Какие структуры головного мозга имеют кору. Строение и функции коры головного мозга

Кора – наиболее сложный высокодифференцированный отдел ЦНС. Он делится по своему морфологическому на 6 слоев, которые отличаются по содержанию нейронов и положению нервный переменных. 3 типа нейронов – пирамидные, звездчатые (астроциты), веретенообразные, которые связаны между собой.

Основная роль в афферентной функции и процессах переключения возбуждения принадлежит астроцитам. Они имеют короткие, но сильно ветвящиеся аксоны, которые не выходят за пределы серого вещества. Более короткие и более ветвящиеся дендриты. Они участвуют в процессах восприятия, раздражения и объединении деятельности пирамидных нейронов.

Слои коры:

    Молекулярный (зональный)

    Наружный зернистый

    Малых и средних пирамид

    Внутренний зернистый

    Ганглиозный (слой больших пирамид)

    Слой полиморфных клеток

Пирамидные нейроны осуществляют эфферентную функцию коры и связывают между собой удаленные друг от друга нейроны участков коры. К пирамидным нейронам относятся пирамиды Беца (гигантские пирамидные), они находятся в передней центральной извилине. Самые длинные отростки аксонов у пирамид Беца. Характерная особенность пирамидных клеток – перпендикулярная ориентация. Вниз отходит аксон, а вверх – дендриты.

На каждом из нейронов может насчитываться от 2 до 5 тыс. синаптических контактов. Это говорит о том, что управляющие клетки находятся под большим влиянием других неуронов других зон, что позволяет координировать моторную реакцию в ответ на воздействие внешней среды.

Веретенообразные клетки характерны для 2 и 4 слоев. У человека эти слои наиболее широко выражены. Они выполняют ассоциативную функцию, связывают между собой зоны коры при решении различных задач.

Структурной организующей единицей является кортикальная колонка – вертикальный связанный между собой модуль, все клетки которого между собой функционально связаны и образуют общее рецепторное поле. Она имеет несколько входов и несколько выходов. Колонки, имеющие сходные функции объединяются в макроколонки.

КБП развивается сразу после рождения, и до 18 лет идет рост числа элементарных связей в КБП.

Величина клеток, которых содержится в коре, толщина слоев, их связь между собой определяют цитоархитектонику коры.

Бродман и Фог.

Цитоархитектоническое поле – участок коры, который отличается от других, но похож внутри. Каждое поле имеет свою специфику. В настоящее время выделяют 52 основных поля, но часть полей у человека отсутствует. У человека выделяют области, которые имеют соответствующие поля.

Кора несет на себе отпечаток филогенетического развития. Она подразделяется на 4 основных типа, которые отличаются между собой дифференцированностью нейронных слоев: палеокортекс – древняя кора, имеющая отношение к обонятельным функциям: обонятельная луковица, обнятельный тракт, обонятельная борозда; археокортекс – старая кора, включает участки медиальной поверхности вокруг мозлистого тела: поясная извилина, гиппокамп, миндалевидное тело; мезокортекс – промежутояная кора: наружно-нижняя поверхность островка; неокортекс – новая кора, только у млекопитающих, 85 % всей коры КБП, лежит на конвекситальной и латеральной поверхностях.

Палеокорткс и археокортекс – лимбическая система.

Связи коры с подкорковыми образованиями осуществляются несколькими типами проводящих путей:

    Ассоциативные волокна – только внутри 1 полушария, связывают соседние извилины в виде дугообразных пучков, либо соседние доли. их назначение – обеспечение целостной работы одного полушария при анализе и синтезе разномодальных возбуждений.

    Проекционные волокна – связывают периферические рецепторы с КГМ. Они имеют разный вход, как правило, перекрещиваются, все они перевлючаются в таламусе. Задача – передача мономодального импульса к соответствующей первичной зоне коры.

    Интегративно-пусковые волокна (интегративные пути) – начинаются от двигательных зон. Это нисходящие эфферентные пути, имеют перекрестия на различных уровнях, зона приложения – мышечные команды.

    Коммисуральные волокна – обеспечивают целостную совместную работу 2 полушарий. Располагаются в мозолистом теле, зрительном перекресте, таламусе и на уровне 4-холомия. Основная задача – соединение равноименных извилин различных полушарий.

    Лимбико-ретикулярные волокна – связывают энергорегулирующие зоны продолговатого мозга с КБП. Задача – поддержание общего активного/пассивного фона мозга.

2 системы управления организмом: ретикулярная формация и лимбическая система. Эти системы являются модулирующими – усиливают/ослабляют импульсы. Этот блок имеет несколько уровней реагирования: физиологический, психологический, поведенческий.

КОРА ГОЛОВНОГО МОЗГА (cortex encephali ) - все поверхности полушарий большого мозга, покрытые плащом (pallium), образованным серым веществом. Вместе с другими отделами ц. н. с. кора участвует в регуляции и координации всех функций организма, играет исключительно важную роль в психической, или высшей нервной деятельности (см.).

В соответствии с этапами эволюционного развития ц. н. с. кору делят на старую и новую. Старая кора (archicortex - собственно старая кора и paleocortex - древняя кора) - филогенетически более древнее образование, чем новая кора (neocortex), появившаяся в процессе развития больших полушарий головного мозга (см. Архитектоника коры головного мозга , Головной мозг).

Морфологически К. г. м. образована нервными клетками (см.), их отростками и нейроглией (см.), имеющей опорно-трофическую функцию. У приматов и человека в коре насчитывается ок. 10 млрд. нейроцитов (нейронов). В зависимости от формы различают пирамидальные и звездчатые нейроциты, которые характеризуются большим разнообразием. Аксоны пирамидальных нейроцитов направляются в подкорковое белое вещество, а их апикальные дендриты - в наружный слой коры. Звездчатые нейроциты имеют только внутрикорковые аксоны. Дендриты и аксоны звездчатых нейроцитов обильно ветвятся вблизи клеточных тел; часть аксонов подходит к наружному слою коры, где они, следуя горизонтально, образуют густое сплетение с вершинами апикальных дендритов пирамидальных нейроцитов. Вдоль поверхности дендритов имеются почковидные выросты, или шипики, которые представляют собой область аксодендритных синапсов (см.). Мембрана тела клетки является областью аксосоматических синапсов. В каждой области коры имеется множество входных (афферентных) и выходных (эфферентных) волокон. Эфферентные волокна идут к другим областям К. г. м., к подкорковым образованиям или к двигательным центрам спинного мозга (см.). Афферентные волокна входят в кору от клеток подкорковых структур.

Древняя кора у человека и высших млекопитающих состоит из одного клеточного слоя, слабо отдифференцированного от нижележащих подкорковых структур. Собственно старая кора состоит из 2-3 слоев.

