Численное интегрирование метод трапеций c. Вычисление интегралов по формулам прямоугольников и трапеций

Вычисление интегралов встречается при моделировании дос­таточно часто. Численные методы обычно применяются при взя­тии неберущихся интегралов от достаточно сложных функций, которые предварительно табулируются, или при интегрировании таблично заданных функций, что в экономических приложениях встречается значительно чаще.

Концепция численного интегрирования.

Все численные методы строятся на том, что подынтегральная функция приближенно заменяется более простой (горизонталь­ной или наклонной прямой, параболой 2-го, 3-го или более высо­кого порядка), от которой интеграл легко берется. В результате получаются формулы интегрирования, называемые квадратур­ными, в виде взвешенной суммы ординат подынтегральной функ­ции в отдельных точках:


Чем меньше интервалы, на которых производят замену, тем точнее вычисляется интеграл. Поэтому исходный отрезок [а, b]для повышения точности делят на несколько равных или нерав­ных интервалов, на каждом из которых применяют формулу ин­тегрирования, а затем складывают результаты.

В большинстве случаев погрешность численного интегриро­вания определяется путем двойного интегрирования: с исходным шагом (шаг определяется путем равномерного деления отрезка b-а на число отрезков n\h=(b-a)/n)u c шагом, увеличенным в 2 раза. Разница вычисленных значений интегралов определяет погрешность.

Сравнение эффективности различных методов проводится по степени полинома, который данным методом интегрируется точ­но, без ошибки. Чем выше степень такого полинома, тем выше точность метода, тем он эффективнее.

К простейшим методам можно отнести методы прямоуголь­ников (левых и правых) и трапеций. В первом случае подынте­гральная функция заменяется горизонтальной прямой (у = с0) со значением ординаты, т.е. значения функции соответственно слева или справа участка, во втором случае - наклонной прямой (у =с 1 х + с 0). Формулы интегрирования при разбиении отрезка [а, b] на n частей с равномерным шагом h соответственно приоб­ретают вид:

Для одного участка интегрирования:



для п участков интегрирования:



Нетрудно заметить, что в методе прямоугольников интеграл вычислится абсолютно точно только при f (х ) = с (const), а в мето­де трапеций - при f (x ) линейной или кусочно-линейной.

На рис. 4 для сравнения приведены примеры прямоугольни­ков при различном числе участков. Наглядно видно, что площадь всех прямоугольников на правом рисунке меньше отличается от площади под кривой f(x), чем на левом.


Рис. 4. Иллюстрация метода левых прямоугольников:

а - с 3 участками разбиения отрезка интегрирования [а, b];

б - с 6 участками разбиения отрезка интегрирования [а, b]

Метод прямоугольников не на­ходит практического применения в силу значительных погрешностей, что тоже видно из рис. 4.

На рис. 5 приведен пример вы­числения интеграла методом тра­пеций. По сравнению с методом прямоугольников метод трапеций более точный, так как трапеция точнее заменяет соответствующую криволинейнуютрапецию, чем прямоугольник. Рис 5.

Погрешность R вычисления интеграла методом трапеций при использовании двойного просчета на практике может быть опре­делена из следующего соотношения:

где I n и I п/2 - соответственно значения интеграла при числе раз­биений п и п/2. Существуют и аналитические выражения для определения погрешности, но они требуют знания второй произ­водной подынтегральной функции, поэтому имеют только теоре­тическое значение. С использованием двойного просчета можно организовать автоматический подбор шага интегрирования (т.е. числа разбиений n) для обеспечения заданной погрешности ин­тегрирования (последовательно удваивая шаг и контролируя по­грешность).


Получим методом левых прямоугольников:


Получим методом правых прямоугольников:


Получим методом трапеций:


Метод трапеций является одним из методов численного интегрирования. Он позволяет вычислять определенные интегралы с заранее заданной степенью точности.

Сначала опишем суть метода трапеций и выведем формулу трапеций. Далее запишем оценку абсолютной погрешности метода и подробно разберем решение характерных примеров. В заключении сравним метод трапеций с методом прямоугольников.

Навигация по странице.

Суть метода трапеций.

