Строение сердечной мышцы человека, ее свойства и какие процессы проходят в сердце. Физиология сердца животных

Сердечная мышца обладает возбудимостью, проводимостью, сократимостью (как и скелетная мышца) и автоматией. Автоматия – это способность клеток или тканей возбуждаться под влиянием импульсов возникающих в них самих без внешних раздражителей.

В сердце импульсы возникают и распространяются по проводящей системе сердца. В состав проводящей системы входит:

1) синусный узел (располагается в устье падения полых вен). Это водитель ритмов 1го порядка. Он генерирует импульсы с частотой 60-80 в мин.

2) атриовентрикулярный узел, располагается на границе предсердий желудочками. Генерирует импульсы с частотой 40-60 в мин.

3) правые, левые ножки пучка Гисса. Проходят по межжелудочковой перегородке. Генерирует импульсы с частотой 15-30 в мин.

4) волокна Пуркинье. Располагаются в толще стенок желудочков. 5-10 в мин.

Скорость проведения возбуждений по миокард предсердия и желудочков составляет 1 м/с. Возбуждение сердечной мышцы, как и др. возбудимых тканей сопровождается изменением разности элек-х потенциалов между внутренней и наружной поверхностью мышечного волокна. Продолжительность потенциала действия изменяется в зависимости от ритма сокращений. После возбуждения сердечная мышца становится невозбудимой на раздражение любой силы. Это состояние не возбудимости называется абсолютной рефрактерностью.

32. Сердечный цикл

Сокращения отделов сердца называется систолой, а расслабление – диастолой.

Началом является сокращение предсердий. Это 1 фаза. При систоле предсердий давление крови повышается в них до 5-8 мм.рт.ст. и кровь поступает из предсердий в желудочки, где давление ниже. Длится систола 0,1 с. Затем наступает систола желудочка. А предсердия в этот момент расслабляются и начинается в этом состоянии 0,8 с. Систола желудочков состоит из 2х фаз: 1) фаза напряжения; 2) фаза изгнания.

Фазу напряжения в желудочках р продолжает повышаться, створчатые клапаны смыкаются, что препятствует обратному току крови, а когда р становится в желудочках выше, чем в аорте ствола, кровь под большим давлением выбрасывается в сосуды. При расслаблении р в аорте лёгочном стволе становится выше, смыкаются полулунные клапаны и кровь движется по сосудам. Систолы живут (желудочк) 0,3 сек, диаст – 0,5 сек. Диастола желудочков частично совпадает с диастолой предсердий. Полный сердечный цикл 0,8 сек.

РЕГУЛЯЦИЯ РАБОТЫ СЕРДЦА

Осуществляется нервным и гуморальным путём. Основной центр – сосудодвигательный, который находится в продолговатом мозге. К сердцу подходит симпатические и парасимпатические волокна. Симпатические волокна увеличивают силу, частоту и амплитуду сердечных сокращений. Парасимпатические волокна оказывают противоположный эффект. В регуляции сердца участ и кора мозга. Так у спортсменов на старте чсс соответствует частоте как во время бега. Различные эмоциональные проявления человека: гнев, радость, печаль – приводит к изменению чсс. На сердце реализуются многие межсердечные рефлексы, благодаря которым обеспечивается соответствие сердечной деятельности потребностям организма.

В самом сердце есть также большое количество рецепторов, которые располагаются во всех … слоях. Раздражение этих рецепторов изменяет работу сердца. Например, при растяжении кровью правого предсердия идёт учащение сердечных сокращений (рефлексы Бейнбриджа). Гуморальная регуляция усиливает и способствует увеличению чсс гормоны: адреналин, норадреналин, гормон щитовидной железы – тираксил. Замедляет работу сердца – ацетилхолин, имеет значение и содержание электролитов. Например, избыток К угнетает деятельность сердца. Избыток Са наоборот.

СОСУДИСТАЯ СИСТЕМА

Ближайшие к сердцу артерии выполняют функции проведения крови. Они превращают её в прерывистый ток в непрерывный. Поэтому в стенке крупных артерий развиты эластичные волокна и мембраны. Эти сосуды называются артериями эластичного типа. В средних и мелких артериях инерция сердечного выброса ослабевает. И для дальнейшего движения крови требуется собственное сокращение стенки. В стенках этих артерий много гладких мышечных волокон. Это артерии мышечного типа. Далее следуют артериолы. В местах их разветвлений находятся скопления мышечных клеток – это свинкторы. Благодаря им обеспечивается перераспределение кровотока в пользу работающих органов. Капилляры служат для обмена газа и питательных веществ. Благодаря медленному кровотоку и огромной площади соприкосновения с окружающими тканями капилляры обеспечивают обменные процессы. По венам кровь движется в противоположном направлении, чтобы не было ритоградного движения крови, в венах находятся клапаны. Все сосуды соответственно их строению и функции делят на 3 группы: 1) присердечные сосуды: начинаются и заканчиваются в отделах сердца (аорта, верхние и нижние полые вены, лёгочный ствол и лёгочные вены);

2) магистральные сосуды служат для распределения крови по организму. К ним относят экстроорганные артерии типа мышечных (волок), ЖКТ

3) внутриорганные сосуды (внутриорганные артерии и вены) и микроциркуляторные русла (артериолы, капилляры).

ВЕНТИЛЯЦИЯ ЛЁГКИХ

Это объём выдыхаемого и вдыхаемого воздуха в единицу времени. Обычно измеряют минутный объём дыхания (мод). При спокойном дыхании мод составляет 6-9 л.

Вентиляция лёгких зависит от глубины и частоты дыхания.

Газообмен в лёгких осуществляется в альбиолах. Вентиляция альбиол ‹ вентиляции лёгких на величину мёртвого пространства. При нагрузке более эффективно глубокое дыхание чем поверхностное, т.к. большая часть объёма воздуха при поверхностном дыхании тратится на вентиляцию мёртвого пространства.