Новая кора имеет более сложное строение и занимает (у человека) ок. 96% всей поверхности К. г. м. Поэтому, когда говорят о К. г. м., то обычно подразумевают новую кору, к-рую подразделяют на лобную, височную, затылочную и теменную доли. Эти доли делят на области и цитоархитектонические поля (см. Архитектоника коры головного мозга).

Толщина коры у приматов и человека варьирует от 1,5 мм (на поверхности извилин) до 3-5 мм (в глубине борозд). На срезах, окрашенных по Нисслю, видно слоистое строение коры, к-рое зависит от группировки нейроцитов на разных ее уровнях (слоях). В коре принято различать 6 слоев. Первый слой беден клеточными телами; второй и третий - содержат малые, средние и большие пирамидальные нейроциты; четвертый слой - зона звездчатых нейроцитов; пятый слой содержит гигантопирамидальные нейроциты (гигантские пирамидные клетки); шестой слой характеризуется наличием мультиформных нейроцитов. Однако шестислойная организация коры не является абсолютной, т. к. в действительности во многих отделах коры имеет место постепенный и равномерный переход между слоями. Клетки всех слоев, расположенные на одном перпендикуляре по отношению к поверхности коры, тесно связаны между собой и с подкорковыми образованиями. Такой комплекс называют колонкой клеток. Каждая такая колонка отвечает за восприятие преимущественно одного вида чувствительности. Напр., одна из колонок коркового представительства зрительного анализатора воспринимает движение предмета в горизонтальной плоскости, соседняя - в вертикальной и т. п.

Аналогичные комплексы клеток новой коры имеют горизонтальную ориентацию. Предполагают, что, напр., мелкоклеточные слон II и IV состоят в основном из воспринимающих клеток и являются «входами» в кору, крупноклеточный слой V - это «выход» из коры в подкорковые структуры, а среднеклеточный слой III - ассоциативный, связывает между собой различные зоны коры.

Т. о., можно выделить несколько типов прямых и обратных связей между клеточными элементами коры и подкорковых образований: вертикальные пучки волокон, несущие информацию из подкорковых структур к коре и обратно; внутрикортикальные (горизонтальные) пучки ассоциативных волокон, проходящие на различных уровнях коры и белого вещества.

Вариабельность и своеобразие строения нейроцитов свидетельствуют о чрезвычайной сложности аппаратов внутрикорковых переключений и способов соединений между нейроцитами. Такую особенность строения К. г. м. следует рассматривать как морфол, эквивалент ее чрезвычайной реактивности и функц, пластичности, обеспечивающих ей высшие нервные функции.

Увеличение массы корковой ткани происходило в ограниченном пространстве черепа, поэтому поверхность коры, гладкая у низших млекопитающих, у высших млекопитающих и человека преобразовалась в извилины и борозды (рис. 1). Именно с развитием коры уже в прошлом столетии ученые связывали такие стороны деятельности мозга, как память (см.), интеллект, сознание (см.), мышление (см.) и т. п.

1870 год И. П. Павлов определил как год, «с которого начинается научная плодотворная работа по изучению больших полушарий». В этом году Фрич и Гитциг (G. Fritsch, E. Hitzig, 1870) показали, что электрическое раздражение определенных участков переднего отдела К. г. м. собак вызывает сокращение определенных групп скелетной мускулатуры. Многие ученые полагали, что при раздражении К. г. м. активируются «центры» произвольных движений и моторной памяти. Однако еще Ч. Шеррингтон предпочитал избегать функц, интерпретации этого явления и ограничивался лишь утверждением, что область коры, раздражение к-рой вызывает сокращение мышечных групп, интимно связана со спинным мозгом.

Направления экспериментальных исследований К. г. м. конца прошлого столетия почти всегда были связаны с проблемами клин, неврологии. На этой основе были начаты опыты с частичной или полной декортикацией головного мозга (см.). Первым полную декортикацию у собаки произвел Гольтц (F. L. Goltz, 1892). Декортицированная собака оказалась жизнеспособной, но у нее были резко нарушены многие важнейшие функции - зрение, слух, ориентация в пространстве, координация движений и др. До открытия И. П. Павловым феномена условного рефлекса (см.) интерпретация опытов как с полными, так и частичными экстирпациями коры страдала отсутствием объективного критерия их оценки. Введение условнорефлекторного метода в практику эксперимента с экстирпациями открыло новую эру в исследованиях структурно-функциональной организации К. г. м.

Одновременно с открытием условного рефлекса возник вопрос и о его материальной структуре. Поскольку первые попытки выработать условный рефлекс у декортицированных собак не удались, И. П. Павлов пришел к выводу, что К. г. м. является «органом» условных рефлексов. Однако дальнейшими исследованиями была показана возможность выработки условных рефлексов у декортицированных животных. Было установлено, что условные рефлексы не нарушаются при вертикальных перерезках различных областей К. г. м. и разобщении их с подкорковыми образованиями. Эти факты наряду с электрофизиологическими данными дали повод рассматривать условный рефлекс как результат становления многоканальной связи между различными корковыми и подкорковыми структурами. Недостатки метода экстирпации для изучения значения К. г. м. в организации поведения побудили к разработке методик обратимого, функционального, выключения коры. Буреш и Бурешова (J. Bures, О. Buresova, 1962) применили феномен так наз. распространяющейся депрессии путем аппликации к тому или иному участку коры хлористого калия или других раздражителей. Поскольку депрессия не распространяется через борозды, этот метод можно использовать только на животных с гладкой поверхностью К. г. м. (крысы, мыши).

Другой путь функц, выключения К. г. м.- ее охлаждение. Метод, разработанный Н. Ю. Беленковым с сотр. (1969), состоит в том, что в соответствии с формой поверхности корковых областей, намечаемых к выключению, изготавливаются капсулы, которые вживляются над твердой мозговой оболочкой; во время эксперимента через капсулу пропускается охлажденная жидкость, вследствие чего температура коркового вещества под капсулой снижается до 22-20°. Отведение биопотенциалов с помощью микроэлектродов показывает, что при такой температуре импульсная активность нейронов прекращается. Метод холодовой декортикации, используемый в хрон, опытах на животных, продемонстрировал эффект экстренного отключения новой коры. Оказалось, что такое отключение прекращает осуществление ранее выработанных условных рефлексов. Т. о., было показано, что К. г. м. представляет собой необходимую структуру для проявления условного рефлекса в интактном мозге. Следовательно, наблюдаемые факты выработки условных рефлексов у хирургически декортицированных животных являются результатом компенсаторных перестроек, происходящих в интервале времени от момента операции до начала исследования животного в хрон, эксперименте. Компенсаторные явления имеют место и в случае функц, выключений новой коры. Так же, как и холодовое выключение, острое выключение новой коры у крыс с помощью распространяющейся депрессии резко нарушает условно-рефлекторную деятельность.

