Свойства жидкого агрегатного состояния. Четвертое агрегатное состояние вещества

Вся материя может существовать в одном из четырех видов. Каждый из них — это определенное агрегатное состояние вещества. В природе Земли только одно представлено сразу в трех из них. Это вода. Ее легко увидеть и испаренную, и расплавленную, и отвердевшую. То есть пар, воду и лед. Ученые научились проводить изменение агрегатных состояний вещества. Самую большую сложность для них составляет только плазма. Для этого состояния нужны особенные условия.

Что это такое, от чего зависит и как характеризуется?

Если тело перешло в другое агрегатное состояние вещества, то это не значит, что появилось что-то другое. Вещество остается прежним. Если у жидкости были молекулы воды, то такие же они будут и у пара со льдом. Изменится только их расположение, скорость движения и силы взаимодействия друг с другом.

При изучении темы «Агрегатные состояния (8 класс)» рассматриваются только три из них. Это жидкость, газ и твердое тело. Их проявления зависят от физических условий окружающей среды. Характеристики этих состояний представлены в таблице.

Название агрегатного состояния твердое тело жидкость газ
Его свойства сохраняет форму с объемом имеет постоянный объем, принимает форму сосуда не имеет постоянных объема и формы
Расположение молекул в узлах кристаллической решетки беспорядочное хаотичное
Расстояние между ними сравнимо с размерами молекул приблизительно равно размерам молекул существенно больше их размеров
Как двигаются молекулы колеблются около узла решетки не перемещаются от места равновесия, но иногда совершают большие скачки беспорядочное с редкими столкновениями
Как они взаимодействуют сильно притягиваются сильно притягиваются друг к другу не притягиваются, силы отталкивания проявляются при ударах

Первое состояние: твердое тело

Его принципиальное отличие от других в том, что молекулы имеют строго определенное место. Когда говорят про твердое агрегатное состояние, то чаще всего имеют в виду кристаллы. В них структура решетки симметричная и строго периодичная. Поэтому она сохраняется всегда, как далеко не распространялось бы тело. Колебательного движения молекул вещества недостаточно для того, чтобы разрушить эту решетку.

Но существуют еще и аморфные тела. В них отсутствует строгая структура в расположении атомов. Они могут быть где угодно. Но это место так же стабильно, как и в кристаллическом теле. Отличие аморфных веществ от кристаллических в том, что у них нет определенной температуры плавления (отвердевания) и им свойственна текучесть. Яркие примеры таких веществ: стекло и пластмасса.

Второе состояние: жидкость

Это агрегатное состояние вещества представляет собой нечто среднее между твердым телом и газом. Поэтому сочетает в себе некоторые свойства от первого и второго. Так, расстояние между частицами и их взаимодействие похоже на то, что было в случае с кристаллами. Но вот расположение и движение ближе к газу. Поэтому и форму жидкость не сохраняет, а растекается по сосуду, в который налита.

Третье состояние: газ

Для науки под названием «физика» агрегатное состояние в виде газа стоит не на последнем месте. Ведь она изучает окружающий мир, а воздух в нем очень распространен.

Особенности этого состояния заключаются в том, что силы взаимодействия между молекулами практически отсутствуют. Этим объясняется их свободное движение. Из-за которого газообразное вещество заполняет весь объем, предоставленный ему. Причем в это состояние можно перевести все, нужно только увеличить температуру на нужную величину.

Четвертое состояние: плазма

Это агрегатное состояние вещества представляет собой газ, который полностью или частично ионизирован. Это значит, что в нем число отрицательно и положительно заряженных частиц практически одинаковое. Возникает такая ситуация при нагревании газа. Тогда происходит резкое ускорение процесса термической ионизации. Оно заключается в том, что молекулы делятся на атомы. Последние потом превращаются в ионы.

В рамках Вселенной такое состояние очень распространено. Потому что в нем находятся все звезды и среда между ними. В границах Земной поверхности оно возникает крайне редко. Если не считать ионосферы и солнечного ветра, плазма возможна только во время грозы. Во вспышках молнии создаются такие условия, в которых газы атмосферы переходят в четвертое состояние вещества.

Но это не означает, что плазму не создали в лаборатории. Первое, что удалось воспроизвести — это газовый разряд. Теперь плазма заполняет лампы дневного света и неоновую рекламу.