МОД = 800 мл

ДВИЖЕНИЕ КРОВИ ПО СОСУДАМ

Благодаря сокращениям сердца кровь выталкивается в большой и малый круги кровообращения, т.к. кровеносные сосуды представляют собой систему трубок, то движение крови подчиняется законам гидродинамики. Согласно этим законам движения жидкости определяется: давлением, под которым движется жидкость и сопротивлением, которое испытывает жидкость при трении о стенки сосуда. Количество жидкости, протекающее через трубу прямо пропорционально разности давлений в начале и в конце трубы и обратно пропорционально сопротивлению.

Т.к. р в конце системы = 0, следовательно, Q= P/R

P – кол-во ср. р в аорте;

Q – кол-во крови изгоняемое сердцем в мин.;

R – величина сосудистого сопротивления;

В отличие от движения жидкости по трубам кровь движется прерывистой струёй во время систолы. Но уже довольно быстро ток крови становится не прерывистым. Благодаря упругости стенок аорты, лёгочного ствола и крупных артерий. Часть кинетической энергии во время систолы затрачивается на растяжение стенок крупных артериальных сосудов. Когда систола заканчивается, стенки артерий в силу своей эластичности возвращается к исходному состоянию и обеспечивают р, которое в фазу диастолы перемещает кровь по сосудам. Периферическое сопротивление сосудистой системы складывается из множества сопротивлений каждого сосуда. Наибольшее сопротивление возникает в артериолах, поэтому систему артериол называют сосудами сопротивления или резистивными сосудами. Вследствие сопротивления уровень р в крови меняется. В крупных сосудах р падает ≈ на 10% от исходного уровня. А в артериолах и капиллярах на 85%. В малом круге кровообращения сопротивление в 5 ‹ чем в большом. Однако и в малом круге наибольшее сопротивление оказывают мельчайшие артерии и артериолы.

Сердце по праву — самый главный орган человека, ведь оно перекачивает кровь и отвечает циркуляцию по организму растворенного кислорода и других питательных веществ. Его остановка на несколько минут может вызвать необратимые процессы, дистрофию и отмирание органов. По этой же причине болезни и остановка сердца являются одной из самых распространенных причин смертности.

Какой тканью образовано сердце

Сердце – полый орган размером примерно с кулак человека. Оно практически полностью образовано мышечной тканью, поэтому многие сомневаются: сердце – это мышца или орган? Правильный ответ на этот вопрос – орган, образованный мышечной тканью.

Сердечная мышца называется миокард, ее строение существенно отличается от остальной мышечной ткани: образована она клетками-кардиомиоцитами. Сердечная мышечная ткань имеет поперечнополосатую структуру. В ее составе есть тонкие и толстые волокна. Микрофибриллы – скопления клеток, которые образуют мышечные волокна, собраны в пучки разной длины.

Свойства сердечной мышцы – обеспечение сокращения сердца и перекачивание крови .

Где находится сердечная мышца? Посередине, между двумя тонкими оболочками:

  • Эпикардом;
  • Эндокардом.

На долю миокарда приходится максимальное количество массы сердца.

Механизмы, которые обеспечивают сокращение:

В цикле работы сердца выделяют две фазы:

  • Относительную, при которой клетки реагируют на сильные раздражители;
  • Абсолютную – когда на протяжении определенного промежутка времени мышечная ткань не реагирует даже на очень сильные раздражители.

Механизмы компенсации

Нейроэндокринная система защищает сердечную мышцу от перегрузок и помогает сохранить здоровье. Она обеспечивает передачу «команд» миокарду, когда нужно увеличить частоту сердечных сокращений.

Причиной для этого может стать:

  • Определенное состояние внутренних органов;
  • Реакция на условия окружающей среды;
  • Раздражители, в т. ч. нервные.

Обычно в этих ситуациях в большом количестве вырабатывается адреналин и норадреналин, чтобы «уравновесить» их действие, требуется увеличение количества кислорода. Чем чаще ЧСС, тем больший объем насыщенной кислородом крови разносится по организму.

Особенности строения сердца

Сердце взрослого человека весит примерно 250-330 г. У женщин размер этого органа меньше, как и объем перекачиваемой крови.

Состоит оно из 4 камер:

  • Двух предсердий;
  • Двух желудочков.

Через правую часто сердца проходит малый круг кровообращения, через левый – большой. Поэтому стенки левого желудочка обычно больше: чтобы за одно сокращение сердце могло вытолкнуть больший объем крови.

Направление и объем выталкиваемой крови контролируют клапаны:

  • Двухстворчатый (митральный) – с левой стороны, между левым желудочком и предсердием;
  • Трехстворчатый – с правой стороны;
  • Аортальный;
  • Легочный.

Патологические процессы в сердечной мышце

При небольших сбоях в работе сердца включается компенсаторный механизм. Но нередки состояния, когда развивается патология, дистрофия сердечной мышцы.

К этому приводят:

  • Кислородное голодание;
  • Потеря мышечной энергии и ряд других факторов.

Мышечные волокна становятся тоньше, а недостаток объема заменяется фиброзной тканью. Дистрофия обычно возникает «в связке» с авитаминозами, интоксикациями, анемией, нарушениями в работе эндокринной системы.

Наиболее частыми причинами такого состояния являются:

  • Миокардит (воспаление сердечной мышцы);
  • Атеросклероз аорты;
  • Повышенное артериальное давление.

Если болит сердце: наиболее частые заболевания

Сердечных заболеваний довольно много, и не всегда они сопровождаются болью именно в этом органе.

Часто в этой области отдаются болевые ощущения, возникающие в других органах:

  • Желудке;
  • Легких;
  • При травме грудной клетки.