Сравнительная оценка эффектов полной и частичной декортикации у различных видов животных показала, что обезьяны переносят эти операции тяжелее, чем кошки и собаки. Степень нарушения функций при экстирпации одних и тех же зон коры различна у животных, стоящих на разных ступенях эволюционного развития. Напр., удаление височных областей у кошек и собак меньше нарушает функцию слуха, чем у обезьян. Точно так же зрение после удаления затылочной доли коры страдает у обезьян в большей степени, чем у кошек и собак. На основании этих данных возникло представление о кортиколизации функций в процессе эволюции ц. н. с., согласно к-рому филогенетически более ранние звенья нервной системы переходят на более низкий уровень иерархии. При этом К. г. м. пластически перестраивает функционирование этих, филогенетически более старых, структур в соответствии с влиянием окружающей среды.

Корковые проекции афферентных систем К. г. м. представляют собой специализированные конечные станции путей от органов чувств. От К. г. м. к мотонейронам спинного мозга в составе пирамидного тракта идут эфферентные пути. Они берут начало преимущественно от двигательной области коры, к-рая у приматов и человека представлена передней центральной извилиной, расположенной кпереди от центральной борозды. Кзади от центральной борозды расположена соматосенсорная область К. г. м.- задняя центральная извилина. Отдельные участки скелетной мускулатуры корти-колизированы в различной степени. Наименее дифференцированно в передней центральной извилине представлены нижние конечности и туловище, большую площадь занимает представительство мышц кисти. Еще более обширная область соответствует мускулатуре лица, языка и гортани. В задней центральной извилине в таком же соотношении, как и в передней центральной извилине, представлены афферентные проекции частей тела. Можно сказать, что организм как бы спроецирован в эти извилины в виде абстрактного «гомункулюса», который характеризуется чрезвычайным перевесом в пользу передних сегментов тела (рис. 2 и 3).

Помимо этого, в состав коры входят ассоциативные, или неспецифические, области, получающие информацию от рецепторов, воспринимающих раздражения различной модальности, и от всех проекционных зон. Филогенетическое развитие К. г. м. характеризуется прежде всего ростом ассоциативных зон (рис. 4) и обособлением их от проекционных. У низших млекопитающих (грызунов) почти вся кора состоит из одних только проекционных зон, выполняющих одновременно и ассоциативные функции. У человека проекционные зоны занимают лишь небольшую часть коры; все остальное отведено под ассоциативные зоны. Предполагают, что ассоциативные зоны играют особо важную роль в осуществлении сложных форм в. н. д.

У приматов и человека наибольшего развития достигает лобная (префронтальная) область. Это филогенетически самая молодая структура, имеющая непосредственное отношение к самым высшим психическим функциям. Однако попытки спроецировать эти функции на отдельные участки лобной коры не имеют успеха. Очевидно, любая часть лобной коры может включаться в осуществление любой из функций. Эффекты, наблюдаемые при разрушении различных участков этой области, относительно кратковременны или часто совсем отсутствуют (см. Лобэктомия).

Приуроченность отдельных структур К. г. м. к определенным функциям, рассматриваемая как проблема локализации функций, остается до сих пор одной из самых трудных проблем неврологии. Отмечая, что у животных после удаления классических проекционных зон (слуховых, зрительных) условные рефлексы на соответствующие раздражители частично сохраняются, И. П. Павлов высказал гипотезу о существовании «ядра» анализатора и его элементов, «рассеянных» по всей К. г. м. С помощью микроэлектродные методы исследования (см.) удалось зарегистрировать в различных областях К. г. м. активность специфических нейроцитов, отвечающих на стимулы определенной сенсорной модальности. Поверхностное отведение биоэлектрических потенциалов выявляет распределение первичных вызванных потенциалов на значительных площадях К. г. м.- за пределами соответствующих проекционных зон и цитоархитектонических полей. Эти факты наряду с поли-функциональностью нарушений при удалении любой сенсорной области или ее обратимом выключении указывают на множественное представительство функций в К. г. м. Двигательные функции также распределены на значительных площадях К. г. м. Так, нейроциты, отростки которых формируют пирамидный тракт, расположены не только в моторных областях, но и за их пределами. Помимо сенсорных и моторных клеток, в К. г. м. имеются еще и промежуточные клетки, или интернейроциты, составляющие основную массу К. г. м. и сосредоточенные гл. обр. в ассоциативных областях. На интернейроциты конвергируют разномодальные возбуждения.

Экспериментальные данные указывают, т. о., на относительность локализации функций в К. г. м., на отсутствие корковых «центров», зарезервированных под ту или иную функцию. Наименее дифференцированными в функц, отношении являются ассоциативные области, обладающие особо выраженными свойствами пластичности и взаимозамещаемости. Из этого, однако, не вытекает, что ассоциативные области эквипотенциальны. Принцип эквипотенциальности коры (равнозначности ее структур), высказанный Лешли (К. S. Lashley) в 1933 г. на основании результатов экстирпаций мало-дифференцированной коры крысы, в целом не может распространяться на организацию кортикальной активности у высших животных и человека. Принципу эквипотенциальности И. П. Павлов противопоставил концепцию о динамической локализации функций в К. г. м.

Решение проблемы структурно-функциональной организации К. г. м. во многом затрудняется отождествлением локализации симптомов экстирпаций и стимуляций определенных корковых зон с локализацией функций К. г. м. Этот вопрос касается уже методологических аспектов нейрофизиол, эксперимента, т. к. с диалектической точки зрения любая структурно-функциональная единица в том виде, в каком она выступает в каждом данном исследовании, представляет собой фрагмент, одну из сторон существования целого, продукт интеграции структур и связей мозга. Напр., положение о том, что функция моторной речи «локализуется» в нижней лобной извилине левого полушария, основано на результатах повреждения этой структуры. В то же время электрическая стимуляция этого «центра» речи никогда не вызывает акта артикуляции. Оказывается, однако, что произнесение целых фраз можно вызвать стимуляцией рострального таламуса, посылающего афферентные импульсы в левое полушарие. Фразы, вызванные такой стимуляцией, не имеют ничего общего с произвольной речью и не адекватны ситуации. Этот высоко-интегрированный эффект стимуляции свидетельствует о том, что восходящие афферентные импульсы трансформируются в нейрональный код, эффективный для высшего координационного механизма моторной речи. Точно так же сложнокоординированные движения, обусловленные раздражением моторной области коры, организуются не теми структурами, которые непосредственно подвергаются раздражению, а соседними или спинальными и экстрапирамидными системами, возбуждаемыми по нисходящим путям. Эти данные показывают, что между корой и подкорковыми образованиями имеется тесная связь. Поэтому нельзя противопоставлять кортикальные механизмы работе подкорковых структур, а надо рассматривать конкретные случаи их взаимодействия.