Поставим перед собой следующую задачу: пусть нам требуется приближенно вычислить определенный интеграл , где подынтегральная функция y=f(x) непрерывна на отрезке .

Разобьем отрезок на n равных интервалов длины h точками . В этом случае шаг разбиения находим как и узлы определяем из равенства .

Рассмотрим подынтегральную функцию на элементарных отрезках .

Возможны четыре случая (на рисунке показаны простейшие из них, к которым все сводится при бесконечном увеличении n ):


На каждом отрезке заменим функцию y=f(x) отрезком прямой, проходящей через точки с координатами и . Изобразим их на рисунке синими линиями:


В качестве приближенного значения интеграла возьмем выражение , то есть, примем .

Давайте выясним, что означает в геометрическом смысле записанное приближенное равенство. Это позволит понять, почему рассматриваемый метод численного интегрирования называется методом трапеций.

Мы знаем, что площадь трапеции находится как произведение полу суммы оснований на высоту. Следовательно, в первом случае площадь криволинейной трапеции приближенно равна площади трапеции с основаниями и высотой h , в последнем случае определенный интеграл приближенно равен площади трапеции с основаниями и высотой h , взятой со знаком минус. Во втором и третьем случаях приближенное значение определенного интеграла равно разности площадей красной и синей областей, изображенных на рисунке ниже.


Таким образом, мы подошли к сути метода трапеций , которая состоит в представлении определенного интеграла в виде суммы интегралов вида на каждом элементарном отрезке и в последующей приближенной замене .

Формула метода трапеций.

В силу пятого свойства определенного интеграла .

Если вместо интегралов подставить их приближенные значения, то получится :

Оценка абсолютной погрешности метода трапеций.

Абсолютная погрешность метода трапеций оценивается как
.

Графическая иллюстрация метода трапеций.

Приведем графическую иллюстрацию метода трапеций :

Примеры приближенного вычисления определенных интегралов методом трапеций.

Разберем на примерах применение метода трапеций при приближенном вычислении определенных интегралов.

В основном встречаются две разновидности заданий:

  • либо вычислить определенный интеграл методом трапеций для данного числа разбиения отрезка n ,
  • либо найти приближенное значение определенного интеграла с требуемой точностью.

Следует заметить, что при заданном n промежуточные вычисления следует проводить с достаточной степенью точности, причем, чем больше n , тем выше должна быть точность вычислений.

Если требуется вычислить определенный интеграл с заданной точностью, к примеру, до 0.01 , то промежуточные вычисления рекомендуем проводить на два-три порядка точнее, то есть, до 0.0001 - 0.00001 . Если указанная точность достигается при больших n , то промежуточные вычисления следует проводить с еще более высокой точностью.

Для примера возьмем определенный интеграл, значение которого мы можем вычислить по формуле Ньютона-Лейбница , чтобы можно было сравнивать этот результат с приближенным значением, полученным по методу трапеций.

Итак, .

Пример.

Вычислить определенный интеграл методом трапеций для n = 10 .

Решение.

Формула метода трапеций имеет вид . То есть, для ее применения нам достаточно вычислить шаг h по формуле , определить узлы и вычислить соответствующие значения подынтегральной функции .

Вычислим шаг разбиения: .

Определяем узлы и вычисляем значения подынтегральной функции в них (будем брать четыре знака после запятой):

Результаты вычислений для удобства представляем в виде таблицы:

Подставляем их в формулу метода трапеций:

Полученное значение совпадает до сотых со значением, вычисленным по формуле Ньютона-Лейбница.

Пример.

Вычислите определенный интеграл методом трапеций с точностью до 0.01 .

Решение.

Что мы имеем из условия: a = 1; b = 2 ; .

В этом случае первым делом находим количество точек разбиения отрезка интегрирования, то есть n . Мы это можем сделать, используя неравенство для оценки абсолютной погрешности . Таким образом, если мы найдем n , для которых будет выполняться неравенство , то формула трапеций при данных n даст нам приближенное значение определенного интеграла с требуемой точностью.

Найдем сначала наибольшее значение модуля второй производной функции на отрезке .