Как осуществляется переход между состояниями?

Для этого нужно создать определенные условия: постоянное давление и конкретную температуру. При этом изменение агрегатных состояний вещества сопровождается выделением или поглощением энергии. Причем этот переход не происходит молниеносно, а требует определенных временных затрат. В течение всего этого времени условия должны быть неизменными. Переход происходит при одновременном существовании вещества в двух ипостасях, которые поддерживают тепловое равновесие.

Первые три состояния вещества могут взаимно переходить одно в другое. Существуют прямые процессы и обратные. Они имеют такие названия:

  • плавление (из твердого в жидкое) и кристаллизация , например, таяние льда и отвердевание воды;
  • парообразование (из жидкого в газообразное) и конденсация , примером является испарение воды и получение ее из пара;
  • сублимация (из твердого в газообразное) и десублимация , к примеру, испарение сухого ароматизатора для первого из них и морозные узоры на стекле ко второму.

Физика плавления и кристаллизации

Если твердое тело нагревать, то при определенной температуре, называемой температурой плавления конкретного вещества, начнется изменение агрегатного состояния, которое называется плавление. Этот процесс идет с поглощением энергии, которая называется количеством теплоты и обозначается буквой Q . Для ее расчета потребуется знать удельную теплоту плавления , которая обозначается λ . И формула принимает такое выражение:

Q = λ * m , где m — масса вещества, которое задействовано в плавлении.

Если происходит обратный процесс, то есть кристаллизация жидкости, то условия повторяются. Отличие только в том, что энергия выделяется, и в формуле появляется знак «минус».

Физика парообразования и конденсации

При продолжении нагревания вещества, оно постепенно приблизится к температуре, при которой начнется его интенсивное испарение. Этот процесс называется парообразованием. Оно опять же характеризуется поглощением энергии. Только для его вычисления требуется знать удельную теплоту парообразования r . А формула будет такой:

Q = r * m .

Обратный процесс или конденсация происходят с выделением того же количества теплоты. Поэтому в формуле опять появляется минус.

Для того чтобы понять, что такое агрегатное состояние вещества, вспомните или представьте себя летом возле речки с мороженным в руках. Замечательная картинка, правда?

Так вот, в этой идиллии кроме получения удовольствия можно еще осуществить физическое наблюдение. Обратите внимание на воду. В реке она жидкая, в составе мороженного в виде льда - твердая, а в небе в виде облаков - газообразная. То есть она находится одновременно в трех различных состояниях. В физике это называется агрегатным состоянием вещества. Различают три агрегатных состояния - твердое, жидкое и газообразное.

Изменение агрегатных состояний вещества

Изменение агрегатных состояний вещества мы можем наблюдать воочию в природе. Вода с поверхности водоемов испаряется, и образуются облака. Так жидкость переходит в газ. Зимой вода в водоемах замерзает, переходя в твердое состояние, а весной вновь тает, переходя в обратно в жидкость. Что происходит с молекулами вещества при переходе его из одного состояния в другое? Меняются ли они? Отличаются ли, например, молекулы льда от молекул пара? Ответ однозначный: нет. Молекулы остаются абсолютно теми же. Меняется их кинетическая энергия , а соответственно и свойства вещества. Энергия молекул пара достаточно велика, чтобы разлетаться в разные стороны, а при охлаждении пар конденсируется в жидкость, и энергии у молекул все еще достаточно для почти свободного перемещения, но уже недостаточно, чтобы оторваться от притяжения других молекул и улететь. При дальнейшем охлаждении вода замерзает, становясь твердым телом, и энергии молекул уже недостаточно даже для свободного перемещения внутри тела. Они колеблются около одного места, удерживаемые силами притяжения других молекул.

Характер движения и состояния молекул в различных агрегатных состояниях вещества можно отразить на следующей таблице:

Агрегатное состояние вещества

Свойства вещества

Расстояние между частицами

Взаимодействие частиц

Характер движения

Порядок расположения

Не сохраняет форму и объем

Гораздо больше размеров самих частиц

Хаотическое (беспорядочное) непрерывное. Свободно летают, иногда сталкиваясь.

Беспорядочное

Жидкость

Не сохраняет форму, сохраняет объем

Сравнимо с размерами самих частиц

Колеблются около положения равновесия, постоянно перескакивая с одного места на другое.