Причины и характер боли

Болевые ощущения в области сердца бывают:

  1. Острыми , пронизывающими, когда человеку больно даже дышать. Они указывают на острый сердечный приступ, инфаркт и другие опасные состояния.
  2. Ноющая возникает как реакция на стресс, при гипертонии, хронических заболеваниях сердечнососудистой системы.
  3. Спазм , который отдает в руку или лопатку.


Часто боль в сердце связана с:

  • Эмоциональными переживаниями.
  • Но нередко возникает и в состоянии покоя.

    Все боли в этой области можно разделить на две основные группы:

    1. Ангинозные, или ишемические – связаны с недостаточным кровоснабжением миокарда. Часто возникают на пике эмоциональных переживания, также при некоторых хронических заболеваниях стенокардии, гипертонии. Характеризуется ощущением сдавливания или жжения разной интенсивности, часто отдает в руку.
    2. Кардиологические беспокоят пациента практически постоянно . Носят слабый ноющий характер. Но боль может становиться резкой при глубоком вдохе или физических нагрузках.


    Основными свойствами сердечной мышцы, определяющими непрерывное ритмическое сокращение сердца в течение всей жизни организма, являются автоматия, возбудимость, проводи­мость и сократимость.

    Автоматия. Под автоматией понимают способность сердеч­ной мышцы ритмически возбуждаться и сокращаться без каких-иибо внешних по отношению к сердцу воздействий, т.е. без участия нервной системы и гуморальных факторов, доставля­емых к сердцу кровью.

    Доказательством автоматии сердца послужили следующие на­блюдения и эксперименты.

    Изолированное сердце, т. е. выведенное из организма и поме­щенное в питательный раствор, продолжает самопроизвольно со­кращаться. Даже разрезанное на кусочки, оно сокращается в том же ритме, что и у здорового животного. Если у животного денер-вировать сердце, т. е. перерезать все нервные стволы, подходящие к сердцу, оно продолжает сокращаться.

    На способности работать без воздействия внешних раздражи­телей основана пересадка сердца. Оживление остановившегося сердца достигается восстановлением спонтанной активности сердца, его автоматии.

    В чем причина такого уникального свойства сердца? У боль­шинства беспозвоночных животных автоматия связана с нервны­ми ганглиями, расположенными вблизи сердца, т. е. имеет ней-рогенную природу. У всех же позвоночных животных и у части беспозвоночных автоматия сердца обусловлена не нервными, а мышечными клетками, которые самопроизвольно деполяризу­ются после каждого потенциала действия. Эти клетки называ­ются пейсмекерами, или «задающими сердечный ритм», или во­дителями сердечного ритма. Такая теория автоматии сердца на­зывается миогенной.

    Способностью к автоматии обладают атипичные мышечные клетки, составляющие проводящую систему сердца.

    Ведущую роль в автоматии играет синусный узел. Он обладает наиболее высокой активностью по сравнению с други­ми участками проводящей системы, частота импульсации в нем наиболее высокая, и он задает определенную частоту сокращения сердца в состоянии физиологического покоя. Такой ритм обычно называют синусным ритмом, а синусный узел - водителем ритма сердца первого порядка.

    Если отделить лигатурой синусный узел от предсердий (опыт Станниуса), то обычно сердце останавливается. Однако через не­которое время оно снова начинает сокращаться, но в более редком ритме. Этот ритм «задает» следующий узел проводящей систе­мы - атриовентрикулярный. Более редкие сокращения сердца обусловлены тем, что возбудимость атриовентрикулярного узла меньше, чем синусного. Этот узел называют водителем ритма сердца второго порядка. Если же и атриовентрикулярный узел пе­рестает генерировать возбуждение, то водителем ритма сердца ста­новится пучок Гиса, но его возбудимость еще меньше; пучок Гиса называют водителем ритма третьего порядка.

    В обычных условиях атриовентрикулярный узел и пучок Гиса только проводят возбуждение от синусного узла. Их собственная автоматия как бы подавлена главным пейсмекером, и только при развитии патологического процесса, прекращающего функцию


    синусного узла, свой ритм навязывают нижележащие узлы. Они являются латентными, или скрытыми, или потенциальными пейсмекерами.

    Какова природа автоматии? Методами электрофизиологии ус­тановлено, что потенциал действия (ПД) клеток проводящей сис­темы отличается от других мышечных и нервных клеток. Во время расслабления сердца - диастолы - начинается медленно нараста­ющая деполяризация мембраны, которая затем переходит в фазу быстрой деполяризации (рис. 6.3, А). Фаза реполяризации в пейс-мекерах довольно продолжительная, в пейсмекерах синусного узла она имеет выраженное плато вместо пика потенциала. Сразу пос­ле возвращения мембранного потенциала к уровню потенциала покоя снова начинается медленная диастолическая деполяриза­ция мембраны, и когда разность потенциалов между наружной и внутренней поверхностями мембраны уменьшается до определен­ного критического, или порогового уровня, внезапно возникает новый крутой сдвиг электрического заряда клетки, что свидетель­ствует о ее возбуждении.






    Интервал между двумя ПД зависит от длительности медлен­ной диастолической деполяризации, ее величины и порогового уровня сердечного ПД. Если скорость деполяризации уменыиает-

    Ся (например, при охлаждении синусного узла), то пороговый уровень деполяризации наступает позднее, частота ПД и сокраще­ний сердца уменьшаются. При возрастании скорости деполяриза­ции мембраны, напротив, пороговый уровень деполяризации воз­никает раньше и это приводит к учащению возбуждения сердца. Отчасти этим объясняется учащение сердечной деятельности при повышении температуры тела.

