Разложить в ряд фурье примеры решений. Ряды Фурье

Как вставить математические формулы на сайт?

Если нужно когда-никогда добавлять одну-две математические формулы на веб-страницу, то проще всего сделать это, как описано в статье : математические формулы легко вставляются на сайт в виде картинок, которые автоматически генерирует Вольфрам Альфа. Кроме простоты, этот универсальный способ поможет улучшить видимость сайта в поисковых системах. Он работает давно (и, думаю, будет работать вечно), но морально уже устарел.

Если же вы постоянно используете математические формулы на своем сайте, то я рекомендую вам использовать MathJax - специальную библиотеку JavaScript, которая отображает математические обозначения в веб-браузерах с использованием разметки MathML, LaTeX или ASCIIMathML.

Есть два способа, как начать использовать MathJax: (1) при помощи простого кода можно быстро подключить к вашему сайту скрипт MathJax, который будет в нужный момент автоматически подгружаться с удаленного сервера (список серверов ); (2) закачать скрипт MathJax с удаленного сервера на свой сервер и подключить ко всем страницам своего сайта. Второй способ - более более сложный и долгий - позволит ускорить загрузку страниц вашего сайта, и если родительский сервер MathJax по каким-то причинам станет временно недоступен, это никак не повлияет на ваш собственный сайт. Несмотря на эти преимущества, я выбрал первый способ, как более простой, быстрый и не требующий технических навыков. Следуйте моему примеру, и уже через 5 минут вы сможете использовать все возможности MathJax на своем сайте.

Подключить скрипт библиотеки MathJax с удаленного сервера можно при помощи двух вариантов кода, взятого на главном сайте MathJax или же на странице документации :

Один из этих вариантов кода нужно скопировать и вставить в код вашей веб-станицы, желательно между тегами и или же сразу после тега . По первому варианту MathJax подгружается быстрее и меньше тормозит страницу. Зато второй вариант автоматически отслеживает и подгружает свежие версии MathJax. Если вставить первый код, то его нужно будет периодически обновлять. Если вставить второй код, то страницы будут загружаться медленнее, зато вам не нужно будет постоянно следить за обновлениями MathJax.

Подключить MathJax проще всего в Blogger или WordPress: в панели управления сайтом добавьте виджет, предназначенный для вставки стороннего кода JavaScript, скопируйте в него первый или второй вариант кода загрузки, представленного выше, и разместите виджет поближе к началу шаблона (кстати, это вовсе не обязательно, поскольку скрипт MathJax загружается асинхронно). Вот и все. Теперь изучите синтаксис разметки MathML, LaTeX и ASCIIMathML, и вы готовы вставлять математические формулы на веб-страницы своего сайта.

Любой фрактал строится по определенному правилу, которое последовательно применяется неограниченное количество раз. Каждый такой раз называется итерацией.

Итеративный алгоритм построения губки Менгера достаточно простой: исходный куб со стороной 1 делится плоскостями, параллельными его граням, на 27 равных кубов. Из него удаляются один центральный куб и 6 прилежащих к нему по граням кубов. Получается множество, состоящее из 20 оставшихся меньших кубов. Поступая так же с каждым из этих кубов, получим множество, состоящее уже из 400 меньших кубов. Продолжая этот процесс бесконечно, получим губку Менгера.

Ряды Фурье - это представление произвольно взятой функции с конкретным периодом в виде ряда. В общем виде данное решение называют разложением элемента по ортогональному базису. Разложение функций в ряд Фурье является довольно мощным инструментарием при решении разнообразных задач благодаря свойствам данного преобразования при интегрировании, дифференцировании, а также сдвиге выражения по аргументу и свертке.

Человек, не знакомый с высшей математикой, а также с трудами французского ученого Фурье, скорее всего, не поймет, что это за «ряды» и для чего они нужны. А между тем данное преобразование довольно плотно вошло в нашу жизнь. Им пользуются не только математики, но и физики, химики, медики, астрономы, сейсмологи, океанографы и многие другие. Давайте и мы поближе познакомимся с трудами великого французского ученого, сделавшего открытие, опередившее свое время.