Вторая производная функции является квадратичной параболой , мы знаем из ее свойств, что она положительная и возрастающая на отрезке , поэтому . Как видите, в нашем примере процесс нахождения достаточно прост. В более сложных случаях обращайтесь к разделу . Если же найти очень сложно, то после этого примера мы приведем альтернативный метод действий.

Вернемся к нашему неравенству и подставим в него полученное значение:

Так как n – число натуральное (n - количество элементарных интервалов, на которые разбивается отрезок интегрирования), то можно брать n = 6, 7, 8, ... Возьмем n = 6 . Это позволит нам достичь требуемой точности метода трапеций при минимуме расчетов (хотя для нашего случая при n = 10 производить вычисления вручную удобнее).

Итак, n найдено, теперь действуем как в предыдущем примере.

Вычисляем шаг: .

Находим узлы сетки и значения подынтегральной функции в них:

Занесем в таблицу результаты расчетов:

Подставляем полученные результаты в формулу трапеций:

Вычислим исходный интеграл по формуле Ньютона-Лейбница, чтобы сравнить значения:

Следовательно, требуемая точность достигнута.

Следует отметить, что нахождение числа n из неравенства для оценки абсолютной погрешности является не очень простой процедурой, особенно для подынтегральных функций сложного вида. Поэтому логично прибегнуть к следующему методу.

Приближенное значение определенного интеграла, полученное по методу трапеций для n узлов, будем обозначать .

Выбираем произвольно число n , например n = 10 . Вычисляем по формуле метода трапеций исходный интеграл для n = 10 и для удвоенного числа узлов, то есть, для n = 20 . Находим абсолютную величину разности двух полученных приближенных значений . Если она меньше требуемой точности , то прекращаем вычисления и в качестве приближенного значения определенного интеграла берем значение , предварительно округлив его до требуемого порядка точности. В противном случае удваиваем количество узлов (берем n = 40 ) и повторяем действия.

Метод трапеций является одним из методов численного интегрирования. Он позволяет вычислять определенные интегралы с заранее заданной степенью точности.

Поставим перед собой следующую задачу: пусть нам требуется приближенно вычислить определенный интеграл , где подынтегральная функцияy=f(x) непрерывна на

отрезке .

Разобьем отрезок на n равных интервалов длины h точками . В этом случае шаг разбиения находим каки узлы определяем из равенства.

Рассмотрим подынтегральную функцию на элементарных отрезках .

Возможны четыре случая (на рисунке показаны простейшие из них, к которым все сводится при бесконечном увеличении n ):

На каждом отрезке заменим функциюy=f(x) отрезком прямой, проходящей через точки с координатами и. Изобразим их на рисунке синими линиями:

В качестве приближенного значения интеграла возьмем выражение, то есть, примем.

Давайте выясним, что означает в геометрическом смысле записанное приближенное равенство. Это позволит понять, почему рассматриваемый метод численного интегрирования называется методом трапеций.

Мы знаем, что площадь трапеции находится как произведение полу суммы оснований на высоту. Следовательно, в первом случае площадь криволинейной трапеции приближенно равна площади трапеции с основаниями и высотойh , в последнем случае определенный интеграл приближенно равен площади трапеции с основаниямии высотойh , взятой со знаком минус. Во втором и третьем случаях приближенное значение определенного интеграла равно разности площадей красной и синей областей, изображенных на рисунке ниже.

Таким образом, мы подошли к сути метода трапеций , которая состоит в представлении определенного интеграла в виде суммы интегралов видана каждом элементарном отрезке и в последующей приближенной замене.

Формула метода трапеций.

В силу пятого свойства определенного интеграла .

Если вместо интегралов подставить их приближенные значения, то получитсяформула метода трапеций :

Оценка абсолютной погрешности метода трапеций.

Абсолютная погрешность метода трапеций оценивается как.

Графическая иллюстрация метода трапеций.

3. Метод Симпсона (парабол)

Это более совершенный способ – график подынтегральной функции приближается не ломаной линией, а маленькими параболками. Сколько промежуточных отрезков – столько и маленьких парабол. Если взять те же три отрезка, то метод Симпсона даст ещё более точное приближение, чем метод прямоугольников или метод трапеций.

Пусть функция y = f(x) непрерывна на отрезке и нам требуется вычислить определенный интеграл .