    Медленная диастолическая деполяризация обусловлена осо­бенностями ионной проницаемости мембраны пейсмекеров. Как и в других клетках, электрические процессы в мембранах миокар­да являются следствием пассивного и активного перемещения ионов натрия и калия через тончайшие каналы (поры) в мембра­не, проницаемость которых регулируется заряженными частица­ми - ионами Са 2+ или Мп 2 . Медленная диастолическая депо­ляризация объясняется тем, что во время реполяризации часть натриевых каналов не инактивируется и осуществляется медлен­ный вход сначала натрия, а затем кальция в мембрану. Когда ко­личество ионов натрия, проникших в клетку, снизит мембранный потенциал до критического уровня, наступает быстрая фаза деполя­ризации и ПД достигает своего максимального уровня.

    В теории об автоматии пейсмекеров еще много неясного, и раскрытие тончайших механизмов электрических процессов, происходящих в сердце, - актуальная задача современной кар­диологии.

    Возбудимость. Возбудимость - свойство сердечной мышцы переходить в состояние возбуждения под влиянием различных раздражителей.

    В естественных условиях раздражителем является ПД, возни­кающий в синусном узле и распространяющийся по проводя­щей системе сердца до рабочих кардиомиоцитов. При некоторых заболеваниях сердца раздражение может возникать в других его участках, которые генерируют собственные ПД, и тогда сердеч­ный ритм будет нарушен из-за взаимодействия разных по частоте и фазе ПД. В экспериментах на животных в качестве раздражите­лей могут быть использованы механические, термические или хи­мические воздействия, если их величина превышает порог возбу­димости сердца.

    При болезнях сердца, сопровождающихся нарушением сердеч­ного ритма, больным вживляют в сердце миниатюрные электро­ды, питающиеся от батареек. Импульсы тока подаются непосред­ственно на сердце и возбуждают в нем ритмические импульсы. При внезапной остановке сердца или нарушении синхронизации отдельных мышечных волокон возможно воздействие на сердце прямо через кожный покров сильным коротким электрическим разрядом напряжением в несколько кВт. Это вызывает одновре­менное возбуждение всех мышечных волокон, после чего восста­навливается работа сердца.


    Во время возбуждения в сердце возникают физико-хими­ческие, морфологические и биохимические изменения, кото­рые приводят к сокращению рабочего миокарда. Одними из ранних признаков возбуждения являются активация натриевых каналов и диффузия ионов натрия из межклеточной жидкости через мембрану, что приводит к ее деполяризации и возник­новению ПД.

    В клетках рабочего миокарда ПД равен 80...90 мВ, при ПД Ю0...120мВ медленная диастолическая деполяризация в отличие от пейсмекеров отсутствует. Скорость нарастания деполяризации велика, восходящая часть ПД очень крутая, но реполяризация протекает замедленно, и мембрана остается деполяризованной в течение сотен миллисекунд (см. рис. 6.3, Б).

    Таким образом, длительность ПД в миокардиоцитах во много раз больше, чем в других мышечных волокнах. Благодаря этому все мышечные волокна предсердий или желудочков успевают со­кратиться до того, как какое-либо из этих волокон начнет рас­слабляться. Поэтому фаза реполяризации продолжается в течение всей систолы. Во время развития ПД возбудимость сердца, как и других возбудимых тканей, изменяется. Во время деполяри­зации возбудимость сердца резко снижается. Это - фаза аб­солютной рефрактерности. Причиной ее является инактивация натриевых каналов, что прекращает поступление новых ионов натрия в мембрану. Если в скелетной мышце абсо­лютная рефрактерность очень кратковременная, измеряется деся­тыми долями миллисекунды и заканчивается в начале сокращения мышцы, то в сердце абсолютная невозбудимость продолжается весь период систолы. Практически это означает, что если во время сис­толы на сердце действует какой-либо раздражитель, даже сверх­пороговый, то сердце на него не реагирует. Поэтому в отличие от скелетных мышц сердце не способно к тетаническим сокращениям и защищено от слишком быстрого повторного возбуждения и со­кращения. Все сокращения сердечной мышцы одиночные. При очень большой частоте импульсов возбуждения сердце сокращает­ся не на каждый ПД, а на только те из них, которые поступают по окончании абсолютной рефрактерности.

    Во время нисходящей фазы реполяризации, которая совпада­ет с началом расслабления сердечной мышцы, возбудимость серд­ца начинает восстанавливаться. Это - фаза относитель­ной рефрактерности. Если в начале диастолы на сердце действует какой-либо дополнительный раздражитель, то сердце готово ответить на него новой волной возбуждения. Внеочеред­ное возбуждение и сокращение сердца под действием раздра­жителя в период относительной рефрактерности называется экстрасистолой.

    Если очаг внеочередного возбуждения находится в синусном узле, то это приводит к преждевременному возникновению сер-

    дечного цикла, при этом после­довательность сокращений пред­сердий и желудочков не изменя­ется. Если же возбуждение возни­кает в желудочках, то после вне­очередного сокращения (экстра­систолы) появляется удлинен­ная пауза. Интервал между экст­расистолой и следующей (очередной) систолой желудочков на­зывается компенсаторной паузой (рис. 6.4.).

    Компенсаторная пауза объясняется тем, что экстрасистола, как и всякое сокращение сердечной мышцы, сопровождается рефрак­терной паузой. Очередной импульс, возникающий в синусном узле, приходит в желудочки во время абсолютной рефрактерное™ и не вызывает их сокращения. Новое сокращение наступит лишь в ответ на следующий импульс, когда возбудимость миокарда вос­становится.

    После относительной рефрактерности в сердце наступает очень короткий период повышенной возбудимости - экзаль­тации, когда сердце готово ответить даже на подпороговое раздражение.

    Проводимость. Проводимость - свойство сердечной мышцы проводить возбуждение.

