Калькулятор онлайн.Упрощение многочлена.Умножение многочленов. Переход к стандартной форме злп

Понятие многочлена

Определение многочлена: многочлен - это сумма одночленов. Пример многочлена:

здесь мы видим сумму двух одночленов, а это и есть многочлен, т.е. сумма одночленов.

Слагаемые, из которых состоит многочлен, называются членами многочлена.

Является ли разность одночленов многочленом? Да, является, ведь разность легко приводится к сумме, пример: 5a – 2b = 5a + (-2b).

Одночлены тоже считают многочленами. Но в одночлене нет суммы, тогда почему его считают многочленом? А к нему можно прибавить ноль и получить его сумму с нулевым одночленом. Итак, одночлен - это частный случай многочлена, он состоит из одного члена.

Число ноль - это нулевой многочлен.

Стандартный вид многочлена

Что такое многочлен стандартного вида? Многочлен есть сумма одночленов и если все эти одночлены, составляющие многочлен, записаны в стандартном виде, кроме того среди них не должно быть подобных, тогда многочлен записан в стандартном виде.

Пример многочлена в стандартном виде:

здесь многочлен состоит из 2-х одночленов, каждый из которых имеет стандартный вид, среди одночленов нет подобных.

Теперь пример многочлена, который не имеет стандартный вид:

здесь два одночлена: 2a и 4a являются подобными. Надо их сложить, тогда многочлен получит стандартный вид:

Ещё пример:

Этот многочлен приведен к стандартному виду? Нет, у него второй член не записан в стандартом виде. Записав его в стандартном виде, получаем многочлен стандартного вида:

Степень многочлена

Что такое степень многочлена?

Степень многочлена определение:

Степень многочлена - наибольшая степень, которую имеют одночлены, составляющие данный многочлен стандартного вида.

Пример. Какова степень многочлена 5h? Степень многочлена 5h равна одному, ведь в этот многочлен входит всего один одночлен и степень его равна одному.

Другой пример. Какова степень многочлена 5a 2 h 3 s 4 +1? Степень многочлена 5a 2 h 3 s 4 + 1 равна девяти, ведь в этот многочлен входят два одночлена, наибольшую степень имеет первый одночлен 5a 2 h 3 s 4 , а его степень равна 9-ти.

Ещё пример. Какова степень многочлена 5? Степень многочлена 5 равна нулю. Итак, степень многочлена, состоящего только из числа, т.е. без букв, равна нулю.

Последний пример. Какова степень нулевого многочлена, т.е. нуля? Степень нулевого многочлена не определена.

Многочленом называют сумму одночленов. Если все члены многочлена записать в стандартном виде (см. п. 51) и выполнить приведение подобных членов, то получится многочлен стандартного вида.

Всякое целое выражение можно преобразовать в многочлен стандартного вида - в этом состоит цель преобразований (упрощений) целых выражений.

Рассмотрим примеры, в которых целое выражение нужно привести к стандартному виду многочлена.

Решение. Сначала приведем к стандартному виду члены многочлена. Получим После приведения подобных членов получим многочлен стандартного вида

Решение. Если перед скобками стоит знак «плюс, то скобки можно опустить, сохранив знаки всех слагаемых, заключенных в скобки. Воспользовавшись этим правилом раскрытия скобок, получим:

Решение. Если перед скобками стоит зиак «минус», то скобки можно опустить, изменив знаки всех слагаемых» заключенных в скобки. Воспользовавшись этим правилом паскрытия скобок, получим:

Решение. Произведение одночлена и многочлена согласно распределительному закону равно сумме произведений этого одночлена и каждого члена многочлена. Получаем

Решение. Имеем

Решение. Имеем

Осталось привести подобные члены (они подчеркнуты). Получим:

53. Формулы сокращенного умножения.

В некоторых случаях приведение целого выражения к стандартному виду многочлена осуществляется с использованием тождеств:

Эти тождества называют формулами сокращенного умножения,

Рассмотрим примеры, в которых нужно преобразовать заданное выражение в миогочлеи стандартного вида.

Пример 1. .

Решение. Воспользовавшись формулой (1), получим:

Пример 2. .

Решение.

Пример 3. .

Решение. Воспользовавшись формулой (3), получим:

Пример 4.

Решение. Воспользовавшись формулой (4), получим:

54. Разложение многочленов на множители.

