Скачать презентацию на тему физическая природа звезд. Физическая природа звезд


Федеральное агенство по образованию
Государственное образовательное учреждение высшего профессионального образования
«Челябинский государственный педагогический университет» (ГОУ ВПО «ЧГПУ»)

РЕФЕРАТ ПО КОНЦЕПЦИИ СОВРЕМЕННОГО ЕСТЕСТВОЗНАНИЯ

Тема: Физическая природа звезд

Выполнила: Рапохина Т. И.
543 группа
Проверила: Баркова В.В.

Челябинск – 2012
СОДЕРЖАНИЕ
Введение………………………………………………………… ………………3
Глава 1. Что такое звезда………………………………………………………4

      Сущность звезд…………………………………………………………….. .4
      Рождение звезд………………………………………………………………7
1.2 Эволюция звезд……………… …………………………………………… 10
1.3 Конец звезды……………………………………………………………… .14
Глава 2. Физическая природа звезд…………………………………………..24
2.1 Светимость ………………………………………………… …………….24
2.2 Температура………………………………………………… …………..…26
2.3 Спектры и химический состав звезд…………………………….…… ……27
2.4 Средние плотности звезд………………………………………………….28
2.5 Радиус звезд………………………………………………………………… .39
2.6 Масса звезд………………………………………………………………… 30
Заключение…………………………………………………… ………………..32
Список литературы………………………………… …………………………33
Приложение…………………………………………………… ………………34

ВВЕДЕНИЕ

Ничего нет более простого, чем звезда...
(А. С. Эддингтон)

Испокон веков Человек старался дать название предметам и явлениям, которые его окружали. Это относится и к небесным телам. Сначала названия получили самые яркие, хорошо видимые звёзды, с течением времени – и другие.
Открытие звёзд, видимый блеск которых со временем меняется, привело к специальным обозначениям. Они обозначаются прописными латинскими буквами, за которыми следует название созвездия в родительном падеже. Но первая переменная звезда, обнаруженная в каком-то созвездии, обозначается не буквой A. Отсчёт ведётся от буквы R. Следующая звезда обозначается буквой S и так далее. Когда все буквы алфавита исчерпаны, начинается новый круг, то есть после Z снова используется A. При этом буквы могут удваиваться, например «RR». «R Льва» означает, что это первая открытая переменная звезда в созвездии Льва.
Звезды очень интересны для меня, поэтому я решила написать реферат именно на эту тему.
Звезды - это далекие солнца, по этому, изучая природу звезд, мы будем сравнивать их физические характеристики с физическими характеристиками Солнца.

Глава 1. ЧТО ТАКОЕ ЗВЕЗДА
1.1 СУЩНОСТЬ ЗВЕЗД
При внимательном разглядывании звезда представляется светящейся точкой, иногда с расходящимися лучами. Явление лучей связано с особенностью зрения и не имеет отношения к физической природе звезды.
Любая звезда - это удаленное от нас солнце. Ближайшая из звезд - Проксима - находится в 270000 раз дальше от нас, чем Солнце. Самая яркая звезда неба Сириус в созвездии Большой Пёс, расположенная на расстоянии 8x1013км, имеет примерно такую же яркость, как и 100-ваттная электрическая лампочка на расстоянии 8 км (если не учитывать ослабление света в атмосфере). Но для того, чтобы лампочка была видна под таким же углом, под которым виден диск далёкого Сириуса, ее диаметр должен быть равен 1 мм!
При хорошей видимости и нормальном зрении над горизонтом одновременно можно увидеть около 2500 звёзд. Имеют собственные имена 275 звезд, например, Алголь, Альдебаран, Антарес, Альтаир, Арктур, Бетельгейзе, Вега, Гемма, Дубхе, Канопус (вторая по яркости звезда), Капелла, Мицар, Полярная (путеводная звезда), Регул, Ригель, Сириус, Спика, Сердце Карла, Тайгета, Фомальгаут, Шеат, Этамин, Электра и др.
Вопрос, сколько звезд в данном созвездии, лишен смысла, так как ему недостает конкретности. Для ответа необходимо знать остроту зрения наблюдателя, время, когда ведутся наблюдения (от этого зависит яркость неба), высоту созвездия (у горизонта трудно обнаружить слабую звезду из-за атмосферного ослабления света), место наблюдения (в горах атмосфера чище, прозрачнее - поэтому видно больше звезд) и т.д. В среднем на одно созвездие приходится примерно 60 звезд, наблюдаемых невооруженным глазом (у Млечного Пути и в больших созвездиях - больше всего). Например, в созвездии Лебедь можно насчитать до 150 звёзд (область Млечного Пути); а в созвездии Лев - только 70. В небольшом созвездии Треугольник видно всего 15 звезд.
Если же учитывать звезды до 100 раз более слабые, чем самые слабые звезды, ещё различимые зорким наблюдателем, то в среднем на одно созвездие будет приходится около 10000 звезд.
Звезды различаются не только по их яркости, но и по цвету. Например, Альдебаран (созвездие Телец), Антарес (Скорпион), Бетельгейзе (Орион) и Арктур (Волопас) - красные, а Вега (Лира), Регул (Лев), Спика (Дева) и Сириус (Большой Пёс) - белые и голубоватые.
Звезды мерцают. Это явление хорошо заметно у горизонта. Причина мерцания - оптическая неоднородность атмосферы. Прежде, чем попасть в глаз наблюдателя, свет звезды пересекает в атмосфере множество мелких неоднородностей. По своим оптическим свойствам они похожи на линзы, концентрирующие или рассеивающие свет. Непрерывное перемещение таких линз и является причиной мерцания.
Причину изменения цвета при мерцании поясняет рис.6, из которого видно, что синий (с) и красный (к) свет от одной и той же звезды перед тем, как попасть в глаз наблюдателя (О), проходит в атмосфере неравные пути. Это - следствие неодинакового преломления в атмосфере синего и красного света. Несогласованность колебаний яркости (вызванных разными неоднородностями) приводит к разбалансировке цветов.

Рис.6.
В отличие от общего мерцания, цветовое можно заметить только у звезд близких к горизонту.
У некоторых звезд, названных переменными звездами, изменения яркости происходят гораздо более медленно и плавно, чем при мерцании, рис. 7. Например, звезда Алголь (Дьявол) в созвездии Персей меняет свою яркость с периодом 2,867 суток. Причины “переменности” звезд многообразны. Если две звезды обращаются вокруг общего центра масс, то одна из них может периодически закрывать другую (случай Алголя). Кроме того, некоторые звезды меняют яркость в процессе пульсации. У других звезд яркость изменяется при взрывах на поверхности. Иногда взрывается вся звезда (тогда наблюдается сверхновая звезда, светимость которой в миллиарды раз превосходит солнечную).

Рис.7.
Движения звезд друг относительно друга со скоростями в десятки километров в секунду приводят к постепенному изменению звездных узоров на небе. Однако продолжительность жизни человека слишком мала, чтобы такие изменения удалось заметить при наблюдениях невооружённым глазом.

1.2 РОЖДЕНИЕ ЗВЕЗД

Современная астрономия располагает большим количеством аргументов в пользу утверждения, что звезды образуются путем конденсации облаков газово-пылевой межзвездной среды. Процесс образования звезд из этой среды продолжается и в настоящее время. Выяснение этого обстоятельства является одним из крупнейших достижений современной астрономии. Еще сравнительно недавно считали, что все звезды образовались почти одновременно много миллиардов лет назад. Крушению этих метафизических представлений способствовал, прежде всего, прогресс наблюдательной астрономии и развитие теории строения и эволюции звезд. В результате стало ясно, что многие наблюдаемые звезды являются сравнительно молодыми объектами, а некоторые из них возникли тогда, когда на Земле уже был человек.
Важным аргументом в пользу вывода о том, что звезды образуются из межзвездной газово-пылевой среды, служит расположение групп заведомо молодых звезд (так называемых «ассоциаций») в спиральных ветвях Галактики. Дело в том, что согласно радиоастрономическим наблюдениям межзвездный газ концентрируется преимущественно в спиральных рукавах галактик. В частности, это имеет место и в нашей Галактике. Более того, из детальных «радио изображений» некоторых близких к нам галактик следует, что наибольшая плотность межзвездного газа наблюдается на внутренних (по отношению к центру соответствующей галактики) краях спирали, что находит естественное объяснение, на деталях которого мы здесь останавливаться не будем. Но именно в этих частях спиралей наблюдаются методами оптической астрономии «зоны Н Н», т. е. облака ионизованного межзвездного газа. Причиной ионизации таких облаков может быть только ультрафиолетовое излучение массивных горячих звезд - объектов заведомо молодых.
Центральным в проблеме эволюции звезд является вопрос об источниках их энергии. В прошлом веке и в начале этого века предлагались различные гипотезы о природе источников энергии Солнца и звезд. Некоторые ученые, например, считали, что источником солнечной энергии является непрерывное выпадение на его поверхность метеоров, другие искали источник в непрерывном сжатии Солнца. Освобождающаяся при таком процессе потенциальная энергия могла бы, при некоторых условиях» перейти в излучение. Как мы увидим, ниже, этот источник на раннем этапе эволюции звезды может быть довольно эффективным, но он никак не может обеспечить излучение Солнца в течение требуемого времени.
Успехи ядерной физики позволили решить проблему источников звездной энергии еще в конце тридцатых годов нашего столетия. Таким источником являются термоядерные реакции синтеза, происходящие в недрах звезд при господствующей там очень высокой температуре (порядка десяти миллионов градусов).
В результате этих реакций, скорость которых сильно зависит от температуры, протоны превращаются в ядра гелия, а освобождающаяся энергия медленно "просачивается" сквозь недра звезд и в конце концов, значительно трансформированная, излучается в мировое пространство. Это исключительно мощный источник. Если предположить, что первоначально Солнце состояло только из водорода, который в результате термоядерных реакций целиком превратится в гелий, то выделившееся количество энергии составит примерно 10 52 эрг. Таким образом, для поддержания излучения на наблюдаемом уровне в течение миллиардов лет достаточно, чтобы Солнце "израсходовало" не свыше 10% своего первоначального запаса водорода.
Теперь мы можем представить картину эволюции какой-нибудь звезды следующим образом. По некоторым причинам (их можно указать несколько) начало конденсироваться облако межзвездной газово-пылевой среды. Довольно скоро (разумеется, по астрономическим масштабам!) под влиянием сил всемирного тяготения из этого облака образуется сравнительно плотный непрозрачный газовый шар. Строго говоря, этот шар еще нельзя назвать звездой, так как в его центральных областях температура недостаточна для того, чтобы начались термоядерные реакции. Давление газа внутри шара не в состоянии пока уравновесить силы притяжения отдельных его частей, поэтому он будет непрерывно сжиматься. Некоторые астрономы раньше считали, что такие протозвезды наблюдаются в отдельных туманностях в виде очень темных компактных образований, так называемых глобул. Успехи радиоастрономии, однако, заставили отказаться от такой довольно наивной точки зрения. Обычно одновременно образуется не одна протозвезда, а более или менее многочисленная группа их. В дальнейшем эти группы становятся звездными ассоциациями и скоплениями, хорошо известными астрономам. Весьма вероятно, (что на этом самом раннем этапе эволюции звезды вокруг нее образуются сгустки с меньшей массой, которые затем постепенно превращаются в планеты.
При сжатии протозвезды температура ее повышается и значительная часть освобождающейся потенциальной энергии излучается в окружающее пространство. Так как размеры сжимающегося газового шара очень велики, то излучение с единицы его поверхности будет незначительным. Коль скоро поток излучения с единицы поверхности пропорционален четвертой степени температуры (закон Стефана - Больцмана), температура поверхностных слоев звезды сравнительно низка, между тем как ее светимость почти такая же, как у обычной звезды с той же массой. Поэтому на диаграмме "спектр -светимость" такие звезды расположатся вправо от главной последовательности, т. е. попадут в область красных гигантов или красных карликов, в зависимости от значений их первоначальных масс.
В дальнейшем протозвезда продолжает сжиматься. Ее разморы становятся меньше, а поверхностная температура растет вследствие чего спектр становится все более ранним. Таким образом, двигаясь по диаграмме "спектр - светимость", протозвезда довольно быстро "сядет" на главную последовательность. В этот период температура звездных недр уже оказывается достаточной для тою, чтобы там начались термоядерные реакции. При этом давление газа внутри будущей звезды уравновешивает притяжение и газовый шар перестает сжиматься. Протозвезда становится звездой.

Великолепные колонны, состоящие главным образом из газообразного водорода и пыли дают начало новорождённым звёздам внутри туманности Орла.