При электрической стимуляции отдельных корковых областей изменяется деятельность сердечно-сосудистой системы, дыхательного аппарата, жел.-киш. тракта и других висцеральных систем. Влияния К. г. м. на внутренние органы К. М. Быков обосновывал также возможностью образования висцеральных условных рефлексов, что наряду с вегетативными сдвигами при различных эмоциях было положено им в основу концепции существования кортико-висцеральных отношений. Проблема кортико-висцеральных отношений решается в плане изучения модуляции корой деятельности подкорковых структур, имеющих непосредственное отношение к регуляции внутренней среды организма.

Существенную роль играют связи К. г. м. с гипоталамусом (см.).

Уровень активности К. г. м. в основном определяется восходящими влияниями от ретикулярной формации (см.) ствола мозга, к-рую контролируют кортико-фугальные влияния. Эффект последних имеет динамический характер и является следствием текущего афферентного синтеза (см.). Исследования с помощью электроэнцефалографии (см.), в частности кортикографии (т. е. отведения биопотенциалов непосредственно от К. г. м.), казалось бы подтвердили гипотезу о замыкании временной связи между очагами возбуждений, возникающих в кортикальных проекциях сигнального и безусловного раздражителей в процессе образования условного рефлекса. Однако оказалось, что по мере упрочения поведенческих проявлений условного рефлекса электрографические признаки условной связи исчезают. Этот кризис методики электроэнцефалографии в познании механизма условного рефлекса был преодолен в исследованиях М. Н. Ливанова с сотр. (1972). Ими показано, что распространение возбуждения по К. г. м. и проявление условного рефлекса зависит от уровня дистантной синхронизации биопотенциалов, отводимых от пространственно удаленных пунктов К. г. м. Повышение уровня пространственной синхронизации наблюдается при умственном напряжении (рис. 5). В этом состоянии участки синхронизации не сконцентрированы в определенных зонах коры, а распределены по всей ее площади. Корреляционные отношения охватывают пункты всей лобной коры, но вместе с тем повышенная синхронность регистрируется и в предцентральной извилине, в теменной области и в других участках К. г. м.

Головной мозг состоит из двух симметричных частей (полушарий), связанных между собой комиссурами, состоящими из нервных волокон. Оба полушария головного мозга объединяются самой большой комиссурой - мозолистым телом (см.). Его волокна связывают идентичные пункты К. г. м. Мозолистое тело обеспечивает единство функционирования обоих полушарий. При его перерезке каждое полушарие начинает функционировать независимо одно от другого.

В процессе эволюции мозг человека приобрел свойство латерализации, или асимметрии (см.). Каждое его полушарие специализировалось для выполнения определенных функций. У большинства людей доминирующим является левое полушарие, обеспечивающее функцию речи и контроль за действием правой руки. Правое полушарие специализировано для восприятия формы и пространства. Вместе с тем функц, дифференциация полушарий не абсолютна. Тем не менее обширные повреждения левой височной доли сопровождаются, как правило, сенсорными и моторными нарушениями речи. Очевидно, что в основе латерализации лежат врожденные механизмы. Однако потенциальные возможности правого полушария в организации функции речи способны проявляться при повреждении левого полушария у новорожденных.

Имеются основания рассматривать латерализацию как адаптивный механизм, развившийся вследствие усложнения функций головного мозга на высшем этапе его развития. Латерализация препятствует интерференции различных интегративных механизмов во времени. Возможно, что кортикальная специализация противодействует несовместимости различных функциональных систем (см.), облегчает принятие решения о цели и способе действия. Интегративная деятельность мозга не исчерпывается, т. о., внешней (суммативной) целостностью, понимаемой как взаимодействие активностей независимых элементов (будь то нейроциты или целые образования мозга). На примере развития латерализации можно видеть, как сама эта целостная, интегративная деятельность мозга становится предпосылкой дифференциации свойств ее отдельных элементов, наделяет их функц, спецификой. Следовательно, функц, вклад каждой отдельной структуры К. г. м. в принципе нельзя оценить в отрыве от динамики интегративных свойств целостного мозга.

Патология

Кора головного мозга редко поражается изолированно. Признаки ее поражения в большей или меньшей степени обычно сопутствуют патологии головного мозга (см.) и входят в состав ее симптомов. Обычно патол, процессами поражается не только К. г. м., но и белое вещество полушарий. Поэтому под патологией К. г. м. обычно понимают ее преимущественное поражение (диффузное или локальное, без строгой границы между этими понятиями). Наиболее обширное и интенсивное поражение К. г. м. сопровождается исчезновением психической активности, комплексом как диффузных, так и локальных симптомов (см. Апаллический синдром). Наряду с неврол, симптомами поражения двигательной и чувствительной сферы, симптомами поражения различных анализаторов у детей является задержка развития речи и даже полная невозможность становления психики. В К. г. м. при этом наблюдаются изменения цитоархитектоники в виде нарушения слоистости, вплоть до полного ее исчезновения, очаги выпадения нейроцитов с замещением их разрастаниями глии, гетеротопия нейроцитов, патология синаптического аппарата и другие патоморфол, изменения. Поражения К. г. м. наблюдаются при различных врожденных аномалиях мозга в виде анэнцефалии, микрогирии, микроцефалии, при различных формах олигофрении (см.), а также при самых различных инфекциях и интоксикациях с поражением нервной системы, при черепно-мозговых травмах, при наследственных и дегенеративных заболеваниях мозга, нарушениях мозгового кровообращения и т. д.

Изучение ЭЭГ при локализации патол, очага в К. г. м. чаще выявляет преобладание очаговых медленных волн, которые рассматриваются как коррелят охранительного торможения (У. Уолтер, 1966). Слабая выраженность медленных волн в области патол, очага является полезным диагностическим признаком в предоперационной оценке состояния больных. Как показали исследования Н. П. Бехтеревой (1974), проведенные совместно с нейрохирургами, отсутствие медленных волн в области патол, очага является неблагоприятным прогностическим признаком последствий хирургического вмешательства. Для оценки патол, состояния К. г. м. используется также тест на взаимодействие ЭЭГ в зоне очагового поражения с вызванной активностью в ответ на положительные и дифференцировочные условные раздражители. Биоэлектрическим эффектом такого взаимодействия может быть как усиление очаговых медленных волн, так и ослабление их выраженности или усиление частых колебаний типа заостренных бета-волн.