Беспорядочное

Твердое тело

Сохраняет форму и объем

Мало по сравнению с размерами самих частиц

Очень сильное

Непрерывно колеблются около положения равновесия

В определенном порядке

Процессов, в которых происходит изменение агрегатных состояний веществ, всего шесть.

Переход вещества из твердого состояния в жидкое называется плавлением , обратный процесс - кристаллизацией . Когда вещество переходит из жидкости в газ, это называется парообразованием , из газа в жидкость - конденсацией . Переход из твердого состояния сразу в газ, минуя жидкое, называют сублимацией , обратный процесс - десублимацией .

  • 1. Плавление
  • 2. Кристаллизация
  • 3. Парообразование
  • 4. Конденсация
  • 5. Сублимация
  • 6. Десублимация

Примеры всех этих переходов мы с вами не раз наблюдали в жизни. Лед плавится, образуя воду, вода испаряется, образуя пар. В обратную сторону пар, конденсируясь, переходит снова в воду, а вода, замерзая, становится льдом. А если вы думаете, что вы не знаете процессов сублимации и десублимации, то не спешите с выводами. Запах любого твердого тела - это и есть не что иное, как сублимация. Часть молекул вырывается из тела, образуя газ, который мы и можем унюхать. А пример обратного процесса - это узоры на стеклах зимой, когда пар в воздухе, замерзая, оседает на стекле и образует причудливые узоры.

Всем, я думаю, известно 3 основных агрегатных состояния вещества: жидкое, твердое и газообразное. Мы сталкиваемся с этими состояниями вещества каждый день и повсюду. Чаще всего их рассматривают на примере воды. Жидкое состояние воды наиболее привычно для нас. Мы постоянно пьем жидкую воду, она течет у нас из крана, да и сами мы на 70% состоим из жидкой воды. Второе агрегатное состояние воды — это обычный лед, который зимой мы видим на улице. В газообразном виде воду тоже легко встретить в повседневной жизни. В газообразном состоянии вода — это, всем нам известный, пар. Его можно увидеть, когда мы, к примеру, кипятим чайник. Да, именно при 100 градусах вода переходит из жидкого состояния в газообразное.

Это три привычных для нас агрегатных состояния вещества. Но знаете ли вы, что их на самом деле 4? Я думаю, хоть раз каждый слышал слово «плазма ». А сегодня я хочу, чтобы вы еще и узнали побольше о плазме — четвертом агрегатном состоянии вещества.

Плазма — это частично или полностью ионизированный газ с одинаковой плотностью, как положительных, так и отрицательных зарядов. Плазму можно получить из газа — из 3 агрегатного состояния вещества путем сильного нагревания. Агрегатное состояние вообще, по сути, полностью зависит от температуры. Первое агрегатное состояние — это самая низкая температура, при которой тело сохраняет твердость, второе агрегатное состояние — это температура при которой тело начинает плавиться и становиться жидким, третье агрегатное состояние — это наиболее высокая температура, при ней вещество становиться газом. У каждого тела, вещества температура перехода от одного агрегатного состояние к другому совершенно разная, у кого-то ниже, у кого-то выше, но у всех строго в такой последовательности. А при какой же температуре вещество становиться плазмой? Раз это четвертое состояние, значит, температура перехода к нему выше, чем у каждого предыдущего. И это действительно так. Для того, чтобы ионизировать газ необходима очень высокая температура. Самая низкотемпературная и низкоионизированная (порядка 1%) плазма характеризуется температурой до 100 тысяч градусов. В земных условиях такую плазму можно наблюдать в виде молний. Температура канала молнии может превышать 30 тысяч градусов, что в 6 раз больше, чем температура поверхности Солнца. Кстати, Солнце и все остальные звезды — это тоже плазма, чаще все-таки высокотемпературная. Наука доказывает, что около 99% всего вещества Вселенной — это плазма.

В отличие от низкотемпературной, высокотемпературная плазма обладает практически 100% ионизацией и температурой до 100 миллионов градусов. Это поистине звездная температура. На Земле такая плазма встречается только в одном случае - для опы-тов тер-мо-ядер-ного син-теза. Кон-тро-ли-ру-е-мая реак-ция доста-точно сложна и энер-го-за-тратна, а вот некон-тро-ли-ру-е-мая доста-точно заре-ко-мен-до-вала себя как ору-жие колос-саль-ной мощ-но-сти - тер-мо-ядер-ная бомба, испы-тан-ная СССР 12 авгу-ста 1953 года.

