится редко.

Здесь мы рассмотрели основные операции над матрицами. Конечно, в реальной жизни можно ни разу так и не встретить даже намека на матричную систему уравнений или же наоборот - столкнуться с гораздо более сложными случаями, когда придется действительно поломать голову. Именно для таких случаев и существует профессиональный студенческий сервис . Обращайтесь за помощью, получайте качественное и подробное решение, наслаждайтесь успехами в учебе и свободным временем.

Поделитесь с друзьями или сохраните для себя:

Загрузка...