Разобьем отрезок на n элементарных отрезков длиныточками. Пусть точкиявляются серединами отрезковсоответственно. В этом случае все "узлы" определяются из равенства.

Суть метода парабол.

На каждом интервале подынтегральная функция приближается квадратичной параболой, проходящей через точки. Отсюда и название метода - метод парабол.

Это делается для того, чтобы в качестве приближенного значения определенного интеграла взять, который мы можем вычислить по формуле Ньютона-Лейбница. В этом и заключаетсясуть метода парабол .

Геометрически это выглядит так:

Графическая иллюстрация метода парабол (Симпсона).

Красной линией изображен график функции y=f(x) , синей линией показано приближение графика функции y=f(x) квадратичными параболами на каждом элементарном отрезке разбиения.

Вывод формулы метода Симпсона (парабол).

В силу пятого свойства определенного интеграла имеем .

Для получения формулы метода парабол (Симпсона) нам осталось вычислить .

Пусть (мы всегда можем к этому прийти, проведя соответствующее геометрическое преобразования сдвига для любогоi = 1, 2, ..., n ).

Сделаем чертеж.

Покажем, что через точки проходит только одна квадратичная парабола. Другими словами, докажем, что коэффициентыопределяются единственным образом.

Вычисление интегралов по формулам прямоугольников, трапеций и формуле Симпсона. Оценка погрешностей.

Методические указания по теме 4.1:

Вычисление интегралов по формулам прямоугольников. Оценка погрешности:

Решение многих технических задач сводится к вычислению определенных интегралов, точное выражение которых сложно, требует длительных вычислений и не всегда оправдано практически. Здесь бывает вполне достаточно их приближенного значения. Например, необходимо вычислить площадь, ограниченную линией, уравнение которой неизвестно, осью х и двумя ординатами. В этом случае можно заменить данную линию более простой, для которой известно уравнение. Площадь полученной таким образом криволинейной трапеции принимается за приближенное значение искомого интеграла. Геометрически идея способа вычислений определенного интеграла по формуле прямоугольников состоит в том, что площадь криволинейной трапеции А 1 АВВ 1 заменяется площадью равновеликого прямоугольника А 1 А 2 В 1 В 2 , которая по теореме о среднем равна

Где f(c) --- высота прямоугольника А 1 А 2 В 1 В 2 , представляющая собой значение подынтегральной функции в некоторой промежуточной точке c(a< c

Практически трудно найти такое значение с , при котором (b-a) f (c) в точности равнялось бы . Для получения более точного значения площадь криволинейной трапеции разбивают на n прямоугольников, высоты которых равны y 0 , y 1 , y 2 , …,y n -1 и основания .

Если суммировать площади прямоугольников, которые покрывают площадь криволинейной трапеции с недостатком, функция --- неубывающая, то вместо формулы используют формулу

Если с избытком, то

Значения находят из равенств . Эти формулы называются формулами прямоугольников и дают приближенный результат. С увеличением n результат становится более точным.

Пример 1. Вычислить по формуле прямоугольников

Разделим промежуток интегрирования на 5 частей. Тогда . При помощи калькулятора или таблицы найдем значения подынтегральной функции (с точностью до 4-х знаков после запятой):

По формуле прямоугольников (с недостатком)

С другой стороны по формуле Ньютона-Лейбница

Найдем относительную погрешность вычисления по формуле прямоугольников:

Вычисление интегралов по формулам трапеций. Оценка погрешности:

Геометрический смысл следующего способа приближенного вычисления интегралов состоит в том, что нахождение площади приблизительно равновеликой «прямолинейной» трапеции.

Пусть необходимо вычислить площадь А 1 АmBB 1 криволинейной трапеции, выражаемую формулой .

Заменим дугу AmB хордой AB и вместо площади криволинейной трапеции А 1 АmBB 1 вычислим площадь трапеции А 1 АBB 1 : , где AA 1 и ВВ 1 -- основания трапеции, а A 1 В 1 –ее высота.


Обозначим f(a)=A 1 A,f(b)=B 1 B. высота трапеции A 1 B 1 =b-a, площадь . Следовательно, или

Это так называемая малая формула трапеций .