Фото: NASA, ESA, STcI, J Hester and P Scowen (Arizon State University)

1.3 ЭВОЛЮЦИЯ ЗВЕЗД
Чтобы пройти самую раннюю стадию своей эволюции, протозвездам нужно сравнительно немного времени. Если, например, масса протозвезды больше солнечной, нужно всего лишь несколько миллионов лет, если меньше - несколько сот миллионов лет. Так как время эволюции протозвезд сравнительно невелико, эту самую раннюю фазу развития звезды обнаружить трудно. Все же звезды в такой стадии, по-видимому, наблюдаются. Мы имеем в виду очень интересные звезды типа Т Тельца, обычно погруженные в темные туманности.
В 5966 г. совершенно неожиданно выявилась возможность наблюдать протозвезды на ранних стадиях их эволюции. Велико же было удивление радиоастрономов, когда при обзоре неба на волне 18 см, соответствующей радиолинии ОН, были обнаружены яркие, чрезвычайно компактные (т. е. имеющие малые угловые размеры) источники. Это было настолько неожиданно, что первое время отказывались даже верить, что столь яркие радиолинии могут принадлежать молекуле гидроксила. Была высказана гипотеза, что эти линии принадлежат какой-то неизвестной субстанции, которой сразу же дали "подходящее" имя "мистериум". Однако "мистериум" очень скоро разделил судьбу своих оптических "братьев" - "небулия" и "короння". Дело в том, что многие десятилетия яркие линии туманностей и солнечной короны не поддавались отождествлению с какими бы то ни было известными спектральными линиями. Поэтому их приписывали неким, неизвестным на земле, гипотетическим элементам - "небулию" и "коронию". В 1939-1941 гг. было убедительно показано, что загадочные линии "корония" принадлежат многократно ионизованным атомам железа, никеля и кальция.
Если для "развенчания" "небулия" и "корония" потребовались десятилетия, то уже через несколько недель после открытия стало ясно, что линии "мистериума" принадлежат обыкновенному гидроксилу, но только находящемуся в необыкновенных условиях.
Итак, источники "мистериума" - это гигантские, природные космические мазеры, работающие на волне линии гидроксила, длина которой 18 см. Именно в мазерах (а на оптических и инфракрасных частотах - в лазерах) достигается огромная яркость в линии, причем спектральная ширина ее мала. Как известно, усиление излучения в линиях благодаря такому эффекту возможно тогда, когда среда, в которой распространяется излучение, каким-либо способом "активирована". Это означает, что некоторый "сторонний" источник энергии (так называемая "накачка") делает концентрацию атомов или молекул на исходном (верхнем) уровне аномально высокой. Без постоянно действующей "накачки" мазер или лазер невозможны. Вопрос о природе механизма "накачки" космических мазеров, пока еде окончательно не решен. Однако скорее всего "накачкой" служит достаточно мощное инфракрасное излучение. Другим возможным механизмом «накачки» могут быть некоторые химические реакции.
Механизм "накачки" этих мазеров пока еще не совсем ясен, все же можно составить себе грубое представление о физических условиях в облаках, излучающих мазерным механизмом линию 18 см. Прежде всего, оказывается, что эти облака довольно плотны: в кубическом сантиметре там имеется по крайней мере 10 8 -10 9 частиц, причем существенная (а может быть и большая) часть их - молекулы. Температура вряд ли превышает две тысячи градусов, скорее всего она порядка 1000 градусов. Эти свойства резко отличны от свойств даже самых плотных облаков межзвездного газа. Учитывая еще сравнительно небольшие размеры облаков, мы невольно приходим к выводу, что они скорее напоминают протяженные, довольно холодные атмосферы звезд - сверхгигантов. Очень похоже, что эти облака есть не что иное, как ранняя стадия развития протозвезд, следующая сразу за их конденсацией из межзвездной среды. В пользу этого утверждения (которое автор этой книги высказал еще в 1966 г.) говорят и другие факты. В туманностях, где наблюдаются космические мазеры, видны молодые горячие звезды. Следовательно, там недавно закончился и, скорее всего, продолжается и в настоящее время, процесс звездообразования. Пожалуй, самое любопытное это то, что, как показывают радиоастрономические наблюдения, космические мазеры этого типа как бы "погружены" в небольшие, очень плотные облака ионизованного водорода. В этих облаках имеется много космической пыли, что делает их ненаблюдаемыми в оптическом диапазоне. Такие "коконы" ионизуются молодой, горячей звездой, находящейся внутри них. При исследовании процессов звездообразования весьма полезной оказалась инфракрасная астрономия. Ведь для инфракрасных лучей межзвездное поглощение света не так существенно.
Мы можем теперь представить следующую картину: из облака межзвездной среды, путем его конденсации, образуются несколько сгустков разной массы, эволюционирующих в протозвезды. Скорость эволюции различна: для более массивных сгустков она будет больше. Поэтому раньше всего превратится в горячую звезду наиболее массивный сгусток, между тем как остальные будут более или менее долго задерживаться на стадии протозвезды. Их-то мы и наблюдаем как источники мазерного излучения в непосредственной близости от "новорожденной" горячей звезды, ионизующей не сконденсировавший в сгустки водород "кокона". Разумеется, эта грубая схема будет в дальнейшем уточняться, причем, конечно, в нее будут внесены существенные изменения. Но факт остается фактом: неожиданно оказалось, что некоторое время (скорее всего - сравнительно короткое) новорожденные протозвезды, образно выражаясь, "кричат" о своем появлении на свет, пользуясь новейшими методами квантовой радиофизики (т. е. мазерами).
Оказавшись на главной последовательности и перестав сжигаться, звезда длительно излучает практически не меняя своего положения на диаграмме "спектр - светимость". Ее излучение поддерживается термоядерными реакциями, идущими в центральных областях. Таким образом, главная последовательность представляет собой как бы геометрическое место точек на диаграмме "спектр - светимость", где звезда (в зависимости от ее массы) может длительно и устойчиво излучать благодаря термоядерным реакциям. Место звезды на главной последовательности определяется ее массой. Следует заметить, что имеется еще один параметр, определяющий положение равновесной излучающей звезды на диаграмме "спектр- светимость". Таким параметром является первоначальный химический состав звезды. Если относительное содержание тяжелых элементов уменьшится, звезда "ляжет" на диаграмме ниже. Именно этим обстоятельством объясняется наличие последовательности субкарликов. Как уже говорилось выше, относительное содержание тяжелых элементов у этих звезд в десятки раз меньше, чем у звезд главной последовательности.
Время пребывания звезды на главной последовательности определяется ее первоначальной массой. Если масса велика, излучение звезды имеет огромную мощность и она довольно быстро расходует запасы своего водородного "горючего". Так, например, звезды главной последовательности с массой, превышающей солнечную в несколько десятков раз (это горячие голубые гиганты спектрального класса О), могут устойчиво излучать, находясь на этой последовательности всего лишь несколько миллионов лет, в то время как звезды с массой, близкой к солнечной, находятся на главной последовательности 10-15 млрд. лет.
"Выгорание" водорода (т. е. превращение его в гелий при термоядерных реакциях) происходит только в центральных областях звезды. Это объясняется тем, что звездное вещество перемешивается лишь в центральных областях звезды, где идут ядерные реакции, в то время как наружные слон сохраняют относительное содержание водорода неизменным. Так как количество водорода в центральных областях звезды ограниченно, рано или поздно (в зависимости от массы звезды) он там практически весь "выгорит". Расчеты показывают, что масса и радиус центральной ее области, в которой идут ядерные реакции, постепенно уменьшаются, при этом звезда медленно перемещается на диаграмме "спектр - светимость" вправо. Этот процесс происходит значительно быстрее у сравнительно массивных звезд.
Что же произойдет со звездой, когда весь (или почти весь) водород в ее ядре "выгорит"? Так как выделение энергии в центральных областях звезды прекращается, температура и давление не могут поддерживаться там на уровне, необходимом для противодействия силе тяготения, сжимающей звезду. Ядро звезды начнет сжиматься, а температура его будет повышаться. Образуется очень плотная горячая область, состоящая из гелия (в который превратился водород) с небольшой примесью более тяжелых элементов. Газ в таком состоянии носит название "вырожденного". Он обладает рядом интересных свойств. В этой плотной горячей области ядерные реакции происходить не будут, но они будут довольно интенсивно протекать на периферии ядра, в сравнительно тонком слое. Звезда как бы "разбухает", и начнет "сходить" с главной последовательности, переходя в области красных гигантов. Далее, оказывается, что звезды гиганты с меньшим содержанием тяжелых элементов будут иметь при одинаковых размерах более высокую светимость.

Эволюция звезды класса G на примере Солнца:

1.4 КОНЕЦ ЗВЕЗДЫ
Что произойдет со звездами, когда реакция "гелий - углерод" в центральных областях исчерпает себя, так же как и водородная реакция в тонком слое, окружающем горячее плотное ядро? Какая стадия эволюции наступит вслед за стадией красного гиганта?

Белые карлики

Совокупность данных наблюдений, а также ряд теоретических соображений говорят о том, что на этом этапе эволюции звезды, масса которых меньше, чем 1,2 массы Солнца, существенную часть своей массы, образующую их наружную оболочку, "сбрасывают". Такой процесс мы наблюдаем, по-видимому, как образование так называемых "планетарных туманностей". После того как от звезды отделится со сравнительно небольшой скоростью наружная оболочка, "обнажатся" ее внутренние, очень горячие слои. При этом отделившаяся оболочка будет расширяться, все дальше и дальше отходя от звезды.
Мощное ультрафиолетовое излучение звезды - ядра планетарной туманности - будет ионизовать атомы в оболочке, возбуждая их свечение. Через несколько десятков тысяч лет оболочка рассеется и останется только небольшая очень горячая плотная звезда. Постепенно, довольно медленно остывая, она превратится в белый карлик.
Таким образом белые карлики как бы "вызревают" внутри звезд - красных гигантов - и "появляются на свет" после отделения наружных слоев гигантских звезд. В других случаях сбрасывание наружных слоев может происходить не путем образования планетарных туманностей, а путем постепенного истечения атомов. Так или иначе белые карлики, в которых весь водород "выгорел" и ядерные реакции прекратились, по-видимому, представляют собой заключительный этап эволюции большинства звезд. Логическим выводом отсюда является признание генетической связи между самыми поздними этапами эволюции звезд и белыми карликами.

Белые карлики с углеродной атмосферой

На расстоянии 500 световых лет от Земли в созвездии Водолея находится умирающая звезда типа Солнца. За последние несколько тысяч лет эта звезда породила туманность Улитку - хорошо изученную близкую планетарную туманность. Планетарная туманность является обычной конечной стадией эволюции для звезд этого типа. На этом изображении туманности Улитка, сделанном инфракрасной космической обсерваторией показано излучение, приходящее преимущественно от расширяющихся оболочек молекулярного водорода. Пыль, которая обычно присутствует в таких туманностях, должна интенсивно излучать также в инфракрасном диапазоне. Однако кажется, что она отсутствует в этой туманности. Причина может находиться в самой центральной звезде - белом карлике. Эта маленькая, но очень горячая звезда излучает энергию в коротковолновом ультрафиолетовом диапазоне и поэтому не видна на инфракрасном изображении. Астрономы полагают, что со временем это интенсивное ультрафиолетовое излучение могло разрушить пыль. Ожидается, что Солнце также будет проходить стадию планетарной туманности через 5 миллиардов лет.

На первый взгляд, туманность Улитка (или NGC 7293) имеет простую круглую форму. Од-нако теперь стало ясно, что эта хорошо исследованная планетарная туманность, порожденная похожей на Солнце звездой, приближающейся к концу своей жизни, обладает удивительно сложной структурой. Ее протяженные петли и похожие на кометы газопылевые сгустки были исследованы на изображениях, полученных космическим телескопом Хаббла. Однако это четкое изображение туманности Улитка было получено на телескопе с диаметром объектива всего в 16 дюймов (40.6 см), оснащенным камерой и набором широкополосных и узкополосных фильтров. На цветном составном изображении можно увидеть вызывающие интерес детали структуры, включая сине-зеленые радиальные полоски, или спицы, длиной ~1 световой год, которые делают туманность похожей на космическое колесо велосипеда. Присутствие спиц, по-видимому, свидетельствует, что сама туманность Улитка – старая, проэволюционировавшая планетарная туманность. Туманность находится на расстоянии всего в 700 световых лет от Земли в созвездии Водолея.

Черные карлики

Постепенно остывая, они все меньше и меньше излучают, переходя в невидимые "черные" карлики. Это мертвые, холодные звезды очень большой плотности, в миллионы раз плотнее воды. Их размеры меньше размеров земного шара, хотя массы сравнимы с солнечной. Процесс остывания белых карликов длится много сотен миллионов лет. Так кончает свое существование большинство звезд. Однако финал жизни сравнительно массивных звезд может быть значительно, более драматическим.

Нейтронные звезды

Если масса сжимающейся звезды превосходит массу Солнца более чем в 1,4 раза, то такая звезда, достигнув стадии белого карлика, на том не остановится. Гравитационные силы в этом случае очень велики, что электроны вдавливаются внутрь атомных ядер. В результате изотопы превращаются в нейтроны способные прилетать друг к другу без всяких промежутков. Плотность нейтронных звезд превосходит даже плотность белых карликов; но если масса материала не превосходит 3 солнечных масс, нейтроны, как и электроны, способны сами предотвратить дальнейшее сжатие. Типичная нейтронная звезда имеет в поперечнике всего лишь от 10 до 15 км, а один кубический сантиметр ее вещества весит около миллиарда тонн. Помимо неслыханно громадной плотности, нейтронные звезды обладают еще двумя особыми свойствами, которые позволяют их обнаружить, невзирая на столь малые размеры: это быстрое вращение и сильное магнитное поле. В общем, вращаются все звезды, но когда звезда сжимается, скорость ее вращения возрастает - точно так же, как фигурист на льду вращается гораздо быстрее, когда прижимает к себе руки. Нейтронная звезда совершает несколько оборотов в секунду. Наряду с этим исключительно быстрым вращением, нейтронные звезды имеют магнитное поле, в миллионы раз более сильное, чем у Земли.

Хаббл увидел одиночную нейтронную звезду в космосе.

Пульсары

Первые пульсары были открыты в 1968 г., когда радиоастрономы обнаружили регулярные сигналы, идущие к нам из четырех точек Галактики. Ученые были поражены тем фактом, что какие-то природные объекты могут излучать радиоимпульсы в таком правильном и быстром ритме. Вначале правда, ненадолго астрономы заподозрили участие неких мыслящих существ, обитающих в глубинах Галактики. Но вскоре было найдено естественное объяснение. В мощном магнитном поле нейтронной звезды движущиеся по спирали электроны генерируют радиоволны, которые излучаются узким пучком, как луч прожектора. Звезда быстро вращается, и радиолуч пересекает линию нашего наблюдения, словно маяк. Некоторые пульсары излучают не только радиоволны, но и световые, рентгеновские и гамма-лучи. Период самых медленных пульсаров около четырех секунд, а самых быстрых - тысячные доли секунды. Вращение этих нейтронных звезд было по каким-то причинам еще более ускорено; возможно, они входят в двойные системы.
Благодаря проекту распределенных вычислений Einstein@Home на 2012 год найдено 63 пульсара.

Темный пульсар

Сверхновые

Звезды, массы которых не достигают 1,4 солнечной, умирают тихо и безмятежно. А что происходит с более массивными звездами? Как возникают нейтронные звезды и черные дыры? Катастрофический взрыв, которым заканчивается жизнь массивной звезды, - это воистину впечатляющее событие. Это самое мощное из природных явлений, совершающихся в звездах. В мгновение высвобождается больше энергии, чем излучает ее наше Солнце за 10 миллиардов лет. Световой поток, посылаемый одной гибнущей звездой, эквивалентен целой галактике, а ведь видимый свет составляет лишь малую долю полной энергии. Остатки взорвавшейся звезды разлетаются прочь со скоростями до 20 000 км в секунду.
Такие грандиозные звездные взрывы называются сверхновыми. Сверхновые - довольно редкое явление. Каждый год и других галактиках обнаруживают от 20 до 30 сверхновых, главным образом в результате систематического поиска. За столетие в каждой галактике их может быть от одной до четырех. Однако в нашей собственной Галактике сверхновых не наблюдали с 1604 г. Может быть, они и были, но остались невидимыми из-за большого количества пыли в Млечном Пути.