Плазму классифицируют не только по температуре и степени ионизации, но и по плотности, и по квазинейтральности. Словосочетание плотность плазмы обычно обозначает плотность электронов , то есть число свободных электронов в единице объёма. Ну, с этим, думаю, все понятно. А вот что такое квазинейтральность знают далеко не все. Квазинейтральность плазмы — это одно из важнейших ее свойств, заключающееся в практически точном равенстве плотностей входящих в её состав положительных ионов и электронов. В силу хорошей электрической проводимости плазмы разделение положительных и отрицательных зарядов невозможно на расстояниях больших дебаевской длины и временах больших периода плазменных колебаний. Почти вся плазма квазинейтральна. Примером неквазинейтральной плазмы является пучок электронов. Однако плотность не-нейтральных плазм должна быть очень мала, иначе они быстро распадутся за счёт кулоновского отталкивания.

Мы совсем мало рассмотрели земных примеров плазмы. А ведь их достаточно много. Чело-век научился при-ме-нять плазму себе во благо. Бла-го-даря чет-вер-тому агре-гат-ному состо-я-нию веще-ства мы можем поль-зо-ваться газо-раз-ряд-ными лам-пами, плаз-мен-ными теле-ви-зо-рами, дуго-вой элек-тро-свар-кой, лазе-рами. Обыч-ные газо-раз-ряд-ные лампы днев-ного света — это тоже плазма. Существует в нашем мире также плазменная лампа . Ее в основном используют в науке, чтобы изучить, а главное — увидеть некоторые из наиболее сложных плазменных явлений, включая филаментацию. Фотографию такой лампы можно увидеть на картинке ниже:

Кроме бытовых плазменных приборов, на Земле так же часто можно видеть природную плазму. Об одном из ее примеров мы уже говорили. Это молния. Но помимо молний плазменными явлениями можно назвать север-ное сия-ние, “огни свя-того Эльма”, ионосферу Земли и, конечно, огонь.

Заметьте, и огонь, и молния, и другие проявления плазмы, как мы это называем, горят. Чем обусловлено столь яркое испускание света плазмой? Свечение плазмы обусловлено переходом электронов из высокоэнергетического состояния в состояние с низкой энергией послерекомбинации с ионами. Этот процесс приводит к излучению со спектром, соответствующим возбуждаемому газу. Именно поэтому плазма светиться.

Хотелось бы так же немного рассказать об истории плазмы. Ведь когда-то плазмой назывались лишь такие вещества, как жидка составляющая молока и бесцветная составляющая крови. Все изменилось в 1879 году. Именно в тот год знаменитый английский ученый Уильям Крукс, исследуя электрическую проводимость в газах, открыл явление плазмы. Правда, назвали это состояние вещества плазмой лишь в 1928. И это совершил Ирвинг Ленгмюр.

В заключении хочу сказать, что такое интересное и загадочное явление, как шаровая молния, о которой я не раз писала на этом сайте, это, конечно же, тоже плазмойд, как и обычная молния. Это, пожалуй, самый необычный плазмойд из всех земных плазменных явлений. Ведь существует около 400 самых различных теорий на счет шаровой молнии, но не одна из них не была признана воистину правильной. В лабораторных условиях похожие, но кратковременные явления удалось получить несколькими разными способами, так что вопрос о природе шаровой молнии остаётся открытым.

Обычную плазму, конечно, тоже создавали в лабораториях. Когда-то это было сложным, но сейчас подобный эксперимент не составляет особого труда. Раз уж плазма прочно вошла в наш бытовой арсенал, то и в лабораториях над ней немало экспериментируют.

Интереснейшим открытием в области плазмы стали эксперименты с плазмой в невесомости. Оказывается, в вакууме плазма кристаллизуется. Это происходит так: заряженные частицы плазмы начинают отталкиваться друг от друга, и, когда у них есть ограниченный объем, они занимают то пространство, которое им отведено, разбегаясь в разные стороны. Это весьма похоже на кристаллическую решетку. Не означает ли это, что плазма являеться замыкающим звеном между первым агрегатным состоянием вещества и третьим? Ведь она становиться плазмой благодаря ионизации газа, а в вакууме плазма вновь становиться как бы твердой. Но это только мое предположение.