Человек и преобразование Фурье

Ряды Фурье являются одним из методов (наряду с анализом и другими) Данный процесс происходит каждый раз, когда человек слышит какой-либо звук. Наше ухо в автоматическом режиме производит преобразование элементарных частиц в упругой среде раскладываются в ряды (по спектру) последовательных значений уровня громкости для тонов разной высоты. Далее мозг превращает эти данные в привычные для нас звуки. Все это происходит помимо нашего желания или сознания, само по себе, а вот для того чтобы понять эти процессы, понадобится несколько лет изучать высшую математику.

Подробнее о преобразовании Фурье

Преобразование Фурье можно проводить аналитическими, числительными и другими методами. Ряды Фурье относятся к числительному способу разложения любых колебательных процессов - от океанских приливов и световых волн до циклов солнечной (и других астрономических объектов) активности. Используя эти математические приемы, можно разбирать функции, представляя любые колебательные процессы в качестве ряда синусоидальных составляющих, которые переходят от минимума к максимуму и обратно. Преобразование Фурье является функцией, описывающей фазу и амплитуду синусоид, соответствующих определенной частоте. Данный процесс можно использовать для решения весьма сложных уравнений, которые описывают динамические процессы, возникающие под действием тепловой, световой или электрической энергии. Также ряды Фурье позволяют выделять постоянные составляющие в сложных колебательных сигналах, благодаря чему стало возможным правильно интерпретировать полученные экспериментальные наблюдения в медицине, химии и астрономии.

Историческая справка

Отцом-основателем этой теории является французский математик Жан Батист Жозеф Фурье. Его именем впоследствии и было названо данное преобразование. Изначально ученый применил свой метод для изучения и объяснения механизмов теплопроводности - распространения тепла в твердых телах. Фурье предположил, что изначальное нерегулярное распределение можно разложить на простейшие синусоиды, каждая из которых будет иметь свой температурный минимум и максимум, а также свою фазу. При этом каждая такая компонента будет измеряться от минимума к максимуму и обратно. Математическая функция, которая описывает верхние и нижние пики кривой, а также фазу каждой из гармоник, назвали преобразованием Фурье от выражения распределения температуры. Автор теории свел общую функцию распределения, которая трудно поддается математическому описанию, к весьма удобному в обращении ряду косинуса и синуса, в сумме дающих исходное распределение.

Принцип преобразования и взгляды современников

Современники ученого - ведущие математики начала девятнадцатого века - не приняли данную теорию. Основным возражением послужило утверждение Фурье о том, что разрывную функцию, описывающую прямую линию или разрывающуюся кривую, можно представить в виде суммы синусоидальных выражений, которые являются непрерывными. В качестве примера можно рассмотреть «ступеньку» Хевисайда: ее значение равно нулю слева от разрыва и единице справа. Данная функция описывает зависимость электрического тока от временной переменной при замыкании цепи. Современники теории на тот момент никогда не сталкивались с подобной ситуацией, когда разрывное выражение описывалось бы комбинацией непрерывных, обычных функций, таких как экспонента, синусоида, линейная или квадратичная.

Что смущало французских математиков в теории Фурье?

Ведь если математик был в прав в своих утверждениях, то, суммируя бесконечный тригонометрический ряд Фурье, можно получить точное представление ступенчатого выражения даже в том случае, если оно имеет множество подобных ступеней. В начале девятнадцатого века подобное утверждение казалось абсурдным. Но несмотря на все сомнения, многие математики расширили сферу изучения данного феномена, выведя его за пределы исследований теплопроводности. Однако большинство ученых продолжали мучиться вопросом: "Может ли сумма синусоидального ряда сходиться к точному значению разрывной функции?"

Сходимость рядов Фурье: пример

Вопрос о сходимости поднимается всякий раз при необходимости суммирования бесконечных рядов чисел. Для понимания данного феномена рассмотрим классический пример. Сможете ли вы когда-либо достигнуть стены, если каждый последующий шаг будет вдвое меньше предыдущего? Предположим, что вы находитесь в двух метрах от цели, первый же шаг приближает к отметке на половине пути, следующий - к отметке в три четверти, а после пятого вы преодолеете почти 97 процентов пути. Однако сколько бы вы шагов ни сделали, намеченной цели вы не достигните в строгом математическом смысле. Используя числовые расчеты, можно доказать, что в конце концов можно приблизиться на сколь угодно малое заданное расстояние. Данное доказательство является эквивалентным демонстрации того, что суммарное значение одной второй, одной четвертой и т. д. будет стремиться к единице.