Библиография: Анохин П. К. Биология и нейрофизиология условного рефлекса, М., 1968, библиогр.; Беленков Н. Ю. Фактор структурной интеграции в деятельности мозга, Усп. физиол, наук, т. 6, в. 1, с. 3, 1975, библиогр.; Бехтерева Н. П. Нейрофизиологические аспекты психической деятельности человека, Л., 1974; Грей Уолтер, Живой мозг, пер. с англ., М., 1966; Ливанов М. Н. Пространственная организация процессов головного мозга, М., 1972, библиогр.; Лурия А. Р. Высшие корковые функции человека и их нарушения при локальных поражениях мозга, М., 1969, библиогр.; Павлов И. П. Полное собрание сочинений, т. 3-4, М.-Л., 1951; Пенфильд В. и Робертс Л. Речь и мозговые механизмы, пер. с англ., Л., 1964, библиогр.; Поляков Г. И. Основы систематики нейронов новой коры большого мозга человека, М., 1973, библиогр.; Цитоархитектоника коры большого мозга человека, под ред. С. А. Саркисова и др., с. 187, 203, М., 1949; Шаде Дж. и Форд Д. Основы неврологии, пер. с англ., с. 284, М., 1976; M a s t e г t о n R. B. a. B e r k 1 e y M. A. Brain function, Ann. Rev. Psychol., у. 25, p. 277, 1974, bibliogr.; S h о 1 1 D. A. The organization of cerebral cortex, L.-N. Y., 1956, bibliogr.; Sperry R. W. Hemisphere deconnection and unity in conscious awareness, Amer. Psychol., v. 23, p. 723, 1968.

H. Ю. Беленков.

Кора больших полушарий головного мозга представляет собой наиболее молодое образование центральной нервной системы.Деятельность коры больших полушарий основана на принципе условного рефлекса, поэтому ее называют условно-рефлекторной. Она осуществляет быструю связь с внешней средой и приспособление организма к изменяющимся условиям внешней среды.

Глубокие борозды делят каждое полушарие большого мозга на лобную, височную, теменную, затылочную доли и островок . Островок расположен в глубине сильвиевой борозды и закрыт сверху частями лобной и теменной долей мозга.

Кора большого мозга делится на древнюю (архиокортекс ), старую (палеокортекс ) и новую (неокортекс). Древняя кора, наряду с другими функциями, имеет отношение к обонянию и обеспечению взаимодействия систем мозга. Старая кора включает поясную извилину, гиппокамп. У новой коры наибольшее развитие величины, дифференциации функций отмечается у человека. Толщина новой коры 3-4 мм. Общая площадь коры взрослого человека 1700-2000 см 2 , а число нейронов — 14 млрд (если их расположить в ряд, то образуется цепь протяженностью 1000 км) — постепенно истощается и к старости составляет 10 млрд (более 700 км). В составе коры имеются пирамидные, звездчатые и веретенообразные нейроны.

Пирамидные нейроны имеют разную величину, их дендриты несут большое количество шипиков: аксон пирамидного нейрона идет через белое вещество в другие зоны коры или структуры ЦНС.

Звездчатые нейроны имеют короткие, хорошо ветвящиеся дендриты и короткий аксон, обеспечивающий связи нейронов в пределах самой коры большого мозга.

Веретенообразные нейроны обеспечивают вертикальные или горизонтальные взаимосвязи нейронов разных слоев коры.

Строение коры больших полушарий

В коре содержится большое количество глиальных клеток, выполняющих опорную, обменную, секреторную, трофическую функции.

Наружная поверхность коры разделена на четыре доли: лобную, теменную, затылочную и височную. Каждая доля имеет свои проекционные и ассоциативные области.

Кора большого мозга имеет шестислойное строение (рис. 1-1):

  • молекулярный слой (1) светлый, состоит из нервных волокон и имеет небольшое количество нервных клеток;
  • наружный зернистый слой (2) состоит из звездчатых клеток, определяющих длительность циркулирования возбуждения в коре головного мозга, т.е. имеющих отношение к памяти;
  • слой пирамидных меток (3) формируется из пирамидных клеток малой величины и вместе со слоем 2 обеспечивает корко-корко- вые связи различных извилин мозга;
  • внутренний зернистый слой (4) состоит из звездчатых клеток, здесь заканчиваются специфические таламокортикальные пути, т.е. пути, начинающиеся от рецепторов-анализаторов.
  • внутренний пирамидный слой (5) состоит из гигантских пирамидных клеток, которые являются выходными нейронами, аксоны их идут в ствол мозга и спинной мозг;
  • слой полиморфных клеток (6) состоит из неоднородных по величине клеток треугольной и веретенообразной формы, которые образуют кортикоталамические пути.

I — афферентные пути из таламуса: СТА — специфические таламические афференты; НТА — неспецифические таламические афференты; ЭМВ — эфферентные моторные волокна. Цифрами обозначены слои коры; II — пирамидный нейрон и распределение окончаний на нем: А — неспецифические афферентные волокна из ретикулярной формации и ; Б — возвратные коллатерали от аксонов пирамидных нейронов; В — комиссуральные волокна из зеркальных клеток противоположного полушария; Г — специфические афферентные волокна из сенсорных ядер таламуса

Рис. 1-1. Связи коры больших полушарий.

Клеточный состав коры по разнообразию морфологии, функций, формам связи не имеет себе равных в других отделах ЦНС. Нейронный состав, распределение по слоям в разных областях коры различны. Это позволило выделить в мозге человека 53 цитоархитектонических поля. Разделение коры большого мозга на цитоархитектонические поля более четко формируется по мере совершенствования ее функции в филогенезе.

Функциональной единицей коры является вертикальная колонка диаметром около 500 мкм. Колонка - зона распределения разветвлений одного восходящего (афферентного) таламокортикального волокна. Каждая колонка содержит до 1000 нейронных ансамблей. Возбуждение одной колонки тормозит соседние колонки.

Восходящий путь проходит через все корковые слои (специфический путь). Неспецифический путь также проходит через все корковые слои. Белое вещество полушарий расположено между корой и базальными ганглиями. Оно состоит из большого количества волокон, идущих в разных направлениях. Это проводящие пути конечного мозга. Различают три вида путей.

  • проекционный — связывает кору с промежуточным мозгом и другими отделами ЦНС. Это восходящие и нисходящие пути;
  • комиссуральный - его волокна входят в состав мозговых комиссур, которые соединяют соответствующие участки левого и правого полушарий. Входят в состав мозолистого тела;
  • ассоциативный - связывает участки коры одного и того же полушария.

Зоны коры больших полушарий

По особенностям клеточного состава поверхность коры подразделяют на структурные единицы следующего порядка: зоны, области, подобласти, поля.

Зоны коры головного мозга разделяются на первичные, вторичные и третичные проекционные зоны. В них расположены специализированные нервные клетки, к которым поступают импульсы от определенных рецепторов (слуховых, зрительных и т.д.). Вторичные зоны представляют собой периферические отделы ядер анализаторов. Третичные зоны получают обработанную информацию от первичных и вторичных зон коры больших полушарий и играют важную роль в регуляции условных рефлексов.

В сером веществе коры больших полушарий различают сенсорные, моторные и ассоциативные зоны:

  • сенсорные зоны коры больших полушарий - участки коры, в которых располагаются центральные отделы анализаторов:
    зрительная зона — затылочная доля коры больших полушарий;
    слуховая зона — височная доля коры больших полушарий;
    зона вкусовых ощущений — теменная доля коры больших полушарий;
    зона обонятельных ощущений — гиппокамп и височная доля коры больших полушарий.