Кристаллики плазмы в космосе имеют также и достаточно странную структуру. Эту структуру можно наблюдать и изучать только в космосе, в настоящем космическом вакууме. Даже если создать вакуум на Земле и поместить туда плазму, то гравитация будет просто сдавливать всю «картину», образующуюся внутри. В космосе же кристаллы плазмы просто взлетают, образуя объемную трехмерную структуру странной формы. После отправления результатов наблюдения за плазмой на орбите земным ученым, выяснилось, что завихрения в плазме странным образом повторяют структуру нашей галактики. А это значит, что в будущем можно будет понять, как зародилась наша галактика путем изучения плазмы. Ниже на фотографиях показаны та самая кристаллизованная плазма.

Это все, что мне бы хотелось сказать на тему плазмы. Надеюсь, она вас заинтересовала и удивила. Ведь это воистину удивительное явление, а точнее состояние — 4 агрегатное состояние вещества.

Агрегатное состояние вещества

Вещество – реально существующая совокупность частиц, связанных между собой химическими связями и находящихся при определенных условиях в одном из агрегатных состояний. Любое вещество состоит из совокупности очень большого числа частиц: атомов, молекул, ионов, которые могут объединяться между собой в ассоциаты, называемые также агрегатами или кластерами. В зависимости от температуры и поведения частиц в ассоциатах (взаимное расположение частиц, их число и взаимодействие в ассоциате, а также распределение ассоциатов в пространстве и их взаимодействии между собой) вещество может находиться в двух основных агрегатных состояниях – кристаллическом (твердом) или газообразном, и в переходных агрегатных состояниях – аморфном (твердом), жидкокристаллическом, жидком и парообразном. Твердое, жидкокристаллическое и жидкое агрегатные состояния являются конденсированными, а парообразное и газообразное – сильно разряженными.

Фаза – это совокупность однородных микрообластей, характеризующихся одинаковой упорядоченностью и концентрацией частиц и заключенных в макроскопическом объеме вещества, ограниченном поверхностью раздела. В таком понимании фаза характерна только для веществ, находящихся в кристаллическом и газообразном состояниях, т.к. это однородные агрегатные состояния.

Метафаза – это совокупность разнородных микрообластей, отличающихся друг от друга степенью упорядоченности частиц или их концентрацией и заключенных в макроскопическом объеме вещества, ограниченном поверхностью раздела. В таком понимании метафаза характерна только для веществ, находящихся в неоднородных переходных агрегатных состояний. Разные фазы и метафазы могут смешиваться между друг с другом, образуя одно агрегатное состояние, и тогда между ними нет поверхности раздела.

Обычно не разделяют понятия «основное» и «переходное» агрегатные состояния. Понятия «агрегатное состояние», «фаза» и «мезофаза» часто используют как синонимы. Целесообразно рассматривать для состояния веществ пять возможных агрегатных состояний: твердое, жидкокристаллическое, жидкое, парообразное, газообразное. Переход одной фазы в другую фазу называют фазовым переходом первого и второго рода. Фазовые переходы первого рода характеризуются:

Скачкообразным изменением физических величие, описывающих состояние вещества (объем, плотность, вязкость и т.д.);

Определенной температурой, при которой совершается данный фазовый переход

Определенной теплотой, характеризующий данный переход, т.к. рвутся межмолекулярные связи.

Фазовые переходы первого рода наблюдаются при переходе из одного агрегатного состояния в другое агрегатное состояние. Фазовые переходы второго рода наблюдаются при изменении упорядоченности частиц в пределах одного агрегатного состояния, характеризуются:

Постепенное изменение физических свойств вещества;

Изменение упорядоченности частиц вещества под действием градиента внешних полей или при определенной температуры, называемой температурой фазового перехода;

Теплота фазовых переходов второго рода равна и близка к нулю.

Главное различие фазовых переходов первого и второго рода заключается в том, что при переходах первого рода, прежде всего, изменяется энергия частиц системы, а в случае переходов второго рода – упорядоченность частиц системы.