Взрыв сверхновой звезды.

Черные дыры

ОТ звезды, имеющей массу больше, чем три солнечных, и радиус больше 8,85километра, свет уже не сможет уйти от нее в пространство. Уходящий от поверхности луч искривляется в поле силы тяжести так сильно, что возвращается обратно на поверхность. Кванты света
и т.д.................

ФИЗИЧЕСКАЯ ПРИРОДА СОЛНЦА

Солнце представляет собой центральное тело нашей планетной системы и ближайшую к нам звезду.

Среднее расстояние Солнца от Земли равно 149,6*10 6 км, его диаметр в 109 раз больше земного, а объем в 1300 000 раз больше объема Земли. Так как масса Солнца составляет 1,98*10 33 г (333000 масс Земли), то в соответствии с его объе­мом находим, что средняя плотность солнечного вещества равна 1,41 г/см 3 (0,26 средней плотности Земли). По известным значе­ниям радиуса и массы Солнца можно определить, что ускорение силы тяжести на его поверхности достигает 274 м/сек 2 , или в 28 раз больше, чем ускорение силы тяжести на поверхность Земли.

Солнце вращается вокруг оси против хода часовой стрелки при наблюдении с северного полюса эклиптики, т. е. в том же направлении, в каком обращаются вокруг него все планеты. Если смотреть, на диск Солнца, то его вращение совершается от восточного края диска к западному. Ось вращения Солнца наклонена к плоскости эклиптики под углом 83°. Но Солнце вращается не как твердое тело. Сидерический период враще­ния его экваториальной зоны равен 25 сут, близ 60° гелиографической (отсчитанной от солнечного экватора) широты он составляет 30 сут, а у полюсов достигает 35 сут.

При наблюдении Солнца в телескоп заметно ослабление его яркости к краям диска, так как через центр диска проходят лучи, идущие из более глубинных и горячих частей Солнца.

Слой, лежащий на границе прозрачности вещества Солнца и испускающий видимое излучение, называется фотосферой. Фотосфера не является равномерно яркой, а обнаруживает зернистое строение. Светлые зерна, покрывающие фотосферу, называются гранулами. Гранулы - неустойчивые образо­вания, продолжительность их существования - около 2-3 мин, а размеры колеблются в пределах от 700 до 1400 км . На поверхности фотосферы выделяются темные пятна и светлые области, называемые факелами. Наблюдения за пятнами и факелами позволили установить характер вращения Солнца и определить его период.

Над поверхностью фотосферы расположена солнечная атмосфера. Ее нижний слой имеет толщину около 600 км. Вещество этого слоя избирательно поглощает световые волны таких, длин, которые оно само способно излучать. При переиз­лучении происходит рассеяние энергии, что и является непосред­ственной причиной появления основных темных фраунгофероных линий в спектре Солнца.

Следующий слой солнечной атмосферы - хромосфера имеет ярко-красный цвет и наблюдается при полных солнечных затмениях в виде алого кольца, охватывающего темный диск Луны. Верхняя граница хромосферы постоянно волнуется, и поэтому толщина ее колеблется от 15000 до 20000 км.

Из хромосферы выбрасываются протуберанцы - фон­таны раскаленных газов, видимые невооруженным глазом во время полных солнечных затмений. Со скоростью 250-500 км/сек они поднимаются от поверхности Солнца на расстояния, равные в среднем 200000 км, а некоторые из них достигают высо­ты до 1500 000 км.

Над хромосферой располо­жена солнечная корона, видимая при полных солнеч­ных затмениях в виде окру­жающего Солнце серебристо-жемчужного ореола.

Солнечную корону разде­ляют на внутреннюю и внеш­нюю. Внутренняя корона про­стирается до высоты около 500 000 км и состоит из разреженной плазмы – смеси ионов и свободных электронов. Цвет внутренней короны подобен солнечному, а излучение ее представляет собой свет фотосферы, рассеянныйна сво­бодных электронах. Спектр внутренней короны отличается от солнечного спектра тем, что в нем не наблюдаются темные ли­нии поглощения, но зато наблюдаются на фоне непрерывного спектра линии излучения, наиболее яркие из которых принадле­жат многократно ионизованному железу, никелю и некотооым другим элементам. Так как плазма весьма разрежена, то ско­рость движения свободных электронов (а соответственно и их кинетическая энергия) столь велика, что температура внутрен­ней короны оценивается примерно в 1 млн. градусов.

Внешняя корона простирается до высоты более чем в 2 млн. км. В ее состав входят мельчайшие твердые частицы, которые отражают солнечный свет и придают ей светло-желтый оттенок.

В последние годы было установлено, что солнечная корона распространяется значительно дальше, чем предполагалось ра­нее. Наиболее удаленные от Солнца части солнечной короны - сверхкорона - простираются за пределы земной орбиты. По ме­ре удаления от Солнца температура сверхкороны постепенно понижается, а на расстоянии Земли составляет приблизительно 200 000°

Сверхкорона состоит из отдельных разреженных электрон­ных облаков, “вмороженных” в магнитное поле Солнца, кото­рые с большими скоростями движутся от него и, достигая верх­них слоев земной атмосферы, ионизируют и нагревают ее, оказывая тем самым влияние на климатические процессы.

Межпланетное пространство в плоскости эклиптики содержит мелкую пыль, производящую явление зодиакального света. Это явление состоит в том, что весной после захода Солнца на западе или осенью перед восходом Солнца на востоке иногда наблюдается слабое сияние, выступающее из-под горизонта в виде конуса.

Спектр Солнца является спектром поглощения. На фоне не­прерывного яркого спектра располагаются многочисленные тем­ные (фраунгоферовы) линии. Они возникают при прохождении луча света, испускаемого раскаленным газом через более холод­ную среду, образованную тем же газом. При этом на месте яр­кой линии излучения газа наблюдается темная линия его погло­щения.

Каждый химический элемент имеет присущий только ему ли­нейчатый спектр, поэтому по виду спектра можно определить химический состав светящегося тела. Если же излучающее свет вещество является химическим соединением, то в его спектре видны полосы молекул и их соединений. Определив длины волн всех линий спектра, можно установить химические элементы, образующие излучающее вещество. По интенсивности спект­ральных линий отдельных элементов судят о количестве принад­лежащих им атомов. Поэтому спектральный анализ позволяет изучать не только качественный, но и количественный состав небесных светил (точнее, их атмосфер) и является важнейшим методом астрофизических исследований.

На Солнце найдено около 70 известных на Земле химических элементов. Но в основном Солнце состоитиз двух элементов:

водорода (около 70% по массе) и гелия (около 30%). Из про­чих химических элементов (всего 3%) наибольшее распростра­нение имеют азот, углерод, кислород, железо, магний, кремний, кальций и натрий. Некоторые химические элементы, например хлор и бром, на Солнце еще не обнаружены. В спектре солнеч­ных пятен найдены также полосы поглощения химических сое­динений: циана (СN), окиси титана, гидроксила (ОН), углеводорода (СН) и др.

Солнце представляет собой грандиозный источник энергии, непрерывно рассеивающий свет и тепло по всем направлениям. На Землю поступает около 1:2000000000 всей излучаемой Солнцем энергии. Количество энергии, получаемое Землей от Солнца, определяется по значению солнечной постоянной. Сол­нечной постоянной называется количество энергии, получаемой в минуту 1 см 2 поверхности, расположенной на границе земной атмосферы перпендикулярно к солнечным лучам. В мерах теп­ловой энергии солнечная постоянная равна 2 кал/см 2 *мин, а в системе механических единиц она выражается числом 1,4-10 6 эрг/сек см 2 .

Температура фотосферы близка к 6000°С.Она излучает энер­гию почти как абсолютно черное тело, поэтому эффективную температуру солнечной поверхности можно определить с помо­щью закона Стефана-Больцмана:


где Е - количество энергии в эргах, излучаемое в 1 сек. 1 см 2 солнечной поверхности; s=5,73 10 -5 эрг/сек* град ^4 см 2 - по­стоянная, установленная из опыта, и Т - абсолютная темпера­тура в градусах Кельвина.

Количество энергии, проходящей через поверхность шара, описанного радиусом в 1 а. е. (150 10" см), равно е =4*10 33 эрг/сек * см 2 . Эта энергия из­лучается всей поверхностью Солнца, поэтому, разделив ее величину на площадь солнечной поверхности, можно определить значение Е и вычислить температуру поверхности Солнца. Полу­чается E=5800°К.

Существуют и другие методы определения температуры по­верхности Солнца, но все они разнятся по результатам их при­менения, так как Солнце излучает не совсем как абсолютно чер­ное тело.

Непосредственное определение температуры внутренних частей Солнца невозможно, но по мере приближения к его центру она должна быстро возрастать. Температура в центре Солнца вычисляется теоретически из условия равновесия давлении и равенства прихода и расхода энергии в каждой точке объема Солнца. По современным данным, она достигает 13 млн. градусов.

При температурных условиях, имеющих место на Солнце, все его вещество находится в газообразном состоянии. Так как Солнце пребывает в тепловом равновесии, то в каждой его точке должны компенсироваться сила тяжести, направленная к центру, и силы газового и светового давлений, направленные из центра.

Высокая температура и большое давление в недрах Солнца обусловливают многократную ионизацию атомов вещества и значительную его плотность, вероятно превышающую 100 г/см 3 , хотя и в этих условиях вещество Солнца сохраняет свойства газа. Многочисленные данные приводят к выводу о том, что в течение многих миллионов лет температура Солнца остается неизменной, несмотря на большой расход энергии, вызываемый излучением Солнца.

Основным источником солнечной энергии являются ядернье реакции. Одна из наиболее вероятных ядерных реакций, называемая протон-протонной, заключается в превращении четырех ядер водорода (протонов) в ядро гелия. При ядерных превращениях выделяется большое количество энергии, которая проникает к солнечной поверхности и излучается в мировое прост­ранство.

Энергию излучения можно подсчитать по известной формуле Эйнштейна: Е = тс 2 , где Е - энергия; т - масса и с - ско­рость света в пустоте. Масса ядра водорода составляет 1,008 (атомных единиц массы), поэтому масса 4 протонов равна 4 1,008 = 4,032 а. е. м. Масса образовавшегося ядра гелия сос­тавляет 4,004 а. е. м. Уменьшение массы водорода на величину 0,028 а. е. м. (это составляет 5*10 -26 г) приводит к выделению энергии, равной:

Общая мощность излучения Солнца составляет 5*10 23 л. с. Вследствие излучения Солнце теряет 4 млн. т вещества в секунду.

Солнце является также источником излучения радиоволн. Общая мощность радиоизлучения Солнца в диапазонах волн от 8 мм до 15 м невелика. Такое радиоизлучение “спокойного” Солнца исходит от хромосферы и короны и является тепловым излучением. Когда же на Солнце появляются в большом коли­честве пятна, факелы и протуберанцы, мощность радиоизлуче­ния увеличивается в тысячи раз. Особенно большие всплески радиоизлучения “возмущенного” Солнца возникают в периоды сильных вспышек в его хромосфере.

СПЕКТРАЛЬНАЯ КЛАССИФИКАЦИЯ И ФИЗИЧЕСКАЯ ПРИРОДА ЗВЕЗД

Разнообразные и важные сведения о физической природе звезд, которыми располагает современная астрономия, были по­лучены по результатам изучения излучаемого ими света. Изу­чение природы света производится методами фотометрии и спектрального анализа.

В середине XIX столетия французский философ-идеалист Огюст Конт утверждал, что химический состав небесных светил останется навсегда неизвестным для науки. Однако вскоре ме­тодами спектрального анализа на Солнце и звездах были от­крыты химические элементы, известные на Земле.

В наше время изучение спектров позволило не только уста­новить химический состав звезд, но также измерить их темпера­туры, светимости, диаметры, массы, плотности, скорости враще­нии и поступательных движений, а также определить расстоя­ния до тех далеких звезд, тригонометрические параллаксы которых являются по малости их недоступными для измерений.

Физическая природа звезд весьма различна, а поэтому и их спектры отличаются большим разнообразием. Звезды, как и Солнце, имеют непрерывные спектры, пересеченные темными линиями поглощения, а это и доказывает, что каждая звезда есть раскаленное газовое тело, дающее непрерывный спектр и окруженное более холодной атмосферой.

Линии звездных спектров отождествлены с линиями извест­ных на Земле химических элементов, что служит доказатель­ством материального единства Вселенной. Все звезды состоят из одних и тех же химических элементов, преимущественно из водорода и гелия.

Причина большого различия звездных спектров определяет­ся не столько различием химического состава звезд, сколько различной степенью ионизации вещества звездных атмосфер, оп­ределяемой в основном температурой. Современная классифика­ция звездных спектров, созданная на Гарвардской обсерватории (США) по результатам изучения более чем 200 000 звезд, ос­нована на отождествлении принадлежности линий поглощения известным химическим элементам и оценке их относительной интенсивности.

При всем разнообразии звездных спектров их можно объеди­нить в небольшое число классов, содержащих сходные между собой признаки и постепенно переходящих один в другой с об­разованием непрерывного ряда. Основные классы гарвардской классификации обозначены буквами латинского алфавита О, В, А, F , G , К, М, образующими ряд, соответствующий уменьше­нию температур звезд. Для детализации спектральных показа­телей в каждом классе введены десятичные подразделения, обозначаемые цифрами. Обозначению А0 соответствует типич­ный спектр класса А; А5 обозначает спектр, средний между классами А и F; A9 - спектр, гораздо более близкий к F0, чем к А0.

В таблице приведены характеристики спектров, соответствующие им температуры и типичные звезды по каждому из спектральных классов.