Сегодня мы познакомимся с еще одним методом численного интегрирования, методом трапеций. С его помощью мы будем вычислять определенные интегралы с заданной степенью точности. В статье мы опишем суть метода трапеций, разберем, как выводится формула, сравним метод трапеции с методом прямоугольника, запишем оценку абсолютной погрешности метода. Каждый из разделов мы проиллюстрируем примерами для более глубокого понимания материала.

Yandex.RTB R-A-339285-1

Предположим, что нам нужно приближенно вычислить определенный интеграл ∫ a b f (x) d x , подынтегральная функция которого y = f (x) непрерывна на отрезке [ a ; b ] . Для этого разделим отрезок [ a ; b ] на несколько равных интервалов длины h точками a = x 0 < x 1 < x 2 < . . . < x n - 1 < x n = b . Обозначим количество полученных интервалов как n .

Найдем шаг разбиения: h = b - a n . Определим узлы из равенства x i = a + i · h , i = 0 , 1 , . . . , n .

На элементарных отрезках рассмотрим подынтегральную функцию x i - 1 ; x i , i = 1 , 2 , . . , n .

При бесконечном увеличении n сведем все случаи к четырем простейшим вариантам:

Выделим отрезки x i - 1 ; x i , i = 1 , 2 , . . . , n . Заменим на каждом из графиков функцию y = f (x) отрезком прямой, который проходит через точки с координатами x i - 1 ; f x i - 1 и x i ; f x i . Отметим их на рисунках синим цветом.

Возьмем выражение f (x i - 1) + f (x i) 2 · h в качестве приближенного значения интеграла ∫ x i - 1 x i f (x) d x . Т.е. примем ∫ x i - 1 x i f (x) d x ≈ f (x i - 1) + f (x i) 2 · h .

Давайте посмотрим, почему метод численного интегрирования, который мы изучаем, носит название метода трапеций. Для этого нам нужно выяснить, что с точки зрения геометрии означает записанное приближенное равенство.

Для того, чтобы вычислить площадь трапеции, необходимо умножить полусуммы ее оснований на высоту. В первом случае площадь криволинейной трапеции примерно равна трапеции с основаниями f (x i - 1) , f (x i) высотой h . В четвертом из рассматриваемых нами случаев заданный интеграл ∫ x i - 1 x f (x) d x приближенно равен площади трапеции с основаниями - f (x i - 1) , - f (x i) и высотой h , которую необходимо взять со знаком « - ». Для того, чтобы вычислить приближенное значение определенного интеграла ∫ x i - 1 x i f (x) d x во втором и третьем из рассмотренных случаев, нам необходимо найти разность площадей красной и синей областей, которые мы отметили штриховкой на расположенном ниже рисунке.

Подведем итоги. Суть метода трапеций заключается в следующем: мы можем представить определенный интеграл ∫ a b f (x) d x в виде суммы интегралов вида ∫ x i - 1 x i f (x) d x на каждом элементарном отрезке и в последующей приближенной замене ∫ x i - 1 x i f (x) d x ≈ f (x i - 1) + f (x i) 2 · h .

Формула метода трапеций

Вспомним пятое свойство определенного интеграла: ∫ a b f (x) d x = ∑ i = 1 n ∫ x i - 1 x i f (x) d x . Для того, чтобы получить формулу метода трапеций, необходимо вместо интегралов ∫ x i - 1 x i f (x) d x подставить их приближенные значения: ∫ x i - 1 x i f (x) d x = ∑ i = 1 n ∫ x i - 1 x i f (x) d x ≈ ∑ i = 1 n f (x i - 1) + f (x i) 2 · h = = h 2 · (f (x 0) + f (x 1) + f (x 1) + f (x 2) + f (x 2) + f (x 3) + . . . + f (x n)) = = h 2 · f (x 0) + 2 ∑ i = 1 n - 1 f (x i) + f (x n) ⇒ ∫ x i - 1 x i f (x) d x ≈ h 2 · f (x 0) + 2 ∑ i = 1 n - 1 f (x i) + f (x n)