Переход вещества из твердого состояния в жидкое называется плавлением и характеризуется температурой плавления. Переход вещества из жидкого в парообразное состояние называется испарением и характеризуется температурой кипения. Для некоторых веществ с небольшой молекулярной массой и слабым межмолекулярным взаимодействием возможен непосредственный переход из твердого состояния в парообразное, минуя жидкое. Такой переход называется сублимацией. Все перечисленные процессы могут протекать и в обратном направлении: тогда их называют замерзанием, конденсацией, десублимацией.

Вещества, не разлагающиеся при плавлении и кипении, могут находиться в зависимости от температуры и давления во всех четырех агрегатных состояниях.

Твердое состояние

При достаточно низкой температуре практически все вещества находятся в твердом состоянии. В этом состоянии расстояние между частицами вещества сопоставимы с размерами самих частиц, что обеспечивает их сильное взаимодействие и значительное превышение у них потенциальной энергии над кинетической энергией.. Движение частиц твердого вещества ограничено только незначительными колебаниями и вращениями относительно занимаемого положения, а поступательное движение у них отсутствует. Это приводит к внутренней упорядоченности в расположении частиц. Поэтому для твердых тел характерна собственная форма, механическая прочность, постоянный объем (они практически несжимаемы). В зависимости от степени упорядоченности частиц твердые вещества разделяются на кристаллические и аморфные.

Кристаллические вещества характеризуются наличием порядка в расположении всех частиц. Твердая фаза кристаллических веществ состоит из частиц, которые образуют однородную структуру, характеризующуюся строгой повторяемостью одной и той же элементарной ячейки во всех направлениях. Элементарная ячейка кристалла характеризует трехмерную периодичность в расположении частиц, т.е. его кристаллическую решетку. Кристаллические решетки классифицируются в зависимости от типа частиц, составляющих кристалл, и от природы сил притяжения между ними.

Многие кристаллические вещества в зависимости от условий (температура, давление) могут иметь разную кристаллическую структуру. Это явление называется полиморфизмом. Общеизвестные полиморфные модификации углерода: графит, фуллерен, алмаз, карбин.

Аморфные (бесформенные) вещества. Это состояние характерно для полимеров. Длинные молекулы легко изгибаются и переплетаются с другими молекулами, что приводит к нерегулярности в расположении частиц.

Отличие аморфных частиц от кристаллических:

    изотропия – одинаковость физических и химических свойств тела или среды по всем направлениям, т.е. независимость свойств от направления;

    отсутствие фиксированной температуры плавления.

Аморфную структуру имеют стекло, плавленый кварц, многие полимеры. Аморфные вещества менее устойчивы, чем кристаллические, и поэтому любое аморфное тело со временем может перейти в энергетически более устойчивое состояние – кристаллическое.

Жидкое состояние

При повышении температуры энергия тепловых колебаний частиц возрастает, и для каждого вещества имеется температура, начиная с которой энергия тепловых колебаний превышает энергию связей. Частицы могут совершать различные движения, смещаясь относительно друг друга. Они еще остаются в контакте, хотя правильная геометрическая структура частиц нарушается – вещество существует в жидком состоянии. Вследствие подвижности частиц для жидкого состояния характерны броуновское движение, диффузия и летучесть частиц. Важным свойством жидкости является вязкость, которая характеризует межассоциатные силы, препятствующие свободному течению жидкости.

Жидкости занимают промежуточное положение между газообразным и твердым состоянием веществ. Более упорядочная структура, чем газ, но менее чем твердое вещество.

Паро – и газообразное состояния

Паро-газообразное состояние обычно не различают.

Газ – это сильно разряженная однородная система, состоящая из отдельных молекул, далеко отстоящих друг от друга, которую можно рассматривать как единую динамическую фазу.

Пар - это сильно разряженная неоднородная система, представляющая собой смесь молекул и неустойчивых небольших ассоциатов, состоящих из этих молекул.

Молекулярно-кинетическая теория объясняет свойства идеального газа, основываясь на следующих положениях: молекулы совершают непрерывное беспорядочное движение; объем молекул газа пренебрежимо мал по сравнению с межмолекулярными расстояниями; между молекулами газа не действуют силы притяжения или отталкивания; средняя кинетическая энергия молекул газа пропорциональна его абсолютной температуре. Вследствие незначительности сил межмолекулярного взаимодействия и наличия большого свободного объема для газов характерны: высокая скорость теплового движения и молекулярной диффузии, стремление молекул занять как можно больший объем, а также большая сжимаемость.