    Как уже сказано, импульс возбуждения (ПД), возникая в пейс-мекерах синусного узла, распространяется сначала на предсер­дия. В предсердиях, где очень небольшое количество проводя­щих атипичных мышечных волокон, возбуждение распространя­ется не только по ним, но и по рабочим кардиомиоцитам. Это объясняет небольшую скорость распространения возбуждения в предсердиях.

    Поскольку синусный узел расположен в правом предсердии, а скорость передачи ПД невелика, то возбуждение правого предсер-


    дия начинается немного раньше, чем левого. Сокращение же ле­вого и правого предсердий происходит одновременно.

    После того как возбуждение охватит мышцы предсердий, они сокращаются, а возбуждение концентрируется и задерживается в атриовентрикулярном узле. Атриовентрикулярная задержка длится до окончания сокращения предсердий, и только после этого воз­буждение переходит на пучок Гиса. Таким образом, биологическое значение атриовентрикулярной задержки заключается в обеспече­нии последовательности сокращений предсердий и желудочков. Одновременное их сокращение иногда бывает при очень серьезной патологии, когда возбуждение возникает не в синусном узле, а в ат­риовентрикулярном и распространяется в обе стороны от атриовен-трикулярного узла - и в предсердия, и в желудочки. В таком случае наступает резкое нарушение гемодинамики в сердце.

    Механизмы атриовентрикулярной задержки не выяснены. Воз­можно, влияет низкая амплитуда ПД в клетках-пейсмекерах дан­ного узла, сильная натриевая инактивация, большое сопротивле­ние межклеточных контактов.

    Далее возбуждение распространяется по пучку Гиса, ножкам пучка Гиса и волокнам Пуркинье. Волокна Пуркинье контактиру­ют с сократительными волокнами миокарда, и возбуждение пере­дается с проводящей системы на рабочие мышцы.

    Скорость распространения возбуждения в сердце следующая: от синусного узла до атриовентрикулярного узла - 0,5...0,8 м/с; в атриовентрикулярном узле - 0,02...0,05; по проводящей сис­теме желудочков - до 4,0; в сократительной мышце желудоч­ков - 0,4 м/с.

    Непосредственная связь проводящей системы сердца с рабочи­ми кардиомиоцитами осуществляется с помощью многочисленных разветвлений волокон Пуркинье. Передача сигналов происходит электрическим путем с небольшой задержкой. Эта задержка воз­буждения способствует суммированию импульсов, неодновременно поступающих по волокнам Пуркинье, и обеспечивает лучшую син­хронизацию процесса возбуждения рабочего миокарда.

    В рабочем миокарде имеются контакты как между торцами, так и боковыми поверхностями волокон. Поэтому возбуждение от ос­новных стволов проводящей системы (ножек пучка Гиса) практи­чески одновременно распространяется на правый и левый желу­дочки, обеспечивая их одновременное сокращение.

    Направление возбуждения внутри желудочков различно у жи­вотных разного вида. Так, у собак возбуждение вначале возникает на расстоянии нескольких миллиметров от внутренней поверхно­сти мышечной стенки, а затем переходит к эндокарду и эпикарду. У копытных (у коз) направление распространения возбуждения в толще мышечной стенки меняется много раз, и множество воло­кон в районах эндокарда, эпикарда и в глубине стенки активиру­ется практически одновременно.

    В межжелудочковой перегородке возбуждение начинается в
    центральной части и движется к верхушке и атриовентрикулярной
    перегородке, причем верхняя часть желудочков активируется поз- ]
    же; однако на правой и левой сторонах межжелудочковой перего­
    родки возбуждение возникает одновременно. j

    Особенности распространения возбуждения в сердце име­ют значение при анализе электрокардиограммы - записи био­токов сердца.

    Сократимость. Сокращение - специфический признак воз­буждения сердечной мышцы. Как и в других мышцах, сокращение сердечных мышечных волокон начинается после распространения потенциала действия по поверхности клеточных мембран и явля­ется функцией миофибрилл. Сократительная система миофиб-рилл представлена четырьмя белками - актином, миозином, тро-понином и тропомиозином. Сокращение миофибрилл сердца в принципе не отличается от сокращений скелетных мышц соглас­но теории скольжения протофибрилл Хаксли.

    Суть теории Хаксли заключается в скольжении тонких актино-вых нитей в промежутки между толстыми миозиновыми нитями, ; что приводит к укорочению саркомера. При расслаблении мышцы актиновые нити отодвигаются назад, занимая исходное положение. В механизме скольжения актиновых нитей имеет значение каль­ций, депонированный в саркоплазматическом ретикулуме.

    Последовательность электрических и механических процессов при сокращении сердечных мышечных волокон в настоящее вре­мя представляется следующим образом. Потенциал действия, воз­никший на поверхности мембраны мышечного волокна, по попе­речным Т-трубочкам, которые являются впячиваниями наружной мембраны, достигает системы поперечных трубочек, соединенных с цистернами саркоплазматического ретикулума. Полости сарко-плазматического ретикулума не сообщаются ни с Т-трубочками, ни с интерстициальной жидкостью и заполнены раствором с вы­соким содержанием ионов кальция. Полости Т-трубочек имеют такой же состав, что и межклеточная жидкость.

    Во время возбуждения активируются натриевые каналы в мембра­нах Т-трубочек и в миоплазму входят ионы натрия и кальция из меж­клеточной жидкости. Большая часть входящего кальция не участвует в сокращении миофибрилл, а пополняет его запасы в саркоплазма­тическом ретикулуме. Под воздействием потенциала действия повы­шается проницаемость мембраны саркоплазматического ретикулума и ионы кальция вьщеляются из него в миоплазму. Ионы кальция связываются с тропонином, что вызывает конформационные изме­нения в его молекуле. Сдвиг тропонин-тропомиозинового стержня I обеспечивает взаимодействие нитей актина и миозина (напомним, Щ что в расслабленной мышце актиновые волокна прикрыты молеку- 1 лами тропонина и тропомиозина, образующими комплекс, препят­ствующий скольжению протофибрилл).