Спектральный класс Характеристика спектра поглощения Температура поверхности Типищые звезхы
0 Линии ионизованных гелия, 35 000° К Орпона
(голубые звезды) азота, кислорода и кремния
В Линии гелия и водорода 25000° Спика
(юлубовато-бслые
звезды)
А Линии водорода имеют мак­ 10000° Сиричс
(белые звезды) симальную интенсивность. За­
метны линии ионизованного
кальция. Появляются слабые
линии поглощения металлов
Р Линии водорода ослабевают. 7500° Проц: он
(желтоватые звезды) Интенсивны линии нейтрально­
го и ионизованного кальция.
Линии металлов постепенно
усиливаются
0 Линии водорода еще более 6000° Солные
(желтые звезды) ослабевают. Многочисленные
линии поглощения металлов
К Линии металлов очень интен­ 4500° Аркт-у-р
(оранжевые звезды) сивны. Интенсивна полоса угле­
водорода СН. Слабые линии
поглощения окиси титана ТЮг
М Линии нейтральных металлов 3500° Бетел.-
(красные звезды) очень сильны. Интенсивны по­ гейзе
лосы поглощения молекулярных
соединений

Кроме основных спектральных классов, существуют допол­нительные классы R, N, S немногочисленных звезд, температура которых ниже 3000°.

Приведенные в таблице температуры относятся к поверхностным слоям звезд, в недрах их господствуют температуры порядка 10-30 млн. градусов. Высокая температура обеспечи­вает протекание самопроизвольных ядерных реакций, т. е. про­цессов, рассмотренных ранее.

Цвет звезды зависит от ее температуры. Холодные звезды излучают преимущественно в длинных волнах, соответствующих красной части спектра, а горячие - в коротких волнах, пред­ставляемых фиолетовой частью спектра.

Человеческий глаз наиболее восприимчив к желто-зеленым лучам, и обычная фотографическая пластинка - к синим и фиолетовым лучам спектра. Вследствие этого при наблюдении звезд визуальным и фотографическим методами для одной и той же звезды получают различные звездные величины.

В астрономии цвет измеряют, сравнивая величины звезды, определенные визуально и по фотографиям, и оценивают его показателем цвета, который представляет собой разность фотографической и визуальной величин звезды:

Условно считают, что для звезд спектрального класса А 0 по­казатель цвета равен пулю. Показатель цвета более холодных звезд - величина положительная, так как они интенсивно из­лучают в длинных волнах, к которым наиболее чувствителен глаз. Показатель цвета горячих звезд - величина отрицатель­ная, поскольку их излучение по преимуществу коротковолновое, а фотопластинка наиболее восприимчива к синим и фиолетовым лучам.

Зависимости между показателями цвета и спектрами звезд устанавливаются эмпирически. Составляют таблицу, из которой по показателю цвета звезды приближенно определяют ее спек­тральный класс.

Основными факторами, определяющими количество излуча­емой энергии, являются температура и площадь излучающей поверхности звезды. Исследование спетимостей звезд привело к разделению их на две характерные группы: звезды-гиганты и звезды-карлики. Звезды-гиганты обладают высокой свети­мостью и большой площадью излучения (большим объемом), но имеют малую плотность вещества. Звезды-карлики характе­ризуются низкой светимостью, малым объемом и значительной плотностью вещества.

Различие между гигантами и карликами наиболее резко проявляется у звезд спектральных классов М и К, у которых разница в светимости достигает 9 m_ 10 m , т. е. красные гиганты в 5-10 тыс. раз ярче красных карликов. У желтоватых и желтых звезд классов F и G наряду с гигантами и карликами многочисленны также и звезды промежуточных светимостей.

Для характеристики светимостей звезд впереди прописной буквы их спектрального класса дополнительно пишутся малые буквы: g - для звезд-гигантов и d - для звезд-карликов. Ка­пелла gG0 - гигант класса G0, Солнце dG3 - карлик клас­са G3 и т. д.


СОВРЕМЕННЫЕ ПРЕДСТАВЛЕНИЯ О ВОЗНИКНОВЕНИИ И ЭВОЛЮЦИИ ЗВЕЗД

Раздел астрономии, в котором изучаются вопросы происхождения и развития небесных тел, называется космогонией. Космогония исследует процессы изменения форм космической материи, приводящие к образованию отдельных небесных тел и их систем, и направление их последующей эволюции. Космого­нические исследования приводят и к решению таких проблем, как возникновение химических элементов и космических лучей, появление магнитных полей и источников радиоизлучения.

Решение космогонических проблем связано с большими трудностями, так как возникновение и развитие небесных тел про­исходит столь медленно, что проследить эти процессы путем непосредственных наблюдений невозможно; сроки протекания космических событий так велики, что вся история астрономии в сравнении с их длительностью представляется мгновением. По­этому космогония из сопоставления одновременно наблюдаемых физических свойств небесных тел устанавливает характерные черты последовательных стадий их развития.

Недостаточность фактических данных приводит к необходи­мости оформлять результаты космогонических исследований в виде гипотез, т.е. научных предположений, основанных на на­блюдениях, теоретических расчетах и основных законах природы. Дальнейшее развитие гипотезы показывает, в какой мере она соответствует законам природы и количественной оценке предсказанных ею фактов.

Выводы космогонии, приводящие к утверждению материального единства Вселенной, закономерности совершающихся в ней процессов и причинной связи всех наблюдаемых явлений имеют глубокий философский смысл и служат обоснованием научного материалистического мировоззрения.

Возникновение и эволюция звезд являются центральной проблемой космогонии.

В наблюдаемой картине строения Галактики осуществляет­ся распределение звезд по их возрастам. Помимо шаровых и рассеянных звездных скоплений, в Галактике имеются особые группы звезд, однородных по своим физическим характеристи­кам. Они открыты акад. В.А. Амбарцумяном и названы звез­дными ассоциациями. Звездные ассоциации являются неустой­чивыми образованиями, так как составляющие их звезды с большими скоростями разбега­ются в различных направлениях. Этим определяется быстрый темп их распада и непродолжитель­ность времени существования, не превышающего нескольких мил­лионов лет. Поэтому наличие звезд в ассоциации свидетель­ствует об их недавнем возникно­вении, поскольку они еще не успели выйти из ассоциации и смешаться с окружающими звез­дами.

Исследование звездных ассоциаций привело акад. В.А. Амбарцумяна к выводу о том, что звезды Галактики возникли неодновременно, что образование звезд представляет собой не­законченный процесс, продолжающийся и в настоящее время, и что звездные ассоциации являются теми местами Галактики, в которых произошло групповое формирование звезд.

В современной космогонии по вопросу о возникновении звезд существуют две точки зрения: 1) звезды возникают в процессе распада сверхплотных тел, ведущего к уменьшению плотности вещества, и 2) звезды образуются в результате гра­витационной конденсации рассеяного вещества, сопровождаю­щейся увеличением его плотности. Однако результаты наблюде­ний не позволяют в настоящее время отдать предпочтение ка­кой-либо из них.

Согласно гипотезе, предложенной акад. В. А. Амбарцумяном звезды образуются из сверхплотной дозвездной материи, выбрасываемой при взрывах, происходящих в ядрах галактик. Ядра галактик содержат небольшие по размерам тела, на много порядков превосходящие по массе звезды, отличные по своей физической природе от звезд и диффузной материи. Эти сверхплотные тела, по-видимому, представляют собой новую форму материи, неизвестную современной науке. Распад сверхплотных тел - протозвезд приводит в дальнейшем к одновременному образованию звездных групп - ассоциации. Однако В.А. Амбарцумян не рассматривает механизма превращения протозвезд в звездные группы и скопления.

Гипотеза происхождения звезд из диффузной материи была разработана некоторыми американскими учеными и другими астрономамии Сжатие разреженной газово-пылевой среды под действием сил тяготения и магнитного поля Галактики приводит к образованию отдельных сгустков, представляющих собой протозвезды - глобулы. Продолжающееся сжатие протозвезды ведет к повышению давления и температуры веенедрах. Когда температура в центре протозвезды достигает нескольких миллионов градусов, там начинаются термоядерные реакции превращения водорода в гелий, сопровождающееся выделением большого количества энергии.

С этого времени сжатие протозвезды прекращается, посколь­ку гравитационные силы уравновешиваются газовым и свето­вым давлением, сравнительно скоро протозвезда становится звездой главной последовательности диаграммы спектр-светимость. Период формирования звезды из диффузной материи зависит от массы первоначального сгущения и продолжается не более 100 млн. лет.

На главной последовательности звезда проводит большую часть времени своего существования, до тех пор пока не “вы­горит” водород в ее центральной части. Для звезды с массой, равной массе Солнца, это время составляет около 10 млрд. лет. Массивные горячие звезды излучают так много энергии, что их водорода хватает только на несколько миллионов лет. В период пребывания на главной последовательности звезда сохраняет почти неизменными радиус, температуру поверхности и светимость.

Когда выгорание водорода в ядре звезды заканчивается, давление изнутри уже не может уравновесить тяготения и ядро звезды начинает сжиматься. Сжатие ядра сопровождается по­вышением температуры. Возрастающее излучение расширяет оболочку звезды, увеличивает ее светимость. Дальнейшая эволюция звезды зависит от ее массы. Большинство ученых счи­тает, что звезды небольшой массы, сравнимой с солнечной, превращаются в белых карликов.

Эволюция звезды в случае ее возникновения в результате распада сверхплотной протозвезды должна иметь иной харак­тер, поскольку после образования звезды в ее недрах еще сох­раняется часть сверхплотного дозвездного вещества. О его на­личии может свидетельствовать, например, резкое изменение блеска вспыхивающих неправильных переменных звезд. Процесс вспышки напоминает взрыв и может быть объяснен выносом дозвездного вещества из недр звезды на ее поверхность, сопровождающимся освобождением больших количеств эгергии.

При любом характере эволюции происходит изменение хими­ческого состава звезды в результате образования в ее недрах более тяжелых химических элементов.

В процессе своей эволюции звезда непрерывно теряет массу не только за счет излучения, но и путем рассеяния вещества своей атмосферы, что является одним из источников пополне­ния межзвездной диффузной материи.


ОПРЕДЕЛЕНИЕ РАССТОЯНИЙ И РАЗМЕРОВ ГАЛАКТИК

Во второй половине XVIII века помимо звезд было заме­чено на небе немало неподвижных туманных пятен - ту­манностей. Природа большинства их долгое время оставалась спорной. Только в середине 20-х годов нашего столетия выяснилось, что большинство их представляет собой грандиозные звездные системы, по своим размерам сравнимые с нашей Галактикой. Поэтому они получили название галактик.

Совокупность всех галактик составляет наибольшую известную нам систему, называемую Метагалактикой. До ее границ мы не добрались еще, и имеет ли она центр - неизвестно.

Эта проблема была кардинальной для выяснения вопроса о природе таких туманных пятен и об их месте во Вселенной, центр которой человек перенес с Земли сна­чала к Солнцу, затем к центру нашей Галактики,

До середины XX века галактики многими считались небольшими объектами, находящимися внутри нашей Га­лактики наряду со звездными скоплениями и газовыми туманностями. Считали даже в 20-х годах, что это линзы, состоящие из пыли и освещенные изнутри одной яркой звездой в их центре. Путь к определению расстоянии открыли сотрудники Гарвардской обсерватории, а затем Лундмарк и Хаббл. Первые из них установили, что в Магеллановых Облаках, выглядящих как обрывки Млечного Пути, видно много цефеид - периодических переменных звезд, у которых период изменения блеска растет с их видимым блеском. Вокруг Магеллановых Облаков цефеид практически не было видно, и было ясно, чтоих видимая концентрация в Облаках есть результат пространствен­ной концентрации в них цефеид, а различия их видимого блеска соответствуют различиям в их истинной силе света - в светимости. Так было открыто важнейшее свойство цефеид, оказавшееся справедливым везде, а именно существование соотношения период - светимость. Установив (с трудом из-за их дальности от нас) светимости бли­жайших к нам цефеид разного периода, можно было из сравнения их видимого блеска в нашей Галактике и в Магеллановых Облаках установить, во сколько раз последние от нас дальше, чем ближайшие к нам цефеиды. Ока­залось, что Магеллановы Облака находятся за пределами нашей Галактики. Линейный размер их, определяемый по видимому угловому размеру и уже известному теперь расстоянию, оказался в несколько раз меньше нашей Галактики, но все же они представляют собой гигантские звездные системы. Они содержат миллионы звезд, газовые туманности и сотни звездных скоплений, сходных с нашими. Магеллановы Облака были первыми системами, открытыми за границей нашей Галактики. Но они имеют неправильную клочковатую форму, и это еще ни­чего пока не говорило о природе самых интересных ту­манностей спирального вида.

Только в ближайших к нам галактиках можно среди ярчайших звезд распознать цефеиды и, определив их пе­риоды, найти их расстояние более точно, чем по новым звгздам.

В 1924 г. Лундмарк и Виртц обнаружили по неболь­шому числу измеренных уже спектрально (по принципу Доплера - Физо) лучевых скоростей, что галактики уда­ляются от нас по всем направлениям и тем скорее, чем они дальше от нас. Скорость этого удаления Хаббл определил около 1930 г. в 550 км/с на каждый мегапарсек расстояния, и поэтому открытие красного смещения при­писывается обычно ему. Непрерывные проверки эффекта, глав­ным образом за счет увеличения шкалы расстояний до ближайших галактик, к настоящему времени довели по­стоянную Хаббла до значений около 50 км/(с Мпс), но большинство астрофизиков все еще предпочитает пользоваться более ранним определением Но = 75 км/(с Мпс), быть может, выжидая, когда уляжется волна новых ре­зультатов, колеблющихся между 100 и 50 км/(с Мпс).

Строение и свойства галактик

Эти параметры являются важнейшими характери­стиками звездных систем.

Массы индивидуальных галактик устанавливают, опре­деляя кривую их вращения, которая в центральной обла­сти близка к твердотельной; затем происходит постепен­ный переход к вращению по закону Кеплера, когда расстояния от центральной массы уже велики, окружаю­щая точку плотность мала и сравнительно мала масса внешней области. Кривые вращения получают оптиче­ским методом, располагая щель спектрографа вдоль видимой большой оси изображения галактики, причем успех тем больше, чем ближе плоскость ее вращения к лучу зрения. Измерения ограничиваются центральной, яркой частью галактики и дают лишь нижний предел ее массы.