Изолированная газофазная система характеризуется четырьмя параметрами: давлением, температурой, объемом, количеством вещества. Связь между данными параметрами описывается уравнением состояния идеального газа:

R = 8,31 кДж/моль – универсальная газовая постоянная.

Всем, я думаю, известно 3 основных агрегатных состояния вещества: жидкое, твердое и газообразное. Мы сталкиваемся с этими состояниями вещества каждый день и повсюду. Чаще всего их рассматривают на примере воды. Жидкое состояние воды наиболее привычно для нас. Мы постоянно пьем жидкую воду, она течет у нас из крана, да и сами мы на 70% состоим из жидкой воды. Второе агрегатное состояние воды — это обычный лед, который зимой мы видим на улице. В газообразном виде воду тоже легко встретить в повседневной жизни. В газообразном состоянии вода — это, всем нам известный, пар. Его можно увидеть, когда мы, к примеру, кипятим чайник. Да, именно при 100 градусах вода переходит из жидкого состояния в газообразное.

Это три привычных для нас агрегатных состояния вещества. Но знаете ли вы, что их на самом деле 4? Я думаю, хоть раз каждый слышал слово «плазма». А сегодня я хочу, чтобы вы еще и узнали побольше о плазме — четвертом агрегатном состоянии вещества.

Плазма — это частично или полностью ионизированный газ с одинаковой плотностью, как положительных, так и отрицательных зарядов. Плазму можно получить из газа — из 3 агрегатного состояния вещества путем сильного нагревания. Агрегатное состояние вообще, по сути, полностью зависит от температуры. Первое агрегатное состояние — это самая низкая температура, при которой тело сохраняет твердость, второе агрегатное состояние — это температура при которой тело начинает плавиться и становиться жидким, третье агрегатное состояние — это наиболее высокая температура, при ней вещество становиться газом. У каждого тела, вещества температура перехода от одного агрегатного состояние к другому совершенно разная, у кого-то ниже, у кого-то выше, но у всех строго в такой последовательности. А при какой же температуре вещество становиться плазмой? Раз это четвертое состояние, значит, температура перехода к нему выше, чем у каждого предыдущего. И это действительно так. Для того, чтобы ионизировать газ необходима очень высокая температура. Самая низкотемпературная и низкоионизированная (порядка 1%) плазма характеризуется температурой до 100 тысяч градусов. В земных условиях такую плазму можно наблюдать в виде молний. Температура канала молнии может превышать 30 тысяч градусов, что в 6 раз больше, чем температура поверхности Солнца. Кстати, Солнце и все остальные звезды — это тоже плазма, чаще все-таки высокотемпературная. Наука доказывает, что около 99% всего вещества Вселенной — это плазма.

В отличие от низкотемпературной, высокотемпературная плазма обладает практически 100% ионизацией и температурой до 100 миллионов градусов. Это поистине звездная температура. На Земле такая плазма встречается только в одном случае — для опы­тов тер­мо­ядер­ного син­теза. Кон­тро­ли­ру­е­мая реак­ция доста­точно сложна и энер­го­за­тратна, а вот некон­тро­ли­ру­е­мая доста­точно заре­ко­мен­до­вала себя как ору­жие колос­саль­ной мощ­но­сти – тер­мо­ядер­ная бомба, испы­тан­ная СССР 12 авгу­ста 1953 года.

Плазму классифицируют не только по температуре и степени ионизации, но и по плотности, и по квазинейтральности. Словосочетание плотность плазмы обычно обозначает плотность электронов , то есть число свободных электронов в единице объёма. Ну, с этим, думаю, все понятно. А вот что такое квазинейтральность знают далеко не все. Квазинейтральность плазмы — это одно из важнейших ее свойств, заключающееся в практически точном равенстве плотностей входящих в её состав положительных ионов и электронов. В силу хорошей электрической проводимости плазмы разделение положительных и отрицательных зарядов невозможно на расстояниях больших дебаевской длины и временах больших периода плазменных колебаний. Почти вся плазма квазинейтральна. Примером неквазинейтральной плазмы является пучок электронов. Однако плотность не-нейтральных плазм должна быть очень мала, иначе они быстро распадутся за счёт кулоновского отталкивания.