    После освобождения актиновых нитей от блокировки тропо-миозиновым комплексом миозиновые головки присоединяются к соответствующему центру актиновых нитей под углом 90°. Затем наступает спонтанный поворот головки на 45°, развивается напря­жение и происходит продвижение актиновой нити на один шаг. Эти процессы осуществляются за счет энергии АТФ, причем рас­пад АТФ катализируется актомиозиновым комплексом, обладаю­щим АТФ-азной активностью.

    Когда возбуждение прекращается, содержание ионов кальция в миоплазме снижается вследствие работы кальциевого насоса и закачивания кальция в саркоплазматический ретикулум, причем на работу кальциевого насоса также затрачивается энергия АТФ. В результате снижения содержания кальция в миоплазме тропо-миозиновый комплекс защищает активные центры актомиозино-вых нитей. Нити миозина и актина восстанавливают исходное по­ложение, и мышца расслабляется.

    Изложенная теория сокращения сердечной мышцы во многом объясняет экспериментальные и клинические наблюдения о влия­нии кальция и магния - его антагониста на работу сердца. Извест­но, что при перфузии изолированного сердца раствором, не содер­жащим кальция, оно останавливается, а при добавлении кальция в перфузионный раствор сокращения восстанавливаются. Известно также, что сердечные глюкозиды (например, препараты наперстян­ки) увеличивают проницаемость мембран для кальция и тем самым восстанавливают транспорт кальция между саркоплазматическим ретикулумом, наружной мембраной и миоплазмой.

    Согласуется с теорией мышечного сокращения и благоприятное влияние на сердце макроэргических веществ, энергия которых ис­пользуется не только для механического сокращения, но и для ра­боты ионных насосов - кальциевого и калиево-натриевого.

    Сократительные свойства сердечной мышцы несколько отли­чаются от скелетных. Если скелетная мышца реагирует на раздра­жение в соответствии с его силой, то сердечная мышца подчиня­ется закону Боудича «все или ничего». Его суть заключается в том, что на подпороговые раздражения сердце не сокращается («ниче­го»), а на пороговое раздражение отвечает максимальным сокра­щением («все»), и увеличение силы раздражителя не приводит к увеличению силы сокращения.

    В скелетных мышцах закону «все или ничего» подчиняются отдельные мышечные волокна. Дело в том, что потенциал дей­ствия вызывает освобождение кальция из саркоплазматического ретикулума равномерно по всей длине волокна, поэтому оно со­кращается полностью. Но в скелетной мышце имеются волокна с разной степенью возбудимости, поэтому при слабом раздражении сокращаются не все волокна и суммарное сокращение оказывает­ся небольшим. В сердечной же мышце волокна рабочего, т. е. со­кратительного, миокарда соединены межклеточными контактами


    (выростами плазматических мембран), что способствует практи­чески одновременному распространению потенциала действия по всей мышце, и она возбуждается и сокращается как единый орган, 1 являясь функциональным синцитием.

    Закон Боудича является скорее правилом с определенными ог­раничениями. При подпороговом раздражении сокращение, дей­ствительно, не возникает, но в это время начинается активация натриевых каналов и повышается возбудимость миокардиоцитов. Возникающие местные потенциалы могут суммироваться и вы­звать распространяющийся потенциал действия. С другой сторо­ны, сила сокращения сердца, как хорошо известно, непостоянна и может изменяться в различных условиях жизни.

    Другая характерная особенность сердечной мышцы заключает­ся в том, что сила сокращения сердца зависит от степени растяже­ния мышечных волокон во время диастолы, когда полости запол­няются кровью. Это - закон Франка - Старлинга. Указанная за­кономерность объясняется тем, что при растяжении сердца кро­вью во время диастолы актиновые нити несколько вытягиваются из промежутков между миозиновыми, и при последующем сокра­щении возрастает число генерирующих силу поперечных мости­ков. Кроме того, при растягивании сердечной мышцы в ней повы­шается сопротивление упругих элементов, и во время сокращения они играют роль «пружины», увеличивая силу сокращения.

    Особенно важное значение закон Франка - Старлинга имеет во время усиленной работы сердца, когда возрастает объем крови, по­ступающей в него во время диастолы. Увеличение силы сокращения приводит к тому, что вся кровь выбрасывается при систоле желудоч­ков в артериальные сосуды, иначе после каждого сокращения в серд­це оставалась бы значительная порция крови. При отсутствии боль­шой нагрузки и небольшом объеме кровотока сила сокращения серд­ца умеренная. Таким образом сердце способно регулировать в извест­ных пределах силу сокращения в зависимости от объема кровотока.


    ©2015-2019 сайт
    Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
    Дата создания страницы: 2017-04-01

    Сердечная мышца обладает следующими физиологическими свойствами: возбудимостью, проводимостью, сократимостью и автоматией.

    Возбудимость – это способность (или свойство) реагировать на раздражение, т.е. возбуждаться. Это свойство характерно для всех возбудимых тканей (нервов, мышц, железистых клеток), но разные ткани обладают разной возбудимостью (этот вопрос более подробно рассматривается в разделе «физиология возбудимых тканей»). Любая возбудимая ткань при возбуждении меняет свою возбудимость и имеет следующие фазы: абсолютная рефрактерность (отсутствие возбудимости), относительная рефрактерность (возбудимость ниже нормы), супернормальность или экзальтация (повышенная возбудимость). Продолжительность этих фаз у разных тканей разная, и имеет, как правило, важное функциональное назначение. Так, у нервов и скелетных мышц эти фазы намного короче, чем у сердечной и гладких мышц.