Определение 1

Формула метода трапеций: ∫ x i - 1 x i f (x) d x ≈ h 2 · f (x 0) + 2 ∑ i = 1 n - 1 f (x i) + f (x n)

Оценка абсолютной погрешности метода трапеций

Оценим абсолютную погрешность метода трапеций следующим образом:

Определение 2

δ n ≤ m a x x ∈ [ a ; b ] f "" (x) · n · h 3 12 = m a x x ∈ [ a ; b ] f "" (x) · b - a 3 12 n 2

Графическая иллюстрация метода трапеций приведена на рисунке:

Примеры вычислений

Разберем примеры использования метода трапеций для приближенного вычисления определенных интегралов. Особое внимание уделим двум разновидностям заданий:

  • вычисление определенного интеграла методом трапеций для данного числа разбиения отрезка n;
  • нахождение приближенного значения определенного интеграла с оговоренной точностью.

При заданном n все промежуточные вычисления необходимо проводить с достаточно высокой степенью точности. Точность вычислений должна быть те выше, чем больше n .

Если мы имеем заданную точность вычисления определенного интеграла, то все промежуточные вычисления необходимо проводить на два и более порядков точнее. Например, если задана точность до 0 , 01 , то промежуточные вычисления мы проводим с точностью до 0 , 0001 или 0 , 00001 . При больших n промежуточные вычисления необходимо проводить с еще более высокой точностью.

Рассмотрим приведенное выше правило на примере. Для этого сравним значения определенного интеграла, вычисленного по формуле Ньютона-Лейбница и полученного по методу трапеций.

Итак, ∫ 0 5 7 d x x 2 + 1 = 7 a r c t g (x) 0 5 = 7 a r c t g 5 ≈ 9 , 613805 .

Пример 1

Вычислим по методу трапеций определенный интеграл ∫ 0 5 7 x 2 + 1 d x для n равным 10 .

Решение

Формула метода трапеций имеет вид ∫ x i - 1 x i f (x) d x ≈ h 2 · f (x 0) + 2 ∑ i = 1 n - 1 f (x i) + f (x n)

Для того, чтобы применить формулу, нам необходимо вычислить шаг h по формуле h = b - a n , определить узлы x i = a + i · h , i = 0 , 1 , . . . , n , вычислить значения подынтегральной функции f (x) = 7 x 2 + 1 .

Шаг разбиения вычисляется следующим образом: h = b - a n = 5 - 0 10 = 0 . 5 . Для вычисления подынтегральной функции в узлах x i = a + i · h , i = 0 , 1 , . . . , n будем брать четыре знака после запятой:

i = 0: x 0 = 0 + 0 · 0 . 5 = 0 ⇒ f (x 0) = f (0) = 7 0 2 + 1 = 7 i = 1: x 1 = 0 + 1 · 0 . 5 = 0 . 5 ⇒ f (x 1) = f (0 . 5) = 7 0 , 5 2 + 1 = 5 , 6 . . . i = 10: x 10 = 0 + 10 · 0 . 5 = 5 ⇒ f (x 10) = f (5) = 7 5 2 + 1 ≈ 0 , 2692

Внесем результаты вычислений в таблицу:

i 0 1 2 3 4 5 6 7 8 9 10
x i 0 0 . 5 1 1 , 5 2 2 , 5 3 3 , 5 4 4 , 5 5
f (x i) 7 5 , 6 3 , 5 2 , 1538 1 , 4 0 , 9655 0 , 7 0 , 5283 0 , 4117 0 , 3294 0 , 2692

Подставим полученные значения в формулу метода трапеций: ∫ 0 5 7 d x x 2 + 1 ≈ h 2 · f (x 0) + 2 ∑ i = 1 n - 1 f (x i) + f (x n) = = 0 , 5 2 · 7 + 2 · 5 , 6 + 3 , 5 + 2 , 1538 + 1 , 4 + 0 , 9655 + 0 , 7 + 0 , 5283 + 0 , 4117 + 0 , 3294 + 0 , 2692 = 9 , 6117

Сравним наши результаты с результатами, вычисленными по формуле Ньютона-Лейбница. Полученные значения совпадают до сотых.