Иногда можно преобразовать многочлен в произведение нескольких сомножителей - многочленов или одпочленов. Такое тождественное преобразование называется разложением многочлена на множители. В этом случае говорят, что многочлен делится на каждый из этих множителей.

Рассмотрим некоторые способы разложения многочленов на множители,

1) Вынесение общего множителя за скобку. Это преобразование является непосредственным следствием распределительного закона (для наглядности нужно лишь переписать этот закон «справа налево»):

Пример 1. Разложить на множители многочлен

Решение. .

Обычно при вынесении общего множителя за скобки каждую переменную, входящую во все члены многочлена, выносят с наименьшим показателем, который она имеет в данном многочлене. Если все коэффициенты многочлена - целые числа, то в качестве коэффициента общего множителя берут наибольший по модулю общий делитель всех коэффициентов многочлена.

2) Использование формул сокращенного умножения. Формулы (1) - (7) из п. 53, будучи прочитанными «справа налево, во многих случаях оказываются полезными для разложения многочленов на множители.

Пример 2. Разложить на множители .

Решение. Имеем . Применив формулу (1) (разность квадратов), получим . Применив

теперь формулы (4) и (5) (сумма кубов, разность кубов), получим:

Пример 3. .

Решение. Сначала вынесем за скобку общий множитель. Для этого найдем наибольший общий делитель коэффициентов 4, 16, 16 и наименьшие показатели степеней, с которыми переменные а и b входят в составляющие данный многочлен одночлены. Получим:

3) Способ группировки. Он основан на том, что переместительный и сочетательный законы сложения позволяют группировать члены многочлена различными способами. Иногда удается такая группировка, что после вынесения за скобки общих множителей в каждой группе в скобках остается однн и тот же многочлен, который в свою очередь как общий множитель может быть вынесен за скобки. Рассмотрим примеры разложения многочлена на множители.

Пример 4. .

Решение. Произведем группировку следующим образом:

В первой группе вынесем за скобку общий множитель во второй - общий множитель 5. Получим Теперь многочлен как общий множитель вынесем за скобку: Таким образом, получаем:

Пример 5.

Решение. .

Пример 6.

Решение. Здесь никакая группировка не приведет к появлению во всех группах одного и того же многочлена. В таких случаях иногда оказывается полезным представить какой-либо член многочлена в виде некоторой суммы, после чего снова попробовать применить способ группировки. В нашем примере целесообразно представить в виде суммы Получим

Пример 7.

Решение. Прибавим и отнимем одночлен Получим

55. Многочлены от одной переменной.

Многочлен , где a, b - числа переменная, называется многочленом первой степени; многочлен где а, b, с - числа переменная, называется многочленом второй степени или квадратным трехчленом; многочлен где а, b, с, d - числа переменная называется многочленом третьей степени.

Вообще если о, переменная, то многочлен

называется лсмогочленол степени (относительно х); , m-члены многочлена, коэффициенты, старший член многочлена, а - коэффициент при старшем члене, свободный член многочлена. Обычно многочлен записывают по убывающим степеням переменной, т. е. степени переменной постепенно уменьшаются, в частности, на первом месте стоит старший член, на последнем - свободный член. Степень многочлена - это степень старшего члена.

Например, многочлен пятой степени, в котором старший член, 1 - свободный член многочлена.

Корнем многочлена называют такое значение при котором многочлен обращается в нуль. Например, число 2 является корнем многочлена так как

СЗЛП - задача линейного программирования вида ax ≥ b или ax ≤ b . где a - матрица коэффициентов, b - вектор ограничений.
Математическая модель ЗЛП называется стандартной , если ограничения в ней представлены в виде линейных неравенств, а целевая функция минимизируется или максимизируется.

Назначение сервиса . Онлайн-калькулятор предназначен для приведения КЗЛП к СЗЛП путем преобразования матрицы a к единичной. При этом возможны две стандартных формы:

  1. Первая стандартная форма ax ≥ b , F(X) → min.
  2. Вторая стандартная форма ax ≤ b , F(X) → max.

Инструкция . Выберите количество переменных и количество строк (количество ограничений). Полученное решение сохраняется в файле Word .

Как привести каноническую задачу линейного программирования к стандартной форме
Привести к канонической форме

Пример . Дана основная задача линейного программирования. При помощи элементарных преобразований матрицы коэффициентов системы ограничений привести задачу к стандартному виду и решить ее геометрическим методом или доказать, что она не имеет оптимального плана.