    Ниже приводятся схематические изображения (рис 1) изменения возбудимости в разные периоды одиночного сокращения сердечной (пунктирная линия) и скелетной (сплошная линия) мышц

    Рис.1. 1-латентный период, 2-период сокращения, 3-период расслабления

    а) абсолютная рефрактерность

    б) относительная рефрактерность

    в) фаза супернормальности (экзальтации)

    а также сопоставление (рис 2) фаз рефрактерности с фазами потенциала действия скелетной (А) и сердечной (Б) мышц.

    Рис. 2. 1 - латентный период, 2 - фаза деполяризации, 3 - фаза реполяризации, 3а - плато (медленная деполяризация или начальная реполяризация); а) - абсолютная рефрактерность, б) относительная рефрактерность, в) фаза супернормальности (или фаза экзальтации

    Во время фазы абсолютной рефрактерности ткань не возбудима, во время относительной рефрактерности возбудимость снижена, и она не восстановилась еще до нормы. Наличие продолжительной абсолютной рефрактерности у сердечной мышцы является причиной, предохраняющей сердце от повторного возбуждения (а стало быть, сокращения) в период систолы. Сердце приобретает способность к повторному сокращению на приходящий импульс во время диастолы, т.е. в фазу относительной рефрактерности, в этот период возникает так называемая экстрасистола (дополнительная систола). После экстрасистолы следует компенсаторная пауза за счет выпадения одного естественного сокращения, так как очередной импульс попадает на абсолютную рефрактерность экстрасистолы. Это явление чаще наблюдается при желудочковой экстрасистолии и тахикардии. Экстрасистолы по происхождению могут быть наджелудочковыми (из синусного узла, предсердий или атриовентрикулярного узла) и желудочковыми. Экстрасистолия, как правило, сопровождается аритмией, которая при некоторых заболеваниях сердца (инфаркт миокарда, гипокалиемия, растяжение желудочков и т.д.) может переходить в фибрилляцию (трепетание и мерцание предсердий или желудочков). Наибольшая опасность возникновения этих явлений наблюдается тогда, когда экстрасистола попадает в так называемый «уязвимый период». Таким уязвимым местом или периодом считается фаза реполяризации желудочков и соответствует восходящей части зубца Т на ЭКГ. При наличии эктопических зон вероятность возникновения фибрилляции желудочков многократно возрастает.

    Мышечная ткань предсердий и желудочков ведет себя как функциональный синцитий, а вставочные диски между кардиомиоцитами не препятствуют проведению возбуждения, и происходит одновременное возбуждение всех клеток. Поэтому следующей особенностью возбудимости сердечной мышцы является то, что сердце работает по закону «все или ничего», тогда как скелетная мышца и нервы не подчиняются этому закону (лишь отдельные волокна скелетных мышц и нервов функционируют по закону « все или ничего»).

    Автоматизм . Ритмические сокращения сердца обусловлены импульсами, генерируемыми в самом сердце. Сердце лягушки, помещенное в рингеровский (физиологический) раствор может сокращаться в прежнем ритме длительное время. Изолированное сердце теплокровных животных также может сокращаться длительно, но требуется соблюдение ряда условий: пропускать (перфузировать) Рингер-Локковский раствор под давлением через сосуды сердца (канюля в аорте), tº раствора = 36-37º, через раствор пропускать кислород или просто воздух (аэрация), в растворе должна содержаться глюкоза. В норме ритмические импульсы образуются только специализированными клетками водителя ритма сердца (пейсмекера), которым является сино-атриальный узел (СА узел). Однако в условиях патологии остальные участки проводящей системы сердца способны самостоятельно генерировать импульсы. Явления автоматизма целиком и полностью зависят от проводящей системы сердца, т.е. она выполняет также функцию проведения, обеспечивает, таким образом, свойство проводимости. Как распространяется возбуждение по проводящей системе сердца к рабочему миокарду? От пейсмекера – синоатриального узла, который расположен в стенке правого предсердия у места впадения в него верхней полой вены, возбуждение вначале распространяется по рабочему миокарду обоих предсердий. Единственным путем дальнейшего распространения возбуждения является атриовентрикулярный узел. Здесь происходит небольшая задержка – 0,04-0,06 сек (атриовентрикулярная задержка) проведения возбуждения. Эта задержка имеет принципиально большое значение для последовательного (не одновременного) сокращения предсердий и желудочков. Благодаря этому кровь из предсердий может поступить в желудочки. Если бы не было этой задержки, то происходило бы одновременное сокращение предсердий и желудочков, а так как последние развивают значительное полостное давление, то кровь не смогла бы поступить из предсердий в желудочки. Пучок Гиса, его левая и правая ножки и волокна Пуркинье проводят импульсы со скоростью примерно 2 м/с, и различные участки желудочков возбуждаются синхронно. Скорость распространения импульса от субэндокардиальных окончаний волокон Пуркинье по рабочему миокарду составляет около 1 м/с. Средний ритм сердца в норме, а стало быть, количество импульсов в синоатриальном узле составляет 60-80 в 1 мин. При блокаде передачи импульсов от СА узла пейсмекерную функцию берет на себя АВ-узел с ритмом около 40-50 в 1 мин. Если будет выключен и этот узел, то пейсмекером становится пучок Гиса, при этом частота сердечных сокращений будет 30-40 в минуту. Но даже волокна Пуркинье могут спонтанно возбуждаться (20 в 1 мин.) при выпадении функции пучков Гиса.