Соматосенсорная зона находится в задней центральной извилине, сюда приходят нервные импульсы от проприорецепторов мышц, сухожилий, суставов и импульсы от температурных, тактильных и других рецепторов кожи;

  • моторные зоны коры больших полушарии - участки коры, при раздражении которых появляются двигательные реакции. Располагаются в передней центральной извилине. При ее поражении наблюдаются значительные нарушения движения. Пути, по которым импульсы идут от больших полушарий к мышцам, образуют перекрест, поэтому при раздражении моторной зоны правой стороны коры возникает сокращение мышц левой стороны тела;
  • ассоциативные зоны - отделы коры, находящиеся рядом с сенсорными зонами. Нервные импульсы, поступающие в сенсорные зоны, приводят к возбуждению ассоциативных зон. Особенностью их является то, что возбуждение может возникать при поступлении импульсов от различных рецепторов. Разрушение ассоциативных зон приводит к серьезным нарушениям обучения и памяти.

Речевая функция связана с сенсорными и двигательными зонами. Двигательный центр речи (центр Брока) находится в нижней части левой лобной доли, при его разрушении нарушается речевая артикуляция; при этом больной понимает речь, но сам говорить не может.

Слуховой центр речи (центр Вернике) расположен в левой височной доле коры больших полушарий, при его разрушении наступает словесная глухота: больной может говорить, излагать устно свои мысли, но не понимает чужой речи; слух сохранен, но больной не узнает слов, нарушается письменная речь.

Речевые функции, связанные с письменной речью — чтение, письмо, — регулируются зрительным центром речи, расположенным на границе теменной, височной и затылочной долей коры головного мозга. Его поражение приводит к невозможности чтения и письма.

В височной доле находится центр, отвечающий за запоминание слое. Больной с поражением этого участка не помнит названия предметов, ему необходимо подсказывать нужные слова. Забыв название предмета, больной помнит его назначение, свойства, поэтому долго описывает их качества, рассказывает, что делают с этим предметом, но назвать его не может. Например, вместо слова «галстук» больной говорит: «это то, что надевают на шею и завязывают специальным узлом, чтобы было красиво, когда идут в гости».

Функции лобной доли:

  • управление врожденными поведенческими реакциями при помощи накопленного опыта;
  • согласование внешних и внутренних мотиваций поведения;
  • разработка стратегии поведения и программы действия;
  • мыслительные особенности личности.

Состав коры больших полушарий

Кора больших полушарий головного мозга является высшей структурой ЦНС и состоит из нервных клеток, их отростков и нейроглии. В составе коры имеются звездчатые, веретенообразные и пирамидные нейроны. Благодаря наличию складок кора имеет большую поверхность. Выделяют древнюю кору (архикортекс) и новую кору (неокортекс). Кора состоит из шести слоев (рис. 2).

Рис. 2. Кора больших полушарий головного мозга

Верхний молекулярный слой образован в основном дендритами пирамидных клеток нижележащих слоев и аксонами неспецифических ядер таламуса. На этих дендритах формируют синапсы афферентные волокна, приходящие от ассоциативных и неспецифических ядер таламуса.

Наружный гранулярный слой образован мелкими звездчатыми клетками и частично малыми пирамидными клетками. Волокна клеток этого слоя расположены преимущественно вдоль поверхности коры, формируя кортикокортикальные связи.

Слой пирамидных клеток малой величины.

Внутренний гранулярный слой, образованный звездчатыми клетками. В нем заканчиваются афферентные таламокортикальные волокна, начинающиеся от рецепторов анализаторов.

Внутренний пирамидный слой состоит из крупных пирамидных клеток, участвующих в регуляции сложных форм движения.

Мультиформный слой состоит из верстеновидных клеток, образующих кортикоталамические пути.

По функциональной значимости нейроны коры подразделяют на сенсорные , воспринимающие афферентные импульсы от ядер таламуса и рецепторов сенсорных систем; моторные , посылающие импульсы к подкорковым ядрам, промежуточному, среднему, продолговатому мозгу, мозжечку, ретикулярной формации и спинному мозгу; и промежуточные , осуществляющие связь между нейронами коры больших полушарий. Нейроны коры больших полушарий находятся в состоянии постоянного возбуждения, не исчезающего и во время сна.

В кору больших полушарий, к сенсорным нейронам поступают импульсы от всех рецепторов организма через ядра таламуса. И каждый орган имеет свою проекцию или корковое представительство, расположенное в определенных областях больших полушарий.

В коре больших полушарий имеется четыре чувствительные и четыре двигательные области.

Нейроны двигательной коры получают афферентную импульсацию через таламус от мышечных, суставных и кожных рецепторов. Основные эфферентные связи двигательной коры осуществляются через пирамидные и экстрапирамидные пути.

У животных наиболее развита лобная область коры и ее нейроны участвуют в обеспечении целенаправленного поведения. Если удалить эту долю коры, животное становится вялым, сонливым. В височной области локализуется участок слуховой рецепции, и сюда поступают нервные импульсы от рецепторов улитки внутреннего уха. Область зрительной рецепции находится в затылочных долях коры головного мозга.

Теменная область, внеядерная зона, играет важную роль в организации сложных форм высшей нервной деятельности. Здесь расположены рассеянные элементы зрительного и кожного анализаторов, осуществляется межанализаторный синтез.

Рядом с проекционными зонами располагаются ассоциативные зоны, которые осуществляют связь между сенсорной и двигательной зонами. Ассоциативная кора принимает участие в конвергенции различных сенсорных возбуждений, позволяющей осуществлять сложную обработку информации о внешней и внутренней среде.

Кора большого мозга представлена равномерным слоем серого вещества толщиною 1,3-4,5 мм, состоящим более чем из 14 млрд. нервных клеток. Благодаря складчатости коры ее поверхность достигает больших размеров - около 2200 см 2 .

Толща коры состоит из шести слоев клеток, которые различают при специальной окраске и исследовании под микроскопом. Клетки слоев различны по форме и размерам. От них в глубь мозга отходят отростки.

Было установлено, что разные участки - поля коры полушарий различаются по строению и функциям. Таких полей (называемых еще зонами, или центрами) выделяют от 50 до 200. Строгих границ между зонами коры большого мозга не существует. Они составляют аппарат, обеспечивающий прием, переработку приходящих сигналов и ответную реакцию на поступившие сигналы.

В задней центральной извилине, позади от центральной борозды, располагается зона кожной и суставно-мышечной чувствительности . Здесь воспринимаются и анализируются сигналы, возникающие при касании к нашему телу, при воздействии на него холода или тепла, болевых воздействиях.


В противоположность этой зоне - в передней центральной извилине, спереди от центральной борозды, расположена двигательная зона . В ней выявлены участки, которые обеспечивают движения нижних конечностей, мышц туловища, рук, головы. При раздражении этой зоны электротоком возникают сокращения соответствующих групп мышц. Ранения или другие повреждения коры двигательной зоны влекут за собой паралич мышц тела.