Вопрос сходимости: второе пришествие, или Прибор лорда Кельвина

Повторно данный вопрос поднялся в конце девятнадцатого века, когда ряды Фурье попробовали применить для предсказания интенсивности отливов и приливов. В это время лордом Кельвином был изобретен прибор, представляющий собой аналоговое вычислительное устройство, которое позволяло морякам военного и торгового флота отслеживать это природное явление. Данный механизм определял наборы фаз и амплитуд по таблице высоты приливов и соответствующих им временных моментов, тщательно замеренных в данной гавани в течение года. Каждый параметр представлял собой синусоидальную компоненту выражения высоты прилива и являлся одной из регулярных составляющих. Результаты измерений вводились в вычислительный прибор лорда Кельвина, синтезирующий кривую, которая предсказывала высоту воды как временную функцию на следующий год. Очень скоро подобные кривые были составлены для всех гаваней мира.

А если процесс будет нарушен разрывной функцией?

В то время представлялось очевидным, что прибор, предсказывающий приливную волну, с большим количеством элементов счета может вычислить большое количество фаз и амплитуд и так обеспечить более точные предсказания. Тем не менее оказалось, что данная закономерность не соблюдается в тех случаях, когда приливное выражение, которое следует синтезировать, содержало резкий скачок, то есть являлось разрывным. В том случае, если в устройство вводятся данные из таблицы временных моментов, то оно производит вычисления нескольких коэффициентов Фурье. Исходная функция восстанавливается благодаря синусоидальным компонентам (в соответствии с найденными коэффициентами). Расхождение между исходным и восстановленным выражением можно измерять в любой точке. При проведении повторных вычислений и сравнений видно, что значение наибольшей ошибки не уменьшается. Однако они локализируются в области, соответствующей точке разрыва, а в любой иной точке стремятся к нулю. В 1899 году этот результат был теоретически подтвержден Джошуа Уиллардом Гиббсом из Йельского университета.

Сходимость рядов Фурье и развитие математики в целом

Анализ Фурье неприменим к выражениям, содержащим бесконечное количество всплесков на определенном интервале. В общем и целом ряды Фурье, если изначальная функция представлена результатом реального физического измерения, всегда сходятся. Вопросы сходимости данного процесса для конкретных классов функций привели к появлению новых разделов в математике, например теории обобщенных функций. Она связана с такими именами, как Л. Шварц, Дж. Микусинский и Дж. Темпл. В рамках данной теории была создана четкая и точная теоретическая основа под такие выражения, как дельта-функция Дирака (она описывает область единой площади, сконцентрированной в бесконечно малой окрестности точки) и «ступень» Хевисайда. Благодаря этой работе ряды Фурье стали применимы для решения уравнений и задач, в которых фигурируют интуитивные понятия: точечный заряд, точечная масса, магнитные диполи, а также сосредоточенная нагрузка на балке.

Метод Фурье

Ряды Фурье, в соответствии с принципами интерференции, начинаются с разложения сложных форм на более простые. Например, изменение теплового потока объясняется его прохождением сквозь различные препятствия из теплоизолирующего материала неправильной формы или изменением поверхности земли - землетрясением, изменением орбиты небесного тела - влиянием планет. Как правило, подобные уравнения, описывающие простые классические системы, элементарно решаются для каждой отдельной волны. Фурье показал, что простые решения также можно суммировать для получения решения более сложных задач. Выражаясь языком математики, ряды Фурье - это методика представления выражения суммой гармоник - косинусоид и синусоид. Поэтому данный анализ известен также под именем «гармонический анализ».