    СА-узел называют номотопным (нормально расположенным) центром автоматии, а очаги возбуждения в остальных отделах проводящей системы сердца – гетеротопными (ненормально расположенными) центрами. Эти ритмы возникают не за счет основного водителя (СА-узла) и они носят название «заместительных ритмов». Кроме перечисленных гетеротопных центров в патологии (инфаркт миокарда, гипокалиемия, растяжение) могут появляться эктопические водители ритма сердца. Они локлизуются за пределами проводящей системы сердца. При полном исчезновении автоматизма сердца применяются искусственные водители ритма сердца, т.е. искусственное электрическое раздражение желудочков либо путем подачи тока через интактную грудную клетку, либо через имплантированные электроды. Такое искусственное раздражение сердца иногда применяется годами (миниатюрные водители ритма сердца, расположенные под кожей и работающие от батареек). Способность сердца возбуждаться за счет автоматизма имело большое значение для разработки стратегии и тактики хирургической пересадки сердца. Первоначально эти исследования были проведены Кулябко, Неговским и Синицыным.

    СОКРАТИМОСТЬ. Сердце сокращается по типу одиночного сокращения, т.е. одно сокращение на одно раздражение. Скелетная мышца сокращается тетанически. Такая особенность сердечной мышцы обусловлена продолжительной абсолютной рефрактерностью, которая занимает всю систолу. Сокращение предсердий и желудочков имеет последовательный характер. Сокращение предсердий начинается в области устьев полых вен, и кровь движется только в одном направлении, а именно в желудочки через предсердно-желудочковые отверстия. В это время устья полых вен сжимаются, и кровь поступает в желудочки. В момент диастолы желудочков атриовентрикулярные клапаны открываются. При сокращении желудочков кровь устремляется в сторону предсердий и захлопывает створки этих клапанов. Клапаны не могут открыться в сторону предсердий, т.к. этому препятствуют сухожильные нити, которые прикрепляются к сосочковым мышцам. Повышение давления в желудочках при их сокращении приводит к изгнанию крови из правого желудочка в легочную артерию, а из левого желудочка – в аорту. В устьях этих сосудов имеются полулунные клапаны. Эти клапаны расправляются в момент диастолы желудочков за счет обратного тока крови в сторону желудочков. Эти клапаны выдерживают большое давление (особенно аортальный) и не пропускают кровь из аорты и легочной артерии в желудочки. Во время диастолы предсердий и желудочков давление в камерах сердца падает и кровь из вен поступает в предсердия, а затем в желудочки.

    Сердечная мышца, так же как и скелетная, обладает возбудимостью, проводимостью и сократимостью, но эти свойства сердечной мышцы имеют свои особенности. Сердечная мышца сокращается медленно и работает в режиме одиночных сокращений, а не титанических как скелетная. Значение этого легко понять, если вспомнить, что сердце при своей работе перекачивает кровь из вен в артерии и должно наполняться кровью в промежутках между сокращениями.

    Если сердце раздражать частыми ударами электрического тока, то оно в отличие от скелетных мышц не приходит в состояние непрерывного сокращения: наблюдаются отдельные более или менее ритмичные сокращения. Это объясняется длительной рефрактерной фазой, присущей сердечной мышце.

    Рефрактерной фазой называется период не возбудимости, когда сердце утрачивает способность отвечать возбуждением и сокращением на новое раздражение.

    Эта фаза длится весь период систолы желудочка. Если в это время раздражать сердце, то никакого ответа не последует. На раздражение, нанесенное в период диастолы, сердце, не успев расслабиться, отвечает новым внеочередным сокращением-экстрасистолой, после которой следует длительная пауза, называемая компенсаторной.

    Сердце обладает автоматизмом. Это значит, что импульсы к сокращению возникают в нем самом, тогда как к скелетным мышцам они приходят по двигательным нервам из центральной нервной системы. Если перерезать все нервы, подходящие к сердцу, или даже отделить его от организма, оно будет длительно ритмически сокращаться.

    Электрофизиологическими исследованиями установлено, что в клетках проводящей системы сердца ритмически возникает деполяризация клеточной мембраны, обусловливающая появление возбуждения, которое вызывает сокращение мускулатуры сердца.

    Проводящая система сердца

    Система, проводящая возбуждение в сердце, состоит из атипичных мышечных волокон, обладающих автоматизмом, и включает синусно-предсердный узел, расположенный в области впадения полых вен, предсердно-желудочковый узел, расположенный в правом предсердии, вблизи его границы с желудочками, и предсердно-желудочковый пучок. Последний, начинаясь от одноименного узла, проходит межпредсердную и межжелудочковую перегородки и делится на две ножки - правую и левую. Ножки опускаются под эндокардом по межжелудочковой перегородке к верхушке сердца, где ветвятся и в виде отдельных волокон - проводящих сердечных миоцитов (волокна Пуркинье) распространяются под эндокардом по всему желудочку.

    В сердце здорового человека возбуждение возникает синусно-предсердном узле. Этот узел называют водителем ритма. По пучку атипических мышечных волокон оно распространяется к предсердно-желудочковому узлу, а от него по предсердно-желудочковому пучку - к миокарду желудочков. В предсердно-желудочковом узле скорость проведения возбуждения заметно снижается, поэтому предсердия успевают сократиться прежде, чем начнется систола желудочков. Таким образом, система, проводящая возбуждение, не только рождает импульсы возбуждения в сердце, но и регулирует последовательность сокращений предсердий и желудочков.

    Ведущую роль синусно-предсердного узла в автоматизме сердца можно показать в опыте: при местном согревании области узла деятельность сердца ускоряется, а при охлаждении замедляется. Согревание и охлаждение других частей сердца не влияет на частоту его сокращений. После разрушения синусно-предсердного узла деятельность сердца может продолжаться, но в более медленном ритме - 30-40 сокращений в минуту. Водителем ритма становится предсердно-желудочковый узел. Эти данные свидетельствуют о градиенте автоматизма, о том, что автоматизм разных отделов системы, проводящей возбуждение неодинаков.

    Поделитесь с друзьями или сохраните для себя:

    Загрузка...