Ответ: ∫ 0 5 7 d x x 2 + 1 = 9 , 6117

Пример 2

Вычислим по методу трапеций значение определенного интеграла ∫ 1 2 1 12 x 4 + 1 3 x - 1 60 d x с точностью до 0 , 01 .

Решение

Согласно условию задачи a = 1 ; b = 2 , f (x) = 1 12 x 4 + 1 3 x - 1 60 ; δ n ≤ 0 , 01 .

Найдем n , которое равно количеству точек разбиения отрезка интегрирования, с помощью неравенства для оценки абсолютной погрешности δ n ≤ m a x x ∈ [ a ; b ] f "" (x) · (b - a) 3 12 n 2 . Сделаем мы это следующим образом: мы найдем значения n , для которых будет выполняться неравенство m a x x ∈ [ a ; b ] f "" (x) · (b - a) 3 12 n 2 ≤ 0 , 01 . При данных n формула трапеций даст нам приближенное значение определенного интеграла с заданной точностью.

Для начала найдем наибольшее значение модуля второй производной функции на отрезке [ 1 ; 2 ] .

f " (x) = 1 12 x 4 + 1 3 x - 1 60 " = 1 3 x 3 + 1 3 ⇒ f "" (x) = 1 3 x 3 + 1 3 " = x 2

Вторая производная функция является квадратичной параболой f "" (x) = x 2 . Из ее свойств мы знаем, что она положительная и возрастает на отрезке [ 1 ; 2 ] . В связи с этим m a x x ∈ [ a ; b ] f "" (x) = f "" (2) = 2 2 = 4 .

В приведенном примере процесс нахождения m a x x ∈ [ a ; b ] f "" (x) оказался достаточно простым. В сложных случаях для проведения вычислений можно обратиться к наибольшим и наименьшим значениям функции. После рассмотрения данного примера мы приведем альтернативный метод нахождения m a x x ∈ [ a ; b ] f "" (x) .

Подставим полученное значение в неравенство m a x x ∈ [ a ; b ] f "" (x) · (b - a) 3 12 n 2 ≤ 0 , 01

4 · (2 - 1) 3 12 n 2 ≤ 0 , 01 ⇒ n 2 ≥ 100 3 ⇒ n ≥ 5 , 7735

Количество элементарных интервалов, на которые разбивается отрезок интегрирования n является натуральным числом. Для поведения вычислений возьмем n равное шести. Такое значение n позволит нам достичь заданной точности метода трапеций при минимуме расчетов.

Вычислим шаг: h = b - a n = 2 - 1 6 = 1 6 .

Найдем узлы x i = a + i · h , i = 1 , 0 , . . . , n , определим значения подынтегральной функции в этих узлах:

i = 0: x 0 = 1 + 0 · 1 6 = 1 ⇒ f (x 0) = f (1) = 1 12 · 1 4 + 1 3 · 1 - 1 60 = 0 , 4 i = 1: x 1 = 1 + 1 · 1 6 = 7 6 ⇒ f (x 1) = f 7 6 = 1 12 · 7 6 4 + 1 3 · 7 6 - 1 60 ≈ 0 , 5266 . . . i = 6: x 10 = 1 + 6 · 1 6 = 2 ⇒ f (x 6) = f (2) = 1 12 · 2 4 + 1 3 · 2 - 1 60 ≈ 1 , 9833

Результаты вычислений запишем в виде таблицы:

i 0 1 2 3 4 5 6
x i 1 7 6 4 3 3 2 5 3 11 6 2
f x i 0 , 4 0 , 5266 0 , 6911 0 , 9052 1 , 1819 1 , 5359 1 , 9833

Подставим полученные результаты в формулу трапеций:

∫ 1 2 1 12 x 4 + 1 3 x - 1 60 d x ≈ h 2 · f (x 0) + 2 ∑ i = 1 n - 1 f (x i) + f (x n) = = 1 12 · 0 , 4 + 2 · 0 , 5266 + 0 , 6911 + 0 , 9052 + 1 , 1819 + 1 , 5359 + 1 , 9833 ≈ 1 , 0054

Для проведения сравнения вычислим исходный интеграл по формуле Ньютона-Лейбница:

∫ 1 2 1 12 x 4 + 1 3 x - 1 60 d x = x 5 60 + x 2 6 - x 60 1 2 = 1

Как видим, полученной точности вычислений мы достигли.