Детальная интерпретация кривой вращения п нахож­дение па нее распределения плотностей р внутри галак­тики требуют дальнейшего уточнения. Для этого необхо­димо принять модель галактики: плоскую или модель в виде неоднородного сфероида, в котором поверхности постоянной плотности - подобные сфероиды, или еще более сложную форму.

Массы плоских систем начинаются при­мерно с 10^11 (в степени 11) Â и уменьшаются до масс звездных ско­плении.


где V – круговая скорость в кеплеровской кривой;

R – радиус; G – гравитационная сила.

Массы эллиптических и массы спиральных галактик можно оцепить в случае пар - двойных галактик, у ко­торых разность глобальных скоростей можно предпола­гать равной скорости обращения, как у спектрально-двойных звезд. Однако здесь остается неизвестным угол наклона орбиты, и кривую скоростей определить нельзя. Мы получаем лишь нижний предел суммы масс двух га­лактик, как в случае спектрально-двойных звезд.

Выше было освещен ряд относящихся сюда вопросов, но надо добавить еще многое.

Форма спиральных ветвей, как оказалось, хорошо со­ответствует логарифмической спирали

r = r(0) ехр (ca),

где a =pj:180 и c = сtgm, или

lg r =lg r(0)+ccj,

где с =(p/180)*lg e=0,00758.

Здесь m - характеристический угол между радиусом-вектором точки спирали и касательной к ней. Конечно, тут имеется ввиду истинная форма ветвей в их плоско­сти, а не форма, искаженная проекцией. В среднем m = 73° и варьирует в пределах 54-86°. Первое значе­ние соответствует широко раскрытым ветвям, второе от­носится к спиралям, приближающимся к окружности.

Бывает, что ветви имеют несколько различные формы. Встречаются галактики с тремя-четырьмя ветвями и та­кие, у которых есть ветви внутренние и внешние, или “многорукавные”. Вернее сказать, у последних ветви не сплошные, а состоят из дуг, не связанных друг с другом. Двух- и даже трехъярусные спиральные галактики свидетельствуют о сложности этих явлений природы. Еще ранее Хаббл обнаружил, что есть галактики с “перекладиной” - по-английски “бар”,- в центре которой находится их ядро, а спиральные ветви отходят от концов бара, но есть и такие, в которых ветви отходят от середины бара; пос­ледние представляют трудность для теории, считающей ветви “истечением” из бара. Обнаружено течение газа от ядра вдоль бара со скоростями до 100 км/с. В области спиральных ветвей в большинстве случаев вращение близко к твердотельному, и точка пе­региба на кривой вращения находится там, где ветви уже не прослеживаются, хотя свечение системы тянется еще далеко. Нередко ветви отходят не от бара, а от перифе­рии кольца, для которого бар является диаметром.

Много дебатов вызывал вопрос о направлении враще­ния галактик - идет ли оно так, что ветви при этом “волочатся” или, наоборот, “разматываются”. Это важно для теории их происхождения. Острота вопроса сглади­лась, когда обнаружили галактики, имеющие одновременно ветви противоположных направ­лений, т.е. одни “волочащиеся”, другие “разматываю­щиеся”. Если вращение почти твердотельно, то нет по­мех для возникновения ветвей любой формы.

Хаббл ввел обозначения для простых спиралей - S, для “пересеченных спиралей” (с баром) - SВ. Для про­межуточных форм (очень короткий бар) вводились обо­значения SАВ или другие. Неправильные галактики он обозначал через I или Ir, но су­ществует две их разновидности. Эллиптические галактики по Хабблу обозначаются буквой Е с прибавлением цифры от 1 до 7, которая указывает степень сжатия, определяе­мую отношением

где а и b - видимые диаметры (обычно искаженные для нас проекцией). Потом он нашел “линзовидные” галак­тики с “балджем” (большим ядром), окруженным диском, в котором спиралей нет. Он их обозначил S0. Дальней­шие наблюдения показали, что классификация Хаббла не отражает всего многообразия существующих форм и свойств галактик, и было предложено несколько других классификаций, еще быстрее “отстававших от жизни”, и мы на них останавливаться не будем.

Хаббл ввел еще следующие важные дополнения. Сей­час им приходится придавать другой, более глубокий смысл, чем предполагал Хаббл. Аморфные, бесструктур­ные спиральные ветви, не содержащие сверхгигантов и бедные газом, отмечаются приставкой а(Sа). Очень клочковатые ветви с множеством горячих звезд-гигантов и бо­гатые газовыми туманностями - приставкой с(Sс), а спирали промежуточного вида отмечаются приставкой b(Sb). Такова М 31 (Sb), а М 33 есть Sс. Наша Галактика может относиться к типу Sbс - промежуточная спираль. У Sс ядра значительно меньше, чем у Sb. Но у Sа, вопреки мнению Хаббла, они бывают разными.

После многих попыток теоретически объяснить суще­ствование спиральных галактик при наличии не строго твердотельного вращения очень популярной стала тео­рия, основы которой заложили Лин и Шу в 60-е годы.

Большой интерес представляет знание того, как галактики распределяются по светимостям, что в некоторой степени отражает их распределение и по массе, так как при одинаковом составе входящих в них звезд масса пропорциональна светимости. Это положение более оправдано для однотипных галактик, в особенности дтя эллиптических, у которых нет большого различия ни в структуре, ни в цвете. Но сперва пытались получить об­щую картину для всех типов галактик вместе, и тогда казалось, что карликовых галактик с абсолютной величиной М = - 16 (в степени m) и меньше мало. Но потом открыли довольно много очень слабых и мелких галактик в окрест­ностях нашей Галактики.

Пространственную структуру галактик типов Е и S0 можно узнать, вычисляя пространственные плотности в функции радиуса из результатов точной фотометрии их поверхностной яркости. Яркость, измеренная в точках вдоль видимого радиуса, создается излучением всех звезд, лежащих на луче нашего зрения - на хордах сфероида. От яркости в проекции можно перейти при условии наличия центральной симметрии к объемной яркости.

Строение Метагалактики, скопления.

Отдельные галактики часто объединены в пары сравни­мых друг с другом систем или состоят из одной большой галактики и одного или даже нескольких спутников с меньшими светимостью, размерами и массами.

Можно заметить и немногочисленные группы галак­тик. Некоторые из них, чаще часть их членов,- лишь случайные проекции галактик, расположенных ближе или дальше. Наиболее тесными парами и группами с члена­ми, безусловно связанными друг с другом физически, яв­ляются взаимодействующие системы - гнезда и цепочки систем.

Наконец, существуют скопления галактик как бедные и рассеянные, так и богатые, концентрирующиеся к цен­тру скопления сотен и многих тысяч галактик.

Много усилий прилагается к попыткам обнаружить скопления галактик - системы, которые стали бы едини­цами высшего порядка в качестве “кирпичей” Метагалак­тики. Реальное существование их пока не доказано

В скоплениях сильно преобладают эллиптические Е и линзовидные галактики S0, а в общем поле между ни­ми многочисленны спирали.

Двойные галактики. Хольмберг в Швеции составил каталог двойных и кратных галактик в количестве около 8007, но, к сожалению, современным требованиям он не удовлетворяет. Во всяком случае, гипотезу Хольмберга, что двойные галактики возникают в результате грави­тационного захвата, надо оставить. По современным представлениям пары, группы и скопления галактик, как та­ковые, возникали на ранних стадиях их образования.

И. Д. Караченцев ввел понятие об изолированных галактиках, видимое расстояние между которыми в пять или более раз меньше расстоя­ния до другой ближайшей галактики, и составил каталог 603 пар.

Надо заметить, что в любом каталоге таких галактик нет сведений о расстоянии от нас до каждой компоненты, и потому нет уверенности в реальной близости их компо­нент друг к другу. Поэтому И. Д. Караченцев и другие астрономы упорно работаюли над определением красного смещения компонент. Из них они находят и разности скоростей компонент, помогающие оценить мас­су систем и отношение у них массы к светимости.

Масса пары галактик пропорциональна квадрату раз­ности их скоростей (предполагается, что их движение орбитально) и расстоянию между компонентами. Но мы не знаем наклона к лучу зрения орбиты и длины линии, соединяющей компоненты, и поэтому пользуемся средни­ми, вероятнейшими их величинами. Пейдж в США, полу­чивший скорости многих пар, показал, что массы, опре­деленные этим методом, на порядок больше масс, которые могли бы быть найдены из изучения вращения галактик или дисперсии скоростей в них. Более точные измерения скоростей в САО на 6-метровом телескопе это различие в определении масс устраняют. Половина “изолированных пар” состоит из взаимодействующих галактик. По Уайту типичный орбитальный период в парах составляет 200 10 6 лет, а типичное расстояние между ними около 40 кпс. До 15% всех галактик входит в пары, но пока еще трудно уточнить процент оптических пар вследствие случайной проекции. Эксперименты И.Д. Караченцева и А. Л. Щербановского с использованием ЭВМ показали, что оптических пар только около 10%, но число это за­висит от условий определения понятия двойственности.

Группы. Хольмберг выделял из поля тройные и крат­ные галактики. Как ни определять их, число объектов быстро убывает с переходом ко все большей кратности. С другой стороны, выделяют группы галактик; например, Вокулер дал список 54 групп и их членов. Но эти весьма обширные группы содержат до десятков членов, перехо­дя, вероятно, в бедные скопления, бедные скопления пе­реходят в богатые, состоящие из сотен, а может быть, десятков тысяч членов. Почти ни для одной группы, даже малочисленной, нет сведений о лучевой скорости каждо­го члена. Из нескольких данных часто можно сделать заключение, что, применив теорему о вириале, мы полу­чим положительную энергию, указывающую на неустой­чивость группы. В. А. Амбарцумян трактует это как признак молодости таких групп и считает их мо­лодыми.

Другие астрономы не согласны с ним и полагают, что все группы должны быть устойчивы, а это требует при данных скоростях членов большей массы; поэтому и го­ворят о “скрытой массе”. Группы Вокулера содержат в некоторой неизвестной мере галактики, лишь проектирующиеся на группу. Я. Э. Эйнасто считает, что у гигант­ских галактик есть громадное гало (как у М 87) и они-то и представляют “скрытую массу”. Однако, чем больше членов в системе, тем больше должна быть “скрытая масса”, так что вклад корон был бы совершенно недоста­точным, но в распространенность корон астрономы не верят, и в общем проблемы устойчивости групп и суще­ствования “скрытых масс” еще не решены.

Самыми бесспорными и наиболее интересными груп­пами являются гнезда взаимодействующих галактик; сре­ди последних к наименее тесным относится Квинтет Сте­фана из пяти галактик. Но и в нем, как в цепочке VV 172 и некоторых других, есть член с аномальным красным смещением. Арп предполагает, что такие группы выбро­шены из больших галактик.

Скопления галактик. Ближайшее к нам скопление галактик, скорее, облако их, включающее много больших и ярких спиралей, содержащих газ и пыль, отстоит на нас на 12 Мпс и находится в скоплении Девы. Подобное же близкое облако находится в Большой Медведице. Каждое из них содержит сотни галактик. Но больший интерес представляют богатые шаровые скопления галактик, кон­центрирующиеся к своему центру. Ближайшее из них - в Волосах Вероники, отстоящее от нас на 70 Мпс, содер­жит за единичными исключениями эллиптические Е и линзовидные галактики S0, в которых газа или совсем нет или мало. Число галактик в скоплениях такого “пра­вильного” типа устанавливается лишь до какой-либо предельной видимой звездной величины. Ярчайшие члены правильных скоплений являются гигантскими галактика­ми и неизменность этих величин использу­ется для оценки расстояния до очень далеких скоплений, определение красного смещения которых невозможно по техническим причинам. Цвикки регистрировал скопления с числом видимых членов не менее 50. В больших, кон­центрированных скоплениях, ближайших к нам, насчи­тывается более 10000 членов. Установление принадлеж­ности к скоплению отдельных членов по красному смеще­нию при большом числе членов представляет чрезвычайные трудности. Подсчеты членов скопления в функции расстояния от центра делают, вычитая из плотности га­лактик скопления плотность галактик фона неба побли­зости. Так, установлено, что в богатых правильных скоп­лениях ход числовой плотности на площади сходен с хо­дом числа частиц в изотермическом газовом шаре в функции расстояния от центра.

Беря же более широкие окрестности, Л. С. Шаров показал наличие в скоплениях галактик плотного ядра и обширной короны; кроме того, наблюдается сегрегация некоторых типов галактик, например сильнее концентри­рующихся к центру. Наибольшее число красных смеще­ний (около 50) измерено в скоплении Кома. В таких случаях по дисперсии скоростей членов можно оценить массу; ее можно оценить также по функции светимости галактик в скоплении, нормализуя ее и зная связь све­тимости с массой для эллиптических галактик. Массы богатых скоплений составляют 10 14 масс Солнца (и больше).

Неожиданное компактное скопление открыла Р. К. Шахбазян. Оно оказалось состоящим из дюжины компактных галактик. Расстояние до него равно 700 Мне, а размер - всего 350Х180 кпс. Дисперсия лучевых скоростей в нем необъяснимо мала: 62 км/с. Шахбазян и Петросян от­крыли затем в Бюракане еще десятки подобных по виду скоплений, но они еще не исследованы.

Очень трудно выделить в скоплениях карликовые чле­ны, в частности, рассеянные бедные сфероидальные га­лактики типа Печи и Скульптора, так как последние плохо видны из-за малой поверхностной яркости, а другие трудно отличить от галактик далекого фона. Каталог таких галактик типа Скульптора составила и исследовала В. Е. Караченцова.

Длительные поиски привели к заключению, что лишь в немногих скоплениях имеется крайне слабое общее свечение, создаваемое, вероятно, карликовыми галакти­ками. С другой стороны, в них рассеяно небольшое коли­чество пыли, заметно поглощающей свет.

Нейтральный водород в скоплениях не обнаружен, но есть радиоизлучение, идущее от существующего по гипо­тезе Б.В. Комберга горячего газа в коронах гигантских членов скопления. Было найдено в скоплениях и рент­геновское излучение, особенно сильное от радиогалактики NGC 1275 в скоплении Персея. Эйбелл на Паломарском атласе неба нашел 2712 очень богатых скоплений, а Цвикки по тому же материалу выявил и оконтурил десятки тысяч скоплений с числом членов не менее 50 и кратко классифицировал их.