В височной доле находится слуховая зона . Сюда поступают и здесь анализируются импульсы, возникающие в рецепторах улитки внутреннего уха. Раздражения участков слуховой зоны вызывают ощущения звуков, а при поражении их болезнью утрачивается слух.

Зрительная зона расположена в коре затылочных долей полушарий. При ее раздражении электрическим током во время операций на мозге человек испытывает ощущения вспышек света и темноты. При поражении ее какой-либо болезнью ухудшается и теряется зрение.

Вблизи боковой борозды расположена вкусовая зона , где анализируются и формируются ощущения вкуса на основании сигналов, возникающих в рецепторах языка. Обонятельная зона расположена в так называемом обонятельном мозге, у основания полушарий. При раздражении этих зон во время хирургических операций или при воспалении люди ощущают запах или вкус каких-либо веществ.

Чисто речевой зоны не существует. Она представлена в коре височной доли, нижней лобной извилине слева, участках теменной доли. Их поражения болезнями сопровождаются расстройствами речи.

Первая и вторая сигнальные системы

Неоценима роль коры большого мозга в совершенствовании первой сигнальной системы и развитии второй. Эти понятия разработаны И.П.Павловым. Под сигнальной системой в целом понимают всю совокупность процессов нервной системы, осуществляющих восприятие, переработку информации и ответную реакцию организма. Она связывает организм с внешним миром.

Первая сигнальная система

Первая сигнальная система обусловливает восприятие посредством органов чувств чувственно-конкретных образов. Она является основой для образования условных рефлексов. Эта система существует как у животных, так и у человека.

В высшей нервной деятельности человека развилась надстройка в виде второй сигнальной системы. Она свойственна только человеку и проявляется словесным общением, речью, понятиями. С появлением этой сигнальной системы стали возможными отвлеченное мышление, обобщение бесчисленных сигналов первой сигнальной системы. По И.П.Павлову, слова превратились в «сигналы сигналов».

Вторая сигнальная система

Возникновение второй сигнальной системы стало возможным благодаря сложным трудовым взаимоотношениям между людьми, так как эта система является средством общения, коллективного труда. Словесное общение не развивается вне общества. Вторая сигнальная система породила отвлеченное (абстрактное) мышление, письмо, чтение, счет.

Слова воспринимаются и животными, но совершенно отлично от людей. Они воспринимают их как звуки, а не их смысловое значение, как люди. Следовательно, у животных нет второй сигнальной системы. Обе сигнальные системы человека взаимосвязаны. Они организуют поведение человека в широком смысле слова. Причем вторая изменила первую сигнальную систему, так как реакции первой стали в значительной мере зависеть от социальной среды. Человек стал в состоянии управлять своими безусловными рефлексами, инстинктами, т.е. первой сигнальной системой.

Функции коры мозга

Знакомство с наиболее важными физиологическими функциями коры большого мозга свидетельствует о необычайном ее значении в жизнедеятельности. Кора вместе с ближайшими к ней подкорковыми образованиями является отделом центральной нервной системы животных и человека.

Функции коры головного мозга - осуществление сложных рефлекторных реакций, составляющих основу высшей нервной деятельности (поведения) человека. Не случайно у него она получила наибольшее развитие. Исключительным свойством коры являются сознание (мышление, память), вторая сигнальная система (речь), высокая организация труда и жизни в целом.

Кора головного мозга присутствует в строении организма многих существ, но у человека она достигла своего совершенства. Ученые утверждают, что это стало возможным благодаря вековой трудовой деятельности, которая сопровождает нас постоянно. В отличие от зверей, птиц или рыб, человек постоянно развивает свои возможности и это улучшает его мозговую деятельность, в том числе и функции коры мозга.

Но, давайте подойдем к этому постепенно, вначале рассмотрев строение коры, что, несомненно, очень увлекательно.

Внутреннее устройство коры головного мозга

Кора головного мозга насчитывает более 15 миллиардов нервных клеток и волокон. Каждая из них имеет разную форму, и образуют несколько уникальных слоев, отвечающих за определенные функции. К примеру, функциональность клеток второго и третьего слоя заключается в трансформации возбуждения и правильное перенаправление в определенные отделы головного мозга. А, например, центробежные импульсы представляют собой работоспособность пятого слоя. Рассмотрим каждый слой более тщательно.

Нумерация слоев головного мозга начинается от поверхности и идет глубже:

  1. Молекулярный слой имеет принципиальное отличие своим низких уровнем клеток. Их очень ограниченное количество, состоящее из нервных волокон тесно взаимосвязаны с друг другом.
  2. Зернистый слой иначе называется наружный. Это обусловлено наличием внутреннего слоя.
  3. Пирамидный уровень назван в честь своего строения, потому что имеет пирамидную структуру нейронов, различных по величине.
  4. Зернистый слой №2 получил название внутренний.
  5. Пирамидальный уровень №2 аналогичен третьему уровню. Его состав – это нейроны пирамидного образа имеющий средний и большой размер. Они проникают до молекулярного уровня, поскольку в нем содержаться апикальные дендриты.
  6. Шестой слой, это фузиформные клетки, имеющие второе название «веретеновидные», которые планомерно переходят в белое вещество головного мозга.

Если рассматривать эти уровни более углубленно, то получается, что кора головного мозга принимает на себя проекции каждых уровней возбуждения, которые протекают в разных отделах ЦНС и называются «нижележащие». Они, в свою очередь, транспортируются до мозга по нервным путям человеческого организма.

Презентация: "Локализация высших психических функций в коре головного мозга"

Таким образом, кора головного мозга - орган высшей нервной деятельности человека, и регулирует абсолютно все нервные процессы, происходящие в организме.

И это происходит благодаря особенностям ее строения, а она разделена на три зоны: ассоциативную, моторную и сенсорную.

Современное представление о строении коры головного мозга

Стоит отметить, что существует и несколько отличное представление о ее строении. Согласно нему, существует три зоны, которые отличает друг от друга не только строение, но и ее функциональным предназначением.

  • Первичная зона (моторная), в которой находятся ее специализированные и высокодифференцированные нервные клетки, получают импульсы от слуховые, зрительных и других рецепторов. Это очень важная зона, поражение которой может привести к серьезным расстройствам двигательной и чувствительной функции.
  • Вторичная (сенсорная) зона отвечает за функции обработки информации. К тому же, ее строение состоит из периферических отделов ядер анализаторов, которые устанавливают корректные связи между раздражителями. Ее поражение грозит человеку серьезным расстройством восприятия.
  • Ассоциативная, или третичная зона, ее строение позволяет, возбуждаться от импульсов, идущих от рецепторов кожи, слуха и др. Она формирует условные рефлексы человека, помогая познавать окружающую действительность.