Расширенная матрица системы ограничений-равенств данной задачи:

1 6 -1 -1 -1 2
5 -12 -1 2 0 -4
3 -1 -2 0 -1 -7

Приведем систему к единичной матрице методом жордановских преобразований.
1. В качестве базовой переменной выбираем x 1 .
Разрешающий элемент РЭ=1.
Строка, соответствующая переменной x 1 , получена в результате деления всех элементов строки x 1 на разрешающий элемент РЭ=1

В остальных клетках столбца x 1 записываем нули.

Для этого выбираем из старого плана четыре числа, которые расположены в вершинах прямоугольника и всегда включают разрешающий элемент РЭ.
НЭ = СЭ - (А*В)/РЭ
СТЭ - элемент старого плана, РЭ - разрешающий элемент (1), А и В - элементы старого плана, образующие прямоугольник с элементами СТЭ и РЭ.
1: 1 6: 1 -1: 1 -1: 1 -1: 1 2: 1
5-(1 5):1 -12-(6 5):1 -1-(-1 5):1 2-(-1 5):1 0-(-1 5):1 -4-(2 5):1
3-(1 3):1 -1-(6 3):1 -2-(-1 3):1 0-(-1 3):1 -1-(-1 3):1 -7-(2 3):1

2. В качестве базовой переменной выбираем x 2 .
Разрешающий элемент РЭ=-42.
Строка, соответствующая переменной x 2 , получена в результате деления всех элементов строки x 2 на разрешающий элемент РЭ=-42
На месте разрешающего элемента получаем 1.
В остальных клетках столбца x 2 записываем нули.
Все остальные элементы определяются по правилу прямоугольника.
Представим расчет каждого элемента в виде таблицы:
1-(0 6):-42 6-(-42 6):-42 -1-(4 6):-42 -1-(7 6):-42 -1-(5 6):-42 2-(-14 6):-42
0: -42 -42: -42 4: -42 7: -42 5: -42 -14: -42
0-(0 -19):-42 -19-(-42 -19):-42 1-(4 -19):-42 3-(7 -19):-42 2-(5 -19):-42 -13-(-14 -19):-42

Получаем новую матрицу:
1 0 -3 / 7 0 -2 / 7 0
0 1 -2 / 21 -1 / 6 -5 / 42 1 / 3
0 0 -17 / 21 -1 / 6 -11 / 42 -20 / 3

3. В качестве базовой переменной выбираем x 3 .
Разрешающий элемент РЭ= -17 / 21 .
Строка, соответствующая переменной x 3 , получена в результате деления всех элементов строки x 3 на разрешающий элемент РЭ= -17 / 21
На месте разрешающего элемента получаем 1.
В остальных клетках столбца x 3 записываем нули.
Все остальные элементы определяются по правилу прямоугольника.
Представим расчет каждого элемента в виде таблицы:
1-(0 -3 / 7): -17 / 21 0-(0 -3 / 7): -17 / 21 -3 / 7 -(-17 / 21 -3 / 7): -17 / 21 0-(-1 / 6 -3 / 7): -17 / 21 -2 / 7 -(-11 / 42 -3 / 7): -17 / 21 0-(-6 2 / 3 -3 / 7): -17 / 21
0-(0 -2 / 21): -17 / 21 1-(0 -2 / 21): -17 / 21 -2 / 21 -(-17 / 21 -2 / 21): -17 / 21 -1 / 6 -(-1 / 6 -2 / 21): -17 / 21 -5 / 42 -(-11 / 42 -2 / 21): -17 / 21 1 / 3 -(-6 2 / 3 -2 / 21): -17 / 21
0: -17 / 21 0: -17 / 21 -17 / 21: -17 / 21 -1 / 6: -17 / 21 -11 / 42: -17 / 21 -6 2 / 3: -17 / 21

Получаем новую матрицу:
1 0 0 3 / 34 -5 / 34 60 / 17
0 1 0 -5 / 34 -3 / 34 19 / 17
0 0 1 7 / 34 11 / 34 140 / 17