Эти данные служат материалом для огромного числа попыток обнаружить скопления скоплений, иначе сверх­скопления. Некоторые авторы их не усматривают, другие считают, что нашли, третьи полагают, что сами определе­ния этого понятия различны. Те, кто считает, что сверх­скопления найдены, находят в их составе всего три - четыре скопления, что следовало бы называть лишь кратной галактикой, в ранг же скоплений зачисляют си­стемы, содержащие хотя бы десятки звезд. Поэтому автор считает, что пока еще скопления скоплений не обнару­жены, хоть могут существовать. Его мнение разделяет, по-видимому, и Эйбелл, ранее выделявший такие сверх-скоплеиия. Статистические методы, применяемые в этих поисках, вынуждены опираться на каталог Цвикки, даю­щий контур скопления. Границы даже простых скоплении определены очень ненадежно. Б. И. Фесенко считает, что при таких работах сильное искажение вносит неучиты­ваемое влияние клочковатости межгалактического погло­щения света в пашей Галактике. Ему также кажется сомнительным утверждение Вокулера, что ближайшие к нам облака и группы скоплений (ближе 5 Мпс) образуют уплощенное сверхскоплепие с центром в скоплении Девы.

Некоторые частные случаи поздней эволюции галактик

За последние годы многократно пытались создать модели звездного состава галактик, которые бы отвечали наблю­даемым интегральным спектрам ярких (центральных) областей спиральных и эллиптических галактик. (Получить хорошие спектрограммы слабо светящихся, но об­ширных частей галактик, диска и спиральных ветвей по­ка не удается.) В модели должна быть подобрана такая смесь звезд разных спектров и светимостей, чтобы она при взятых пропорциях их числа давала спектр, сходный с наблюдаемым. Получается, что эти области галактик должны содержать больше красных карликов, чем звезды вблизи Солнца. Модели эти пока еще не вполне совер­шенны. Поэтому, даже если числовые данные теории для разных стадий эволюции различных звезд верны, расчеты эволюции суммарного звездного состава галактик нельзя еще апробировать с уверенностью. В. А. Амбарцумян, сопоставляя видимую неустойчивость мелких групп и скоплений галактик с существованием активности ядер, пришел к мысли о вероятности ранней фрагментации дозвездного вещества, превращения его в разлетающиеся системы звезд в ассоциациях и галактик в группах. Та­кую дисперсию вещества вместо его конденсации он считает происходящей и в современную эпоху.

Более распространена идея конденсации диффузного вещества в звезды, восходящая к гипотезе Гершеля. За последние годы эта гипотеза развилась в теорию звездо­образования при движении в газе ударной волны сжатия. Звездообразование в нашу эпоху связывается с наличием молодых горячих звезд в области движения и сжатия холодных газов с пылью. Но системы самих галактик от­носятся к очень давней эпохе эволюции Метагалактики, и все группы галактик и их спутники считаются возник­шими лишь давным-давно.

В противоположность этому изучение взаимодействия галактик привело автора данного обзора к убеждению, что иногда на периферии плоских галактик, в частности на конце спиральной ветви, возникают сгущения массы и свечения, которые отделяются несколько от спиральной ветви и из части спиральной галактики превращаются тем самым в ее спутника. Массы их варьируют от массы небольшой области Н I I до массы, сравнимой с массой галактики-родительницы, как, например, в общеизвестной системе М51. Приливная теория готова приписать приливам от уже существовавшего спутника само возникновение спиральных ветвей, но большинство подобных спутников так малы по массе, что не в состоянии создать требуемых мощных приливных сил. Повидимому, фраг­ментация происходит и в гнездах и в цепочках галактик, которые должны быть неустойчивы уже из-эа своей формы. В исследованных к 1980 г. случаях внутренние скорости компонент оказались удивительно малыми.

СПИСОК ЛИТЕРАТУРЫ

2. Воронцов-Вельяминов Б. А., 1978 - Внегалактическая астрономия,

2-е изд.- М.: Наука.

3. Происхождение и эволюция галактик и звезд/ Под ред. С.Б. Пикельнера.- М.: Наука, 1976.

4. Проблемы современной космогонии/Под ред. В. А. Аябарцумяна.-М.: Наука, 1969.

5. Бербидж Дж., Бербидж М., 1969 - Квазары.- М.: Мир.

6. Строение звездных систем/Под ред. П. Н. Холоиова.-М.: ИЛ, 1962.

7. Зельдович Л. Б., Новиков И. Д., 1967 - Релятивистская астрофизи­ка.- М.: Наука.

8. Звезды и звездные системы./Под. ред. Д.Я. Мартынова.-М.: 1981 г.

9. Волынский Б.А. , Астрономия.-М.: 1971 г.

Светимость звезд вычисляется по их абсолютной звездной величине М, которая связана с видимой звездной величиной m соотношениями

M = m + 5 + 51gπ (116)

M = m + 5 - 51gr, (117)

где π - годичный параллакс звезды, выраженный в секундах дуги (") и r - расстояние звезды в парсеках (пс). Найденная по формулам (116) и (117) абсолютная звездная величина Μ принадлежит к тому же виду, что и видимая звездная величина m, т. е. может быть визуальной Μ v , фотографической M pg , фотоэлектрической (M v , M в или М v) и т. д. В частности, абсолютная болометрическая звездная величина, характеризующая полное излучение,

M b = M v + b (118)

и может быть также вычислена по видимой болометри ческой звездной величине

m b = m v + b, (119)

где b - болометрическая поправка, зависящая от спектрального класса и класса светимости звезды.

Светимость L звезд выражается в светимости Солнца, принятой за единицу (L = 1), и тогда

lg L = 0,4(M - M), (120)

где M - абсолютная звездная величина Солнца: визуальная M v = +4 m ,79; фотографическая M pg - = +5m,36; фотоэлектрическая желтая Μ ν = +4 m 77; фотоэлектрическая синяя M B = 5 m ,40; болометрическая M b = +4 m ,73. Эти звездные величины необходимо использовать при решении задач данного раздела.

Вычисленная по формуле (120) светимость звезды соответствует виду абсолютных звездных величин звезды и Солнца.

Закон Стефана-Больцмана

применим для определения эффективной температуры Т е только тех звезд, у которых известны угловые диаметры. Если Ε- количество энергии, падающей от звезды или Солнца по нормали на площадку в 1 см 2 границы земной атмосферы за 1c, то при угловом диаметре Δ, выраженном в секундах дуги ("), температура

(121)

где σ= 1,354·10 -12 кал/(см 2 ·с·град 4) = 5,70·10 -5 эрг/(см2·с·град 4) и выбирается в зависимости от единиц измерения количества энергии E, которое находится из формулы (111) по разности болометрических звездных величин звезды и Солнца путем сравнения с солнечной постоянной Ε ~ 2 кал/(см2·мин).

Цветовая температура Солнца и звезд, в спектрах которых известно распределение энергии, может быть найдена по закону Вина

Τ = K/λ m , (122)

где λ m - длина волны, соответствующая максимуму энергии, а К - постоянная, зависящая от единиц измерения λ. При измерении λ в см К=0,2898 см·град, а при измерении λ в ангстремах (Å) K=2898· 10 4 Å·град.

С достаточной степенью точности цветовая температуpa звезд вычисляется по их показателям цвета С и (B-V)

(123)

(124)

Массы Μ звезд обычно выражаются в массах Солнца (Μ = 1) и надежно определяются только для физических двойных звезд (с известным параллаксом π) по третьему обобщенному закону Кеплера: сумма масс компонентов двойной звезды

Μ 1 + М 2 = a 3 / P 2 , (125)

где Ρ - период обращения звезды-спутника вокруг главной звезды (или обеих звезд вокруг общего центра масс), выраженный в годах, и а - большая полуось орбиты звезды-спутника в астрономических единицах (а. е.).

Величина а в а. е. вычисляется по угловому значению большой полуоси а" и параллаксу π, полученным из наблюдений в секундах дуги:

а = а"/π (126)

Если известно отношение расстояний а 1 и а 2 компонентов двойной звезды от их общего центра масс, то равенство

M 1 /M 2 = а 2 /а 1 (127)

позволяет вычислить массу каждого компонента в отдельности.

Линейные радиусы R звезд всегда выражаются в радиусах Солнца (R = 1) и для звезд с известными угловыми диаметрами Δ (в секундах дуги)

(128)

lgΔ = 5,444 - 0,2 m b -2 lg T (129)

Линейные радиусы звезд вычисляются также по формулам

lgR = 8,473-0,20M b -2 lgT (130)

lgR = 0,82C-0,20M v + 0,51 (131)

и lgR = 0,72(B-V) - 0,20 M v + 0,51, (132)

в которых Т - температура звезды (строго говоря, эффективная, но если она не известна, то цветовая).

Так как объемы звезд всегда выражаются в объемах Солнца, то они пропорциональны R 3 , и поэтому средняя плотность звездного вещества (средняя плотность звезды)

(133)

где ρ -средняя плотность солнечного вещества.

При ρ = 1 средняя плотность звезды получается в плотностях солнечного вещества; если же нужно вычислить ρ в г/см3, следует принять ρ =1,41 г/см 3 .

Мощность излучения звезды или Солнца

(134)

а ежесекундная потеря массы через излучение определяется по формуле Эйнштейна

(135)

где с = 3 · 10 10 см/с - скорость света, ΔΜ - выражается в граммах в секунду и ε 0 - в эргах в секунду.

Пример 1. Определить эффективную температуру и радиус звезды Веги (а Лиры), если ее угловой диаметр равен 0",0035, годичный параллакс 0",123 и болометрический блеск - 0 m ,54. Болометрическая звездная величина Солнца равна -26 m ,84, а солнечная постоянная близка к 2 кал/(см 2 ·мин).

Данные : Вега, Δ=3",5·10 -3 , π = 0",123, m b = -0 m ,54;

Солнце, m b = - 26m,84, E = 2 кал/(см 2 ·мин) = 1/30 кал/(см 2 ·с); постоянная σ= 1,354 x 10 -12 кал/(см 2 ·с·град 4).

Решение . Падающее нормально на единицу площади земной поверхности излучение звезды, аналогичное солнечной постоянной, вычисляется по формуле (111):

lg E/E=0,4 (m b - m b) = 0,4 (-26 m ,84 + 0 m ,54) = -10,520 = -11 + 0,480,

откуда E/E = 3,02 · 10 -11 ,

или Ε = 3,02· 10 -11 · 1/30 = 1,007·10 -12 кал/(см2 · с).

Согласно (121), эффективная температура звезды

По формуле (128), радиус Веги

Пример 2. Найти физические характеристики звезды Сириуса (а Большого Пса) и его спутника по следующим данным наблюдений: видимая желтая звездная величина Сириуса равна -1 m ,46, его основной показатель цвета 0 m ,00, a у звезды-спутника соответственно +8 m ,50 и +0 m ,15; параллакс звезды равен 0",375; спутник обращается вокруг Сириуса с периодом 50 лет по орбите с угловым значением большой полуоси 7",60, причем отношение расстояний обеих звезд до общего центра масс составляет 2,3:1. Абсолютную звездную величину Солнца в желтых лучах принять равной +4 m ,77.

Данные : Сириус, V 1 = - 1 m ,46, (В-V) 1 = 0 m ,00;

спутник, V 2 = +8 m ,50, (B-V) 2 = +0 m ,15, P = 50 лет, a"=7",60; а 2 /а 1 = 2,3:1; п=0",375.

Солнце, M v = +4 m ,77.

Решение . Согласно формулам (116) и (120), абсолютная звездная величина Сириуса

M v1 = V 1 + 5 + 5 lgп = -1 m ,46 + 5 + 5 lg 0,375 = +1 m ,41, а логарифм его светимости

откуда светимость L 1 = 22.

По формуле (124), температура Сириуса

по формуле (132)

и тогда радиус Сириуса R 1 = 1,7, а его объем R 1 3 =1,7 3 = 4,91 (объема Солнца).

Те же формулы дают для спутника Сириуса: M v2 = +11 m ,37; L 2 = 2,3·10 -3 ; T 2 = 9100°; R 2 = 0,022; R 2 3 = 10,6·10 -6 .

По формуле (126), большая полуось орбиты спутника

по (125) сумма масс обеих звезд

и, по (127), отношение масс

откуда при совместном решении уравнений (125) и (127) находится масса Сириуса Μ 1 = 2,3 и масса его спутника М 2 = 1,0

Средняя плотность звезд вычисляется по формуле (133): у Сириуса

а у его спутника

По найденным характеристикам - радиусу, светимости и плотности - видно, что Сириус принадлежит к звездам главной последовательности, а его спутник является белым карликом.

Задача 284. Вычислить визуальную светимость звезд, визуальный блеск и годичный параллакс которых указаны в скобках: α Орла (0m,89 и 0",198), α Малой Медведицы (2m, 14 и 0",005) и ε Индейца (4m,73 и 0",285).

Задача 285. Найти фотографическую светимость звезд, для которых визуальный блеск, обычный показатель цвета и расстояние от Солнца указаны в скобках: β Близнецов (lm,21, +1m,25 и 10,75 пс); η Льва (3m,58, +0m,00 и 500 пс); звезда Каптейна (8m,85, + 1m,30 и 3,98 пс). Звездная величина Солнца указана в задаче 275.

Задача 286. Во сколько раз визуальная светимость звезд предыдущей задачи превышает их фотографическую светимость?

Задача 287. Визуальный блеск Капеллы (а Возничего) равен 0m,21, а ее спутника 10m,0. Показатели цвета этих звезд равны соответственно +0m,82 и +1m,63. Определить, во сколько раз визуальная и фотографическая светимость Капеллы больше соответствующей светимости ее спутника.

Задача 288. Абсолютная визуальная звездная величина звезды β Большого Пса равна-2m,28. Найти визуальную и фотографическую светимость двух звезд, одна из которых (с показателем цвета +0m,29) в 120 раз абсолютно ярче, а другая (с показателем цвета +0m,90) в 120 раз абсолютно слабее звезды β Большого Пса.

Задача 289. Если бы Солнце, Ригель (β Ориона), Толиман (а Центавра) и его спутник Проксима (Ближайшая) находились на одинаковом расстоянии от Земли, то какое количество света в сравнении с солнечным получала бы она от этих звезд? Визуальный блеск Ригеля 0m,34, его параллакс 0",003, те же величины у Толимана 0m, 12 и 0",751, а у Проксимы 10m,68 и 0",762. Звездная величина Солнца указана в задаче 275.