Ответ: ∫ 1 2 1 12 x 4 + 1 3 x - 1 60 d x ≈ 1 , 0054

Для подынтегральных функций сложного вида нахождение числа n из неравенства для оценки абсолютной погрешности не всегда просто. В этом случае будет уместен следующий метод.

Обозначим приближенное значение определенного интеграла, которое было получено по методу трапеций для n узлов, как I n . Выберем произвольное число n . По формуле метода трапеций вычислим исходный интеграл при одинарном (n = 10) и удвоенном (n = 20) числе узлов и найдем абсолютную величину разности двух полученных приближенных значений I 20 - I 10 .

Если абсолютная величина разности двух полученных приближенных значений меньше требуемой точности I 20 - I 10 < δ n , то мы прекращаем вычисления и выбираем значение I 20 , которое можно округлить до требуемого порядка точности.

Если абсолютная величина разности двух полученных приближенных значений больше требуемой точности, то необходимо повторить действия с удвоенным количеством узлов (n = 40) .

Такой метод требует проведения большого объема вычислений, поэтому разумно использовать вычислительную технику для экономии времени.

Решим с помощью приведенного выше алгоритма задачу. С целью экономии времени опустим промежуточные вычисления по методу трапеций.

Пример 3

Необходимо вычислить определенный интеграл ∫ 0 2 x e x d x по методу трапеций с точностью до 0 , 001 .

Решение

Возьмем n равное 10 и 20 . По формуле трапеций получим I 10 = 8 , 4595380 , I 20 = 8 , 4066906 .

I 20 - I 10 = 8 , 4066906 - 8 , 4595380 = 0 , 0528474 > 0 , 001 , что требует продолжения вычислений.

Возьмем n равное 40: I 40 = 8 , 3934656 .

I 40 - I 20 = 8 , 3934656 - 8 , 4066906 = 0 , 013225 > 0 , 001 , что также требует продолжения вычислений.

Возьмем n равное 80: I 80 = 8 , 3901585 .

I 80 - I 40 = 8 , 3901585 - 8 , 3934656 = 0 , 0033071 > 0 , 001 , что требует проведения еще одного удвоения числа узлов.

Возьмем n равное 160: I 160 = 8 , 3893317 .

I 160 - I 80 = 8 , 3893317 - 8 , 3901585 = 0 , 0008268 < 0 , 001

Получить приближенное значение исходного интеграла можно округлив I 160 = 8 , 3893317 до тысячных: ∫ 0 2 x e x d x ≈ 8 , 389 .

Для сравнения вычислим исходный определенный интеграл по формуле Ньютона-Лейбница: ∫ 0 2 x e x d x = e x · (x - 1) 0 2 = e 2 + 1 ≈ 8 , 3890561 . Требуемая точность достигнута.

Ответ: ∫ 0 2 x e x d x ≈ 8 , 389

Погрешности

Промежуточные вычисления для определения значения определенного интеграла проводят в большинстве своем приближенно. Это значит, что при увеличении n начинает накапливаться вычислительная погрешность.

Сравним оценки абсолютных погрешностей метода трапеций и метода средних прямоугольников:

δ n ≤ m a x x ∈ [ a ; b ] f "" (x) n · h 3 12 = m a x x ∈ [ a ; b ] f "" (x) · b - a 3 12 n 2 δ n ≤ m a x x ∈ [ a ; b ] f "" (x) n · h 3 24 = m a x x ∈ [ a ; b ] f "" (x) · b - a 3 24 n 2 .

Метод прямоугольников для заданного n при одинаковом объеме вычислительной работы дает вдвое меньшую погрешность. Это делает метод более предпочтительным в тех случаях, когда известны значения функции в средних отрезках элементарных отрезков.

В тех случаях, когда интегрируемые функции задаются не аналитически, а в виде множества значений в узлах, мы можем использовать метод трапеций.

Если сравнивать точность метода трапеций и метода правых и левых прямоугольников, то первый метод превосходит второй в точности результата.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Поделитесь с друзьями или сохраните для себя:

Загрузка...