Мы совсем мало рассмотрели земных примеров плазмы. А ведь их достаточно много. Чело­век научился при­ме­нять плазму себе во благо. Бла­го­даря чет­вер­тому агре­гат­ному состо­я­нию веще­ства мы можем поль­зо­ваться газо­раз­ряд­ными лам­пами, плаз­мен­ными теле­ви­зо­рами, дуго­вой элек­тро­свар­кой, лазе­рами. Обыч­ные газо­раз­ряд­ные лампы днев­ного света — это тоже плазма. Существует в нашем мире также плазменная лампа . Ее в основном используют в науке, чтобы изучить, а главное — увидеть некоторые из наиболее сложных плазменных явлений, включая филаментацию. Фотографию такой лампы можно увидеть на картинке ниже:

Кроме бытовых плазменных приборов, на Земле так же часто можно видеть природную плазму. Об одном из ее примеров мы уже говорили. Это молния. Но помимо молний плазменными явлениями можно назвать север­ное сия­ние, “огни свя­того Эльма”, ионосферу Земли и, конечно, огонь.

Заметьте, и огонь, и молния, и другие проявления плазмы, как мы это называем, горят. Чем обусловлено столь яркое испускание света плазмой? Свечение плазмы обусловлено переходом электронов из высокоэнергетического состояния в состояние с низкой энергией послерекомбинации с ионами. Этот процесс приводит к излучению со спектром, соответствующим возбуждаемому газу. Именно поэтому плазма светиться.

Хотелось бы так же немного рассказать об истории плазмы. Ведь когда-то плазмой назывались лишь такие вещества, как жидка составляющая молока и бесцветная составляющая крови. Все изменилось в 1879 году. Именно в тот год знаменитый английский ученый Уильям Крукс, исследуя электрическую проводимость в газах, открыл явление плазмы. Правда, назвали это состояние вещества плазмой лишь в 1928. И это совершил Ирвинг Ленгмюр.

В заключении хочу сказать, что такое интересное и загадочное явление, как шаровая молния, о которой я не раз писала на этом сайте, это, конечно же, тоже плазмойд, как и обычная молния. Это, пожалуй, самый необычный плазмойд из всех земных плазменных явлений. Ведь существует около 400 самых различных теорий на счет шаровой молнии, но не одна из них не была признана воистину правильной. В лабораторных условиях похожие, но кратковременные явления удалось получить несколькими разными способами, так что вопрос о природе шаровой молнии остаётся открытым.

Обычную плазму, конечно, тоже создавали в лабораториях. Когда-то это было сложным, но сейчас подобный эксперимент не составляет особого труда. Раз уж плазма прочно вошла в наш бытовой арсенал, то и в лабораториях над ней немало экспериментируют.

Интереснейшим открытием в области плазмы стали эксперименты с плазмой в невесомости. Оказывается, в вакууме плазма кристаллизуется. Это происходит так: заряженные частицы плазмы начинают отталкиваться друг от друга, и, когда у них есть ограниченный объем, они занимают то пространство, которое им отведено, разбегаясь в разные стороны. Это весьма похоже на кристаллическую решетку. Не означает ли это, что плазма являеться замыкающим звеном между первым агрегатным состоянием вещества и третьим? Ведь она становиться плазмой благодаря ионизации газа, а в вакууме плазма вновь становиться как бы твердой. Но это только мое предположение.

Кристаллики плазмы в космосе имеют также и достаточно странную структуру. Эту структуру можно наблюдать и изучать только в космосе, в настоящем космическом вакууме. Даже если создать вакуум на Земле и поместить туда плазму, то гравитация будет просто сдавливать всю «картину», образующуюся внутри. В космосе же кристаллы плазмы просто взлетают, образуя объемную трехмерную структуру странной формы. После отправления результатов наблюдения за плазмой на орбите земным ученым, выяснилось, что завихрения в плазме странным образом повторяют структуру нашей галактики. А это значит, что в будущем можно будет понять, как зародилась наша галактика путем изучения плазмы. Ниже на фотографиях показаны та самая кристаллизованная плазма.

Поделитесь с друзьями или сохраните для себя:

Загрузка...