Задача 290. Найти расстояния от Солнца и параллаксы трех звезд Большой Медведицы по их блеску в желтых лучах и абсолютной звездной величине в синих лучах:

1) а, V = 1m,79, (В-V) = + lm,07 и Mв = +0m,32;

2) δ, V = 3m,31, (Β-V) = +0m,08 и Mв = + 1m,97;

3) η, V = 1m,86, (В-V) = -0m,19 и Мв = - 5m,32.

Задача 291. На каком расстоянии от Солнца находится звезда Спика (а Девы) и чему равен ее параллакс, если ее светимость в желтых лучах равна 720, основной показатель цвета равен -0m,23, а блеск в синих лучах 0m,74?

Задача 292. Абсолютная синяя (в В-лучах) звездная величина звезды Капеллы (а Возничего) +0m,20, a звезды Проциона (а Малого Пса) + 3m,09. Во сколько раз эти звезды в синих лучах абсолютно ярче или слабее звезды Регула (а Льва), абсолютная желтая (в V лучах) звездная величина которой равна -0m,69, а основной показатель цвета -0m,11?

Задача 293. Как выглядит Солнце с расстояния звезды Толимана (а Центавра), параллакс которой 0",751?

Задача 294. Каков визуальный и фотографический блеск Солнца с расстояний звезд Регула (а Льва), Антареса (а Скорпиона) и Бетельгейзе (а Ориона), параллаксы которых соответственно равны 0",039, 0",019 и 0",005?

Задача 295. На сколько болометрические поправки отличаются от основных показателей цвета при болометрической светимости звезды, превышающей в 20, 10 и 2 раза ее желтую светимость, которая, в свою очередь, больше синей светимости звезды соответственно в 5, 2 и 0,8 раза?

Задача 296. Максимум энергии в спектре Спики (а Девы) приходится на электромагнитную волну длиной 1450 Å, в спектре Капеллы (а Возничего) -на 4830 Å и в спектре Поллукса (β Близнецов)-на 6580 Å. Определить цветовую температуру этих звезд.

Задача 297. Солнечная постоянная периодически колеблется в пределах от 1,93 до 2,00 кал/(cм 2 ·мин) На сколько при этом изменяется эффективная температура Солнца, видимый диаметр которого близок к 32"? Постоянная Стефана σ= 1,354 10 -12 кал/(см 2 ·с·град 4).

Задача 298. По результату предыдущей задачи найти приближенное значение длины волны, соответствующей максимуму энергии в солнечном спектре.

Задача 299. Определить эффективную температуру звезд по измеренным их угловым диаметрам и доходящему от них до Земли излучению, указанным в скобках:

α Льва (0",0014 и 3,23· 10 -11 кал/(см 2 ·мин));

α Орла (0",0030 и 2,13· 10 -11 кал/(см 2 ·мин));

α Ориона (0",046 и 7,70·10 -11 кал/(см 2 ·мин)).

Задача 300. Видимая болометрическая звездная величина звезды α Эридана равна -1m,00 и угловой диаметр 0",0019, у звезды α Журавля аналогичные параметры +1m,00 и 0",0010, а у звезды α Тельца +0m,06 и 0",0180. Вычислить температуру этих звезд, приняв видимую болометрическую звездную величину Солнца равной -26m,84 и солнечную постоянную близкой к 2 кал/(см2 мин).

Задача 301. Определить температуру звезд, визуальный и фотографический блеск которых указан в скобках: γ Ориона (1m,70 и 1m,41); ε Геркулеса (3m,92 и 3m,92); α Персея (1m,90 и 2m,46); β Андромеды (2m,37 и 3m,94).

Задача 302. Вычислить температуру звезд по фотоэлектрической желтой и синей звездным величинам, указанным в скобках: ε Большого Пса (1m,50 и 1m,29); β Ориона (0m,13 и 0m,10); α Киля (-0m,75 и - 0m,60); α Водолея (2m,87 и 3m,71); α Волопаса (-0m,05 и 1m,18); α Кита (2m,53 и 4m,17).

Задача 303. По результатам двух предыдущих задач найти длину волны, соответствующую максимуму энергии в спектрах тех же звезд.

Задача 304. У звезды Беги (а Лиры) параллакс 0",123 и угловой диаметр 0",0035, у Альтаира (а Орла) аналогичные параметры 0",198 и 0",0030, у Ригеля (β Ориона) - 0",003 и 0",0027 и у Альдебарана (а Тельца) - 0",048 и 0",0200. Найти радиусы и объемы этих звезд.

Задача 305. Блеск Денеба (а Лебедя) в синих лучах 1m,34, его основной показатель цвета +0m,09 и параллакс 0",004; те же параметры у звезды ε Близнецов равны 4m,38, +1m,40 и 0",009, а у звезды γ Эридана 4m,54, + 1m,60 и 0",003. Найти радиусы и объемы этих звезд.

Задача 306. Сравнить диаметры звезды δ Змееносца и звезды Барнарда, температура которых одинакова, если у первой звезды видимая болометрическая звездная величина равна 1m,03 и параллакс 0",029, а у второй те же параметры 8m,1 и 0",545.

Задача 307. Вычислить линейные радиусы звезд, температура и абсолютная болометрическая звездная величина которых известны: у α Кита 3200° и -6m,75, у β Льва 9100° и +1m,18, а у ε Индейца 4000° и +6m,42.

Задача 308. Чему равны угловые и линейные диаметры звезд, видимая болометрическая звездная величина, температура и параллакс которых указаны в скобках: η Большой Медведицы (-0m,41, 15500° и 0",004), ε Большой Медведицы (+ lm,09, 10 000° и 0",008) и β Дракона (+ 2m,36, 5200° и 0",009)?

Задача 309. Если у двух звезд примерно одинаковой температуры радиусы различаются в 20, 100 и 500 раз, то во сколько раз различается их болометрическая светимость?

Задача 310. Во сколько раз радиус звезды α Водолея (спектральный подкласс G2Ib) превышает радиус Солнца (спектральный подкласс G2V), если ее видимая визуальная звездная величина 3m,19, болометрическая поправка -0m,42 и параллакс 0",003, температура обоих светил примерно одинакова, а абсолютная болометрическая звездная величина Солнца равна +4m,73?

Задача 311. Вычислить болометрическую поправку для звезд спектрального подкласса G2V, к которому принадлежит Солнце, если угловой диаметр Солнца 32", его видимая визуальная звездная величина равна -26m,78 и эффективная температура 5800°.

Задача 312. Найти приближенное значение болометрической поправки для звезд спектрального подкласса В0Iа, к которому принадлежит звезда ε Ориона, если ее угловой диаметр 0",0007, видимая. визуальная звездная величина 1m,75 и максимум энергии в ее спектре приходится на длину волны 1094 Å.

Задача 313. Вычислить радиус и среднюю плотность звезд, указанных в задаче 285, если масса звезды β Близнецов примерно 3,7, масса η Льва близка к 4,0, а масса звезды Каптейна 0,5.

Задача 314. Визуальный блеск Полярной звезды 2m,14, ее обычный показатель цвета +0m,57, параллакс 0",005 и масса равна 10. Те же параметры у звезды Фомальгаута (а Южной Рыбы) 1m,29, +0m,11, 0",144 и 2,5, а у звезды ван-Маанена 12m,3, + 0m,50, 0",236 и 1,1. Определить светимость, радиус и среднюю плотность каждой звезды и указать ее положение на диаграмме Герцшпрунга - Рессела.

Задача 315. Найти сумму масс компонентов двойной звезды ε Гидры, параллакс которой 0",010, период обращения спутника 15 лет и угловые размеры большой полуоси его орбиты 0",21.

Задача 316. Найти сумму масс компонентов двойной звезды α Большой Медведицы, параллакс которой 0",031, период обращения спутника 44,7 года и угловые размеры большой полуоси его орбиты 0",63.

Задача 317. Вычислить массы компонентов двойных звезд по следующим данным:

Задача 318. Для главных звезд предыдущей задачи вычислить радиус, объем и среднюю плотность. Видимая желтая звездная величина и основной показатель цвета этих звезд: α Возничего 0m,08 и +0m,80, α Близнецов 2m,00 и +0m,04 и ξ Большой Медведицы 3m,79 и +0m,59.

Задача 319. Для Солнца и звезд, указанных в задаче 299, найти мощность излучения и потерю массы за секунду, сутки и год. Параллаксы этих звезд следующие: α Льва 0",039, α Орла 0",198 и α Ориона 0",005.

Задача 320. По результатам предыдущей задачи вычислить продолжительность наблюдаемой интенсивности излучения Солнца и тех же звезд, полагая ее возможной до потери половины своей современной массы, которая (в массах Солнца) у α Льва равна 5,0, у α Орла 2,0 и у α Ориона 15. Массу Солнца принять равной 2·10 33 г.

Задача 321. Определить физические характеристики компонентов двойной звезды Процйоиа (а Малого Пса) и указать их положение на диаграмме Герцшпрунга-Рессела, если из наблюдений известны: визуальный блеск Проциона 0m,48, его обычный показатель цвета +0m,40, видимая болометрическая звездная величина 0m,43, угловой диаметр 0",0057 и параллакс 0",288; визуальный блеск спутника Проциона 10m,81, его обычный показатель цвета +0m,26, период обращения вокруг главной звезды - 40,6 года по орбите с видимой большой полуосью 4",55; отношение расстояний обеих звезд от их общего центра масс равно 19:7.

Задача 322. Решить предыдущую задачу для двойной звезды α Центавра. У главной звезды фотоэлектрическая желтая звездная величина равна 0m,33, основной показатель цвета +0m,63, видимая болометрическая звездная величина 0m,28; у спутника аналогичные величины суть 1m,70, + 1m,00 и 1m,12, период обращения 80,1 года на видимом среднем расстоянии 17",6; параллакс звезды 0",751 и отношение расстояний компонентов от их общего центра масс равно 10:9.

Ответы - Физическая природа Солнца и звезд

Кратные и переменные звезды

Блеск Ε кратной звезды равен сумме блеска Ε i всех ее компонентов

E = E 1 + E 2 + E 3 + ... = ΣE ί , (136)

и поэтому ее видимая т и абсолютная Μ звездная величина всегда меньше соответствующей звездной величины m i и M i любого компонента. Положив в формуле Погсона (111)

lg (E/E 0) = 0,4 (m 0 -m)

Е 0 = 1 и m 0 = 0, получим:

lg E = - 0,4 m. (137)

Определив по формуле (137) блеск E i каждого компонента, находят по формуле (136) суммарный блеск Ε кратной звезды и снова по формуле (137) вычисляют m = -2,5 lg E.

Если заданы отношения блеска компонентов

E 1 /E 2 = k,

E 3 /E 1 = n

и т. д, то блеск всех компонентов выражают через блеск одного из них, например E 2 = E 1 /k, Ε 3 = n Ε 1 и т. д., и затем по формуле (136) находят Е.

Средняя орбитальная скорость ν компонентов затменной переменной звезды может быть найдена по периодическому наибольшему смещению Δλ линий (с длиной волны λ) от их среднего положения в ее спектре, так как в данном случае можно принять

v = v r = c (Δλ/λ) (138)

где v r - лучевая скорость и с = 3·10 5 км/с - скорость света.

По найденным значениям v компонентов и периоду переменности Ρ звезды вычисляют большие полуоси a 1 и a 2 их абсолютных орбит:

a 1 = (v 1 /2п) P и а 2 = (v 2 /2п) P (139)

затем - большую полуось относительной орбиты

а = а 1 + а 2 (140)

и, наконец, по формулам (125) и (127)-массы компонентов.

Формула (138) позволяет также вычислить скорость расширения газовых оболочек, сброшенных новыми и сверхновыми звездами.

Пример 1. Вычислить видимую визуальную звездную величину компонентов тройной звезды, если ее визуальный блеск равен 3 m ,70, второй компонент ярче третьего в 2,8 раза, а первый ярче третьего на 3 m ,32.

Данные : m = 3 m ,70; E 2 /E 3 = 2,8; m 1 = m 3 -3 m ,32.

Решение . По формуле (137) находим

lgE = - 0,4m = - 0,4·3 m ,70 = - 1,480 = 2,520

Чтобы воспользоваться формулой (136), необходимо найти отношение E 1 /E 3 ; по (111),

lg (E 1 /E 3) = 0,4 (m 3 -m 1)= 0,4·3 m ,32= 1,328

откуда E 1 = 21,3 E 3

Согласно (136),

E = E 1 + E 2 + E з = 21,3 E 3 + 2,8 E 3 + E 3 = 25,1 E 3

E 3 = E / 25,1 = 0,03311 / 25,1 = 0,001319 = 0,00132

E 2 = 2,8 E 3 = 2,8·0,001319 = 0,003693 = 0,00369

иE 1 = 21,3 E 3 = 21,3·0,001319 = 0,028094 = 0,02809.

По формуле (137)

m 1 = - 2,5 lg E 1 = - 2,5·lg 0,02809 = - 2,5 ·2,449 = 3 m ,88,

m 2 = - 2,5 lg E 2 = - 2,5·lg 0,00369 = - 2,5·3,567 = 6 m ,08,

m 3 = -2,5 lg E 3 = - 2,5·lg 0,00132 = - 2,5·3,121 = 7 m ,20.

Пример 2. В спектре затменной переменной звезды, блеск которой меняется за 3,953 сут, линии относительно их среднего положения периодически смещаются в противоположные стороны до значений в 1,9· 10 -4 и 2,9· 10 -4 от нормальной длины волны. Вычислить массы компонентов этой звезды.

Данные : (Δλ/λ) 1 = 1,9·10 -4 ; (Δλ/λ) 2 = 2,9·10 -4 ; Ρ = 3 д,953.

Решение . По формуле (138), средняя орбитальная скорость первого компонента

v 1 = v r1 = c (Δλ/λ) 1 = 3·10 5 ·1,9·10 -4 ; v 1 = 57 км/с,

Орбитальная скорость второго компонента

v 2 = v r2 = с (Δλ/λ) 2 = 3·10 5 ·2,9·10 -4 ;

v 2 = 87 км/с.