Ряд Фурье - идеальная методика до «компьютерной эпохи»

До создания компьютерной техники методика Фурье являлась лучшим оружием в арсенале ученых при работе с волновой природой нашего мира. Ряд Фурье в комплексной форме позволяет решать не только простые задачи, которые поддаются прямому применению законов механики Ньютона, но и фундаментальные уравнения. Большинство открытий ньютоновской науки девятнадцатого века стали возможны только благодаря методике Фурье.

Ряды Фурье сегодня

С развитием компьютеров преобразования Фурье поднялись на качественно новый уровень. Данная методика прочно закрепилась практически во всех сферах науки и техники. В качестве примера можно привести цифровой аудио- и видеосигнал. Его реализация стала возможной только благодаря теории, разработанной французским математиком в начале девятнадцатого века. Так, ряд Фурье в комплексной форме позволил совершить прорыв в изучении космического пространства. Кроме того, это повлияло на изучение физики полупроводниковых материалов и плазмы, микроволновой акустики, океанографии, радиолокации, сейсмологии.

Тригонометрический ряд Фурье

В математике ряд Фурье является способом представления произвольных сложных функций суммой более простых. В общих случаях количество таких выражений может быть бесконечным. При этом чем больше их число учитывается при расчете, тем точнее получается конечный результат. Чаще всего в качестве простейших используют тригонометрические функции косинуса или синуса. В таком случае ряды Фурье называют тригонометрическими, а решение таких выражений - разложением гармоники. Этот метод играет важную роль в математике. Прежде всего, тригонометрический ряд дает средства для изображения, а также изучения функций, он является основным аппаратом теории. Кроме того, он позволяет решать ряд задач математической физики. Наконец, данная теория способствовала развитию вызвала к жизни целый ряд весьма важных разделов математической науки (теорию интегралов, теорию периодических функций). Кроме того, послужила отправным пунктом для развития следующих функций действительного переменного, а также положила начало гармоническому анализу.

Многие процессы, происходящие в природе и технике, обладают свойством повторяться через определенные промежутки времени. Такие процессы называются периодическими и математически описываются периодическими функциями. К таким функциям относятся sin (x ) , cos (x ) , sin (wx ), cos (wx ) . Сумма двух периодических функций, например, функция вида , вообще говоря, уже не является периодической. Но можно доказать, что если отношение w 1 / w 2 – число рациональное, то эта сумма есть периодическая функция.

Простейшие периодические процессы – гармонические колебания – описываются периодическими функциями sin (wx ) и cos (wx ). Более сложные периодические процессы описываются функциями, составными либо из конечного, либо из бесконечного числа слагаемых вида sin (wx ) и cos (wx ).

3.2. Тригонометрический ряд. Коэффициенты Фурье

Рассмотрим функциональный ряд вида:

Этот ряд называется тригонометрическим ; числа а 0 , b 0 , a 1 , b 1 2 , b 2 …, a n , b n ,… называются коэффициентами тригонометрического ряда. Ряд (1) часто записывается следующим образом:

. (2)

Так как члены тригонометрического ряда (2) имеют общий период
, то и сумма ряда, если он сходится, также является периодической функцией с периодом
.

Допустим, что функция f (x ) есть сумма этого ряда:

. (3)

В таком случае говорят, что функция f (x ) раскладывается в тригонометрический ряд. Предполагая, что этот ряд сходится равномерно на промежутке
, можно определить его коэффициенты по формулам:

,
,
. (4)

Коэффициенты ряда, определенные по этим формулам, называются коэффициентами Фурье.

Тригонометрический ряд (2), коэффициенты которого определяются по формулам Фурье (4), называются рядом Фурье , соответствующим функции f (x ).

Таким образом, если периодическая функция f (x ) является суммой сходящегося тригонометрического ряда, то этот ряд является ее рядом Фурье.

3.3. Сходимость ряда Фурье

Формулы (4) показывают, что коэффициенты Фурье могут быть вычислены для любой интегрируемой на промежутке

-периодической функции, т.е. для такой функции всегда можно составить ряд Фурье. Но будет ли этот ряд сходиться к функцииf (x ) и при каких условиях?

Напомним, что функция f (x ), определенная на отрезке [ a ; b ] , называется кусочно-гладкой, если она и ее производная имеют не более конечного числа точек разрыва первого рода.