Поскольку в системе имеется единичная матрица, то в качестве базисных переменных принимаем X = (1,2,3).
Соответствующие уравнения имеют вид:
x 1 + 3 / 34 x 4 - 5 / 34 x 5 = 3 9 / 17
x 2 - 5 / 34 x 4 - 3 / 34 x 5 = 1 2 / 17
x 3 + 7 / 34 x 4 + 11 / 34 x 5 = 8 4 / 17
Выразим базисные переменные через остальные:
x 1 = - 3 / 34 x 4 + 5 / 34 x 5 +3 9 / 17
x 2 = 5 / 34 x 4 + 3 / 34 x 5 +1 2 / 17
x 3 = - 7 / 34 x 4 - 11 / 34 x 5 +8 4 / 17
Подставим их в целевую функцию:
F(X) = - 3(- 3 / 34 x 4 + 5 / 34 x 5 +3 9 / 17) + 13(5 / 34 x 4 + 3 / 34 x 5 +1 2 / 17) + (- 7 / 34 x 4 - 11 / 34 x 5 +8 4 / 17) - 2x 4
или

Система неравенств:
- 3 / 34 x 4 + 5 / 34 x 5 +3 9 / 17 ≥ 0
5 / 34 x 4 + 3 / 34 x 5 +1 2 / 17 ≥ 0
- 7 / 34 x 4 - 11 / 34 x 5 +8 4 / 17 ≥ 0
Приводим систему неравенств к следующему виду:
3 / 34 x 4 - 5 / 34 x 5 ≤ 3 9 / 17
- 5 / 34 x 4 - 3 / 34 x 5 ≤ 1 2 / 17
7 / 34 x 4 + 11 / 34 x 5 ≤ 8 4 / 17
F(X) = - 1 / 34 x 4 + 13 / 34 x 5 +12 3 / 17 → max
Упростим систему.
3x 1 - 5x 2 ≤ 120
- 5x 1 - 3x 2 ≤ 38
7x 1 + 11x 2 ≤ 280
F(X) = - x 1 + 13x 2 +414 → max

В изучении темы о многочленах отдельно стоит упомянуть о том, что многочлены встречаются как стандартного, так и не стандартного вида. При этом многочлен нестандартного вида можно привести к стандартному виду. Собственно, этот вопрос и будем разбирать в данной статье. Закрепим разъяснения примерами с подробным пошаговым описанием.

Yandex.RTB R-A-339285-1

Смысл приведения многочлена к стандартному виду

Немного углубимся в само понятие, действие – «приведение многочлена к стандартному виду».

Многочлены, подобно любым другим выражениям, возможно тождественно преобразовывать. Как итог, мы получаем в таком случае выражения, которые тождественно равны исходному выражению.

Определение 1

Привести многочлен к стандартному виду – означает замену исходного многочлена на равный ему многочлен стандартного вида, полученный из исходного многочлена при помощи тождественных преобразований.

Способ приведения многочлена к стандартному виду

Порассуждаем на тему того, какие именно тождественные преобразования приведут многочлен к стандартному виду.

Определение 2

Согласно определению, каждый многочлен стандартного вида состоит из одночленов стандартного вида и не имеет в своем составе подобных членов. Многочлен же нестандартного вида может включать в себя одночлены нестандартного вида и подобные члены. Из сказанного закономерно выводится правило, говорящее о том, как привести многочлен к стандартному виду:

  • в первую очередь к стандартному виду приводятся одночлены, составляющие заданный многочлен;
  • затем производится приведение подобных членов.

Примеры и решения

Разберем подробно примеры, в которых приведем многочлен к стандартному виду. Следовать будем правилу, выведенному выше.

Отметим, что иногда члены многочлена в исходном состоянии уже имеют стандартный вид, и остается только привести подобные члены. Случается, что после первого шага действий не оказывается подобных членов, тогда второй шаг пропускаем. В общих случаях необходимо совершать оба действия из правила выше.

Пример 1

Заданы многочлены:

5 · x 2 · y + 2 · y 3 − x · y + 1 ,

0 , 8 + 2 · a 3 · 0 , 6 − b · a · b 4 · b 5 ,

2 3 7 · x 2 + 1 2 · y · x · (- 2) - 1 6 7 · x · x + 9 - 4 7 · x 2 - 8 .

Необходимо привести их к стандартному виду.

Решение

рассмотрим сначала многочлен 5 · x 2 · y + 2 · y 3 − x · y + 1 : его члены имеют стандартный вид, подобные члены отсутствуют, значит многочлен задан в стандартном виде, и никаких дополнительных действий не требуется.