Чтобы вычислить значения больших полуосей орбит компонентов, необходимо период обращения Р, равный периоду переменности, выразить в секундах. Так как 1 д = 86400 с, то Ρ = 3,953·86400 c . Тогда, согласно (139), у первого компонента большая полуось орбиты

a 1 = 3,10·10 6 км,

а у второго а 2 = (v 2 /2п) P = (v 2 /v 1) a 1 , = (87/57)·3,10·10 6 ;

a 2 =4,73·10 6 км,

и, по (140), большая полуось относительной орбиты

a = a 1 + a 2 = 7,83·10 6 ; а = 7,83·10 6 км.

Для вычисления суммы масс компонентов по формуле (125) следует выразить a в а. е. (1 а. е.= 149,6·10 6 км) и Р - в годах (1 год=365 д,3).

или М 1 + М 2 = 1,22 ~ 1,2.

Отношение масс, по формуле (127),

и тогда Μ 1 ~ 0,7 и М 2 ~ 0,5 (в массах Солнца).

Задача 323. Определить визуальный блеск двойной звезды α Рыб, блеск компонентов которой 4m,3 и 5m,2.

Задача 324. Вычислить блеск четырехкратной звезды ε Лиры по блеску ее компонентов, равному 5m,12; 6m,03; 5m,11 и 5m,38.

Задача 325. Визуальный блеск двойной звезды γ Овна 4m,02, а разность звездных величин ее компонентов составляет 0m,08. Найти видимую звездную величину каждого компонента этой звезды.

Задача 326. Какой блеск тройной звезды, если первый ее компонент ярче второго в 3,6 раза, третий - слабее второго в 4,2 раза и имеет блеск 4m,36?

Задача 327. Найти видимую звездную величину двойной звезды, если один из компонентов имеет блеск 3m,46, а второй на 1m,68 ярче первого компонента.

Задача 328. Вычислить звездную величину компонентов тройной звезды β Единорога с визуальным блеском 4m,07, если второй компонент слабее первого в 1,64 раза и ярче третьего на 1m,57.

Задача 329. Найти визуальную светимость компонентов и общую светимость двойной звезды α Близнецов, если ее компоненты имеют визуальный блеск 1m,99 и 2m,85, а параллакс равен 0",072.

Задача 330. Вычислить визуальную светимость второго компонента двойной звезды γ Девы, если визуальный блеск этой звезды равен 2m,91, блеск первого компонента 3m,62, а параллакс 0",101.

Задача 331. Определить визуальную светимость компонентов двойной звезды Мицара (ζ Большой Медведицы), если ее блеск равен 2m,17, параллакс 0",037, а первый компонент ярче второго в 4,37 раза.

Задача 332. Найти фотографическую светимость двойной звезды η Кассиопеи, визуальный блеск компонентов которой 3m,50 и 7m,19, их обычные показатели цвета +0m,571 и +0m,63, а расстояние 5,49 пс.

Задача 333. Вычислить массы компонентов затменных переменных звезд по следующим данным:

Звезда Лучевая скорость компонентов Период переменности
β Персея U Змееносца WW Возничего U Цефея 44 км/с и 220 км/с 180 км/с и 205 км/с 117 км/с и 122 км/с 120 км/с и 200 км/с 2 д,867 1 д,677 2 д,525 2 д,493

Задача 334. Во сколько раз меняется визуальный блеск переменных звезд β Персея и χ Лебедя, если у первой звезды он колеблется в пределах от 2m,2 до 3m,5, а у второй-от 3m,3 до 14m,2?

Задача 335. Во сколько раз меняется визуальная и болометрическая светимость переменных звезд α Ориона и α Скорпиона, если у первой звезды визуальный блеск колеблется от 0m,4 до 1m,3 и Соответствующая ему болометрическая поправка от -3m,1 до -3m,4, а у второй звезды - блеск от 0m,9 до 1m,8 и болометрическая поправка от -2m,8 до -3m,0?

Задача 336. В каких пределах и во сколько раз меняются линейные радиусы переменных звезд α Ориона и α Скорпиона, если у первой звезды параллакс равен 0",005 и угловой радиус меняется от 0",034 (в максимуме блеска) до 0",047 (в минимуме блеска), а у второй - параллакс 0",019 и углавой радиус -от 0",028 до 0",040?

Задача 337. По данным задач 335 и 336 вычислить температуру Бетельгейзе и Антареса в максимуме их блеска, ес ли в минимуме температура первой звезды равна 3200К, а второй - 3300К.

Задача 338. Во сколько раз и с каким суточным градиентом меняется светимость в желтых и синих лучах переменных звезд-цефеид α Малой Медведицы, ζ Близнецов, η Орла, ΤΥ Щита и UZ Щита, сведения о переменности которых следующие:

Задача 339. По данным предыдущей задачи найти амплитуды изменения блеска (в желтых и синих лучах) и основных показателей цвета звезд, построить графики зависимости амплитуд от периода переменности и сформулировать вывод об обнаруженной по графикам закономерности.

Задача 340. В минимуме блеска визуальная звездная величина звезды δ Цефея 4m,3, а звезды R Треугольника 12m,6. Каков блеск этих звезд в максимуме светимости, если она у них возрастает соответственно в 2,1 и 760 раз?

Задача 341. Блеск Новой Орла 1918 г. изменился за 2,5 сут с 10m,5 до 1m,1. Во сколько раз он увеличился и как в среднем менялся на протяжении полусуток?

Задача 342. Блеск Новой Лебедя, обнаруженной 29 августа 1975 г., до вспышки был близок к 21m, а в максимуме увеличился до 1m,9. Если считать, что в среднем абсолютная звездная величина новых звезд в максимуме блеска бывает около -8m, то какую светимость имела эта звезда до вспышки и в максимуме блеска и на каком примерно расстоянии от Солнца звезда находится?

Задача 343. Эмиссионные водородные линии Н5 (4861 А), и Н1 (4340 А) в спектре Новой Орла 1918 г. были Смещены к фиолетовому концу соответственно на 39,8 Å и 35,6 Å, а в спектре Новой Лебедя 1975 г. - на 40,5 Å и 36,2 Å. С какой скоростью расширялись газовые оболочки, сброшенные этими звездами?

Задача 344. Угловые размеры галактики М81 в созвездии Большой Медведицы равны 35"Х14", а галактики М51 в созвездии Гончих Псов-14"Х10", Наибольший блеск сверхновых звезд, вспыхнувших в разное время в этих галактиках, был равен соответственно 12m,5 и 15m,1, Приняв в среднем абсолютную звездную величину сверхновых звезд в максимуме блеска близкой к -15m,0, вычислить расстояния до этих галактик и их линейные размеры.

Ответы - Кратные и переменные звезды

Урок 24

Тема урока по астрономии: Физическая природа звезд

Ход урока астрономии:

I. Новый материал

Распределение цветов в спектре =К О Ж З Г С Ф = запомнить можно например по тексту: Как однажды Жак Звонарь городской сломал фонарь.

Исаак Ньютон (1643-1727) в 1665г разложил свет в спектр и объяснил его природу.

Уильям Волластон в 1802г наблюдал темные линии в солнечном спектре, а в 1814г их независимо обнаружил и подробно описал Йозеф фон ФРАУНГОФЕР (1787-1826, Германия) (они называются линиями Фраунгофера) 754 линии в солнечном спектре. В 1814г он создал прибор для наблюдения спектров - спектроскоп.

В 1959г Г. КИРХГОФ, работая вместе с Р. БУНЗЕН с 1854г, открыли спектральный анализ, назвав спектр непрерывным и сформулировали законы спектрального анализа, что послужило основой возникновения астрофизики:

  • 1. Нагретое твердое тело дает непрерывный спектр.
  • 2. Раскаленный газ дает эмиссионный спектр.
  • 3. Газ, помещенный перед более горячим источником, дает темные линии поглощения.

У. ХЕГГИНС первым применив спектрограф начал спектроскопию звезд. В 1863г показал, что спектры Солнца и звезд имеют много общего и что их наблюдаемое излучение испускается горячим веществом и проходит через вышележащие слои более холодных поглощающих газов.

Спектры звезд – это их паспорт с описанием всех звездных закономерностей. По спектру звезды можно узнать ее светимость, расстояние до звезды, температуру, размер, химический состав ее атмосферы, скорость вращения вокруг оси, особенности движения вокруг общего центра тяжести.

2. Цвет звезд

ЦВЕТ - свойство света вызывать определенное зрительное ощущение в соответствии со спектральным составом отражаемого или испускаемого излучения. Свет разных длин волн возбуждает разные цветовые ощущения:

от 380 до 470 нм имеют фиолетовый и синий цвет,

от 470 до 500 нм - сине-зеленый,

от 500 до 560 нм - зеленый,

от 560 до 590 нм - желто-оранжевый,

от 590 до 760 нм - красный.

Однако цвет сложного излучения не определяется однозначно его спектральным составом.

Глаз чувствителен к длине волны, несущей максимальную энергию?мах=b/T (закон Вина, 1896г).

В начале 20-го столетия (1903-1907гг) Эйнар Герцшпрунг (1873-1967, Дания) первым определяет цвета сотен ярких звезд.

3. Температура звезд

Непосредственно связана с цветом и спектральной классификацией. Первое измерение температуры звезд произведено в 1909г германским астрономом Ю. Шейнер. Температура определяется по спектрам с помощью закона Вина [? max.Т=b, где b=0,2897*107A.К - постоянная Вина]. Температура видимой поверхности большинства звезд составляет от 2500 К до 50000 К. Хотя например недавно открытая звезда HD 93129A в созвездии Кормы имеет температуру поверхности 220000 К! Самые холодные - Гранатовая звезда (m Цефея) и Мира (o Кита) имеют температуру 2300К, а e Возничего А - 1600 К.

4. Спектральная классификация

В 1862г Анжело Секки (1818-1878, Италия) дает первую спектральную классическую звезд по цвету, указав 4 типа: Белые, Желтоватые, Красные, Очень красные

Гарвардская спектральная классификация впервые была представлена в Каталоге звездных спектров Генри Дрэпера (1884г), подготовленного под руководством Э. Пикеринга. Буквенное обозначение спектров от горячих к холодным звездам выглядит так: O B A F G K M. Между каждыми двумя классами введены подклассы, обозначенные цифрами от 0 до 9. К 1924г классификация окончательно была установлена Энной Кэннон.

Порядок спектров можно запомнить по терминологии: = Один бритый англичанин финики жевал как морковь

Солнце – G2V (V – это классификация по светимости - т.е. последовательности). Эта цифра добавлена с 1953 года. | Таблица 13 – там указаны спектры звезд |.

5. Химический состав звезд

Определяется по спектру (интенсивности фраунгоферовых линий в спектре).Разнообразие спектров звезд объясняется прежде всего их разной температурой, кроме того вид спектра зависит от давления и плотности фотосферы, наличием магнитного поля, особенностями химического состава. Звезды состоят в основном из водорода и гелия (95-98% массы) и других ионизированных атомов, а у холодных в атмосфере присутствуют нейтральные атомы и даже молекулы.

6. Светимость звезд

7. Размеры звезд - существует несколько способов их определения:

  • 1) Непосредственное измерение углового диаметра звезды (для ярких?2,5m, близких звезд, >50 измерено) с помощью интерферометра Майкельсона. Впервые измерен угловой диаметр? Ориона- Бетельгейзе 3декабря 1920г = Альберт Майкельсон и Франсис Пиз.
  • 2) Через светимость звезды L=4?R2?T4в сравнении с Солнцем.
  • 3) По наблюдениям затмения звезды Луной определяют угловой размер, зная расстояние до звезды.

По своим размерам, звезды делятся (название: карлики, гиганты и сверхгиганты ввел Генри Рессел в 1913г, а открыл их в 1905г Эйнар Герцшпрунг, введя название "белый карлик"), введены с 1953 года на:

  • Сверхгиганты (I)
  • Яркие гиганты (II)
  • Гиганты (III)
  • Субгиганты (IV)
  • Карлики главной последовательности (V)
  • Субкарлики (VI)
  • Белые карлики (VII)

Размеры звезд колеблются в очень широких пределах от 104 м до 1012 м. Гранатовая звезда m Цефея имеет диаметр 1,6 млрд. км; красный сверхгигант e Возничего А имеет размеры в 2700R? - 5,7 млрд. км! Звезды Лейтена и Вольф-475 меньше Земли, а нейтронные звезды имеют размеры 10 - 15 км.

8. Масса звезд - одна из важнейших характеристик звезд, указывающая на ее эволюцию, т.е. определяет жизненный путь звезды.

Самые легкие звезды с точно измеренной массой находятся в двойных системах. В системе Ross 614 компоненты имеют массы 0,11 и 0,07 M?. В системе Wolf 424 массы компонентов составляют 0,059 и 0,051 M?. А у звезды LHS 1047 менее массивный компаньон весит всего 0,055 M?.

Обнаружены "коричневые карлики" с массами 0,04 - 0,02 M?.

Хотя массы звезд имеют меньший разброс, чем размеры, но плотности их сильно различаются. Чем больше размер звезды, тем меньше плотность. Самая маленькая плотность у сверхгигантов: Антарес (? Скорпиона) ?=6,4*10-5кг/м3, Бетельгейзе (? Ориона) ?=3,9*10-5кг/м3.Очень большие плотности имеют белые карлики: Сириус В?=1,78*108кг/м3. Но еще больше средняя плотность нейтронных звезд. Средние плотности звезд изменяются в интервале от 10-6 г/см3 до 1014 г/см3 - в 1020 раз!

Самые-самые звезды.

II. Закрепление материала:

  • 1. Задача 1: Светимость Кастора (а Близнецы) в 25 раз превосходит светимость Солнца, а его температура 10400К. Во сколько раз Кастор больше Солнца?
  • 2. Задача 2: Красный гигант в 300 раз превосходит Солнце по размеру и в 30 раз по массе. Какова его средняя плотность?
  • 3. Используя таблицу классификации звезд (ниже) отметить, как изменяются с увеличением размера звезды ее параметры: масса, плотность, светимость, время жизни, число звезд в Галактике

Домашнее задание по астрономии: §24, вопросы стр. 139. Стр. 152 (п. 7-12), составление презентации по одной из характеристик звезд.

Поделитесь с друзьями или сохраните для себя:

Загрузка...