Презентация: "Кора головного мозга"

Основные функции

Чем же отличается кора головного мозга человека и животного? Тем, что ее предназначение обобщать все отделы и контролировать работы. Данные функции обеспечивают миллиарды нейронов, имеющих разнообразное строение. К ним относятся такие виды, как вставочные, афферентные и эфферентные. Поэтому актуально будет рассмотреть каждые из этих видов более подробно.

Вставочный вид нейронов имеют на первый взгляд взаимоисключающие функции, а именно – тормоз и возбуждение.

Афферентный вид нейронов несет ответственность за импульсы, а точнее за их передачу. Эфферентные, в свою очередь, обеспечивают конкретную область деятельности человека и относят к периферии.

Безусловно, это медицинская терминология и стоит отвлечься от нее, конкретизировав функциональность коры головного мозга человека на простом народном языке. Итак, кора головного мозга отвечает за следующие функции:

  • Способность корректно устанавливать связь между внутренними органами и тканями. И даже более того, делает ее идеальной. Такая возможность базируется на условных и безусловных рефлексах человеческого тела.
  • Организация взаимоотношений человеческого организма и окружающей среды. Помимо этого, она контролирует функциональность органов, корректирует их работу и несет ответственность за обмен веществ в человеческом организме.
  • На 100% отвечает за то, чтобы процессы мышления были корректны.
  • И заключительная, но не менее важная функция – высочайший уровень нервной деятельности.

Ознакомившись с данными функциями, мы приходим к понимаю, что , позволило каждому человеку и всему роду в целом, научится осуществлять контроль за теми процессами, которые происходят в организме.

Презентация: "Структурно-функциональная характеристика сенсорной коры"

Академик Павлов в своих множественных исследованиях не единожды указывал, что именно кора является и распорядителем, и распределителем деятельности человека и животных.

Но, стоит также отметить, что кора головного мозга обладает неоднозначными функциями. Главным образом, это проявляется в работе центральной извилины и лобных долей, которые отвечают за сокращение мышц на совершенно противоположной этому раздражению стороне.

К тому же, разные ее части отвечают за разные функции. Например, затылочные доли за зрительные, а височные – за слуховые функции:

  • Если быть более конкретным, то затылочная доля коры фактически является проекцией сетчатой оболочки глаза, которая отвечает за ее зрительные функции. Если в ней происходит какое-либо нарушений, человек может лишиться , ориентации в незнакомой обстановки и даже к полной, необратимой слепоте.
  • Височная доля – это область слуховой рецепции, которая получает импульсы от улитки внутреннего уха, то есть, отвечает за ее слуховые функции. Повреждения этой части коры грозят человеку полной или частичной глухотой, которая сопровождается полным непониманием слов.
  • Нижняя доля центральной извилины отвечает за мозговые анализаторы или, другими словами, вкусовую рецепцию. Она получает импульсы от слизистой полости рта и ее поражение угрожает потерей всех вкусовых ощущений.
  • И наконец, передняя часть коры головного мозга, в которой расположена грушевидная доля отвечает за обонятельную рецепцию, то есть – функции носа. Импульсы в нее поступают от слизистой оболочки носа, если она будет поражена, то человек потеряет обоняние.

Не стоит лишний раз напоминать, что человек находится на высшей ступени развития.

Это подтверждает строение особенно развитой лобной области, которая в ответе за трудовую деятельность и речь. Также она важна в процессе формирования поведенческих реакций человека и его приспособительных функций.

Существует множество исследований, в том числе работы известного академика Павлова, который работал с собаками, изучая строение и работу коры головного мозга. Все они доказывают преимущества человека над животными, именно благодаря особенному ее строению.

Правда, не стоит забывать, что все части находятся в тесном контакте друг с другом и зависят от работы каждой из его составляющих, так что, совершенство человека, залог работы головного мозга в целом.

Из данной статьи читатель уже понял, что головной мозг человека является сложным и до сих пор малоизучен. Тем не менее, он идеальное устройство. Кстати, мало кто знает, что мощность обработки процессов в мозге настолько высока, что рядом с ней бессилен самый мощный в мире компьютер.

Вот еще несколько интересных фактов, которые опубликовали ученные после ряда испытаний и исследований:

  • 2017 года ознаменовался проведением эксперимента, в ходе которого гипер-мощный ПК попытался имитировать лишь 1 секунду активности головного мозга. Тест занял порядка 40 минут. Результат эксперимента – компьютер не справился с заданием.
  • Объем памяти человеческого мозга вмещает n-число bt, которое выражается 8432 нулями. Приблизительно это 1 000 Тb. Если на примере, то в национальном Британском архиве хранится историческая информация за последние 9 веков и объем ее всего лишь 70 Тb. Ощутите насколько весомая разница между этими цифрами.
  • Человеческий мозг заключает в себе 100 тысяч километров сосудов, 100 миллиардов нейронов (цифра равная числу звезд во всей нашей галактике). Помимо этого в мозгу находятся сто триллионов нейронных связей, которые отвечают за формирование воспоминаний. Таким образом, когда вы познаете что-то новое, структура головного мозга изменяется.
  • Во время пробуждения головной мозг аккумулирует электрополе мощность в 23 Вт – этого достаточно зажечь лампу Ильича.
  • По весу мозг состоит из 2% от общей массы, однако задействует он примерно 16% энергии в теле и более 17% кислорода, содержащегося в крови.
  • Ещё один интересный факт, что головной мозг состоит из воды на 75%, а по структуре чем-то сход с сыром «Тофу». А 60% мозга – жир. Ввиду этого для корректной деятельности мозга необходимо здоровое и правильное питание. Употребляйте каждый день в пищу рыбу, оливковое масло, семечки или орехи – и Ваш мозг будет работать долго и ясно.
  • Некоторые ученые, проведя ряд исследований, заметили, что при диете мозг начинает «кушать» сам себя. А низкий уровень кислорода в течение пяти минут способен привести к необратимым последствиям.
  • Удивительно, но человеческое существо не способно щекотать самого себя, т.к. мозг настраивается на внешние раздражители и чтобы не пропустить эти сигналы, немного игнорируется действия самого человека.
  • Забывчивость является естественным процессом. То есть, ликвидация ненужных данных позволяет ЦНС быть гибкой. А влияние алкогольных напитков на память объясняется тем, что спирт затормаживает процессы.
  • Реакция мозга на спиртосодержащие напитки составляет шесть минут.

Активизация интеллекта позволяет производить дополнительную мозговую ткань, которая компенсирует те, что заболели. Ввиду этого рекомендуется заниматься развитием, что в дальнейшем избавит Вас от слабого ума и различных расстройств психики.

Занимайтесь новыми занятиями – это лучше всего способствует развитию мозга. К примеру, общение с людьми, превосходящими Вас в той или иной интеллектуальной области является сильным средством по развитию Вашего интеллекта.

Поделитесь с друзьями или сохраните для себя:

Загрузка...