Теперь разберем многочлен 0 , 8 + 2 · a 3 · 0 , 6 − b · a · b 4 · b 5 . В его состав входят нестандартные одночлены: 2 · a 3 · 0 , 6 и − b · a · b 4 · b 5 , т.е. имеем необходимость привести многочлен к стандартному виду, для чего первым действием преобразуем одночлены в стандартный вид:

2 · a 3 · 0 , 6 = 1 , 2 · a 3 ;

− b · a · b 4 · b 5 = − a · b 1 + 4 + 5 = − a · b 10 , таким образом получаем следующий многочлен:

0 , 8 + 2 · a 3 · 0 , 6 − b · a · b 4 · b 5 = 0 , 8 + 1 , 2 · a 3 − a · b 10 .

В полученном многочлене все члены – стандартные, подобных членов не имеется, значит наши действия по приведению многочлена к стандартному виду завершены.

Рассмотрим третий заданный многочлен: 2 3 7 · x 2 + 1 2 · y · x · (- 2) - 1 6 7 · x · x + 9 - 4 7 · x 2 - 8

Приведем его члены к стандартному виду и получим:

2 3 7 · x 2 - x · y - 1 6 7 · x 2 + 9 - 4 7 · x 2 - 8 .

Мы видим, что в составе многочлена имеются подобные члены, произведем приведение подобных членов:

2 3 7 · x 2 - x · y - 1 6 7 · x 2 + 9 - 4 7 · x 2 - 8 = = 2 3 7 · x 2 - 1 6 7 · x 2 - 4 7 · x 2 - x · y + (9 - 8) = = x 2 · 2 3 7 - 1 6 7 - 4 7 - x · y + 1 = = x 2 · 17 7 - 13 7 - 4 7 - x · y + 1 = = x 2 · 0 - x · y + 1 = x · y + 1

Таким образом, заданный многочлен 2 3 7 · x 2 + 1 2 · y · x · (- 2) - 1 6 7 · x · x + 9 - 4 7 · x 2 - 8 принял стандартный вид − x · y + 1 .

Ответ:

5 · x 2 · y + 2 · y 3 − x · y + 1 - многочлен задан стандартным;

0 , 8 + 2 · a 3 · 0 , 6 − b · a · b 4 · b 5 = 0 , 8 + 1 , 2 · a 3 − a · b 10 ;

2 3 7 · x 2 + 1 2 · y · x · (- 2) - 1 6 7 · x · x + 9 - 4 7 · x 2 - 8 = - x · y + 1 .

Во многих задачах действие приведения многочлена к стандартному виду – промежуточное при поиске ответа на заданный вопрос. Рассмотрим и такой пример.

Пример 2

Задан многочлен 11 - 2 3 z 2 · z + 1 3 · z 5 · 3 - 0 . 5 · z 2 + z 3 . Необходимо привести его к с стандартному виду, указать его степень и расположить члены заданного многочлена по убывающим степеням переменной.

Решение

Приведем члены заданного многочлена к стандартному виду:

11 - 2 3 z 3 + z 5 - 0 . 5 · z 2 + z 3 .

Следующим шагом приведем подобные члены:

11 - 2 3 z 3 + z 5 - 0 . 5 · z 2 + z 3 = 11 + - 2 3 · z 3 + z 3 + z 5 - 0 , 5 · z 2 = = 11 + 1 3 · z 3 + z 5 - 0 , 5 · z 2

Мы получили многочлен стандартного вида, что дает нам возможность обозначить степень многочлена (равна наибольшей степени составляющих его одночленов). Очевидно, что искомая степень равна 5 .

Остается только расположить члены по убывающим степеням переменных. С этой целью мы просто переставим местами члены в полученном многочлене стандартного вида с учетом требования. Таким образом, получим:

z 5 + 1 3 · z 3 - 0 , 5 · z 2 + 11 .

Ответ:

11 - 2 3 · z 2 · z + 1 3 · z 5 · 3 - 0 , 5 · z 2 + z 3 = 11 + 1 3 · z 3 + z 5 - 0 , 5 · z 2 , при этом степень многочлена – 5 ; в результате расположения членов многочлена по убывающим степеням переменных многочлен примет вид: z 5 + 1 3 · z 3 - 0 , 5 · z 2 + 11 .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Поделитесь с друзьями или сохраните для себя:

Загрузка...