Следующая теорема дает достаточные условия разложимости функции в ряд Фурье.

Теорема Дирихле. Пусть
-периодическая функцияf (x ) является кусочно-гладкой на
. Тогда ее ряд Фурье сходится кf (x ) в каждой ее точке непрерывности и к значению 0,5(f (x +0)+ f (x -0)) в точке разрыва.

Пример1.

Разложить в ряд Фурье функцию f (x )= x , заданную на интервале
.

Решение. Эта функция удовлетворяет условиям Дирихле и, следовательно, может быть разложена в ряд Фурье. Применяя формулы (4) и метод интегрирования по частям
, найдем коэффициенты Фурье:

Таким образом, ряд Фурье для функции f (x ) имеет вид.

Министерство общего и профессионального образования

Сочинский государственный университет туризма

и курортного дела

Педагогический институт

Математический факультет

Кафедра общей математики

ДИПЛОМНАЯ РАБОТА

Ряды Фурье и их приложения

В математической физике.

Выполнила: студентка 5-го курса

подпись дневной формы обучения

Специальность 010100

„Математика”

Касперовой Н.С.

Студенческий билет № 95471

Научный руководитель:доцент, канд.

подпись техн. наук

Позин П.А.

Сочи, 2000 г.


1. Введение.

2. Понятие ряда Фурье.

2.1. Определение коэффициентов ряда Фурье.

2.2. Интегралы от периодических функций.

3. Признаки сходимости рядов Фурье.

3.1. Примеры разложения функций в ряды Фурье.

4. Замечание о разложении периодической функции в ряд Фурье

5. Ряды Фурье для четных и нечетных функций.

6. Ряды Фурье для функций с периодом 2 l .

7. Разложение в ряд Фурье непериодической функции.

Введение.

Жан Батист Жозеф Фурье - французский математик, член Парижской Академии Наук (1817).

Первые труды Фурье относятся к алгебре. Уже в лекциях 1796 он изложил теорему о числе действительных корней алгебраического уравнения, лежащих между данными границами (опубл. 1820), названную его именем; полное решение о числе действительных корней алгебраического уравнения было получено в 1829 Ж.Ш.Ф. Штурмом. В 1818 Фурье исследовал вопрос об условиях применимости разработанного Ньютоном метода численного решения уравнений, не зная об аналогичных результатах, полученных в 1768 французским математиком Ж.Р. Мурайлем. Итогом работ Фурье по численным методам решения уравнений является «Анализ определённых уравнений», изданный посмертно в 1831.

Основной областью занятий Фурье была математическая физика. В 1807 и 1811 он представил Парижской Академии Наук свои первые открытия по теории распространении тепла в твёрдом теле, а в 1822 опубликовал известную работу «Аналитическая теория теплоты», сыгравшую большую роль в последующей истории математики. Это – математическая теория теплопроводности. В силу общности метода эта книга стала источником всех современных методов математической физики. В этой работе Фурье вывел дифференциальное уравнение теплопроводности и развил идеи, в самых общих чертах намеченные ранее Д. Бернулли, разработал для решения уравнения теплопроводности при тех или иных заданных граничных условиях метод разделения переменных (метод Фурье), который он применял к ряду частных случаев (куб, цилиндр и др.). В основе этого метода лежит представление функций тригонометрическими рядами Фурье.

Ряды Фурье теперь стали хорошо разработанным средством в теории уравнений в частных производных при решении граничных задач.

1. Понятие ряда Фурье. (стр. 94, Уваренков)

Ряды Фурье играют большую роль в математической физике, теории упругости, электротехнике и особенно их частный случай – тригонометрические ряды Фурье.

Тригонометрическим рядом называют ряд вида

или, символической записи:

(1)

где ω, a 0 , a 1 , …, a n , …, b 0 , b 1 , …,b n , …- постоянные числа (ω>0) .

К изучению таких рядов исторически привели некоторые задачи физики, например задача о колебаниях струны (XVIII в.), задача о закономерностях в явлениях теплопроводности и др. В приложениях рассмотрение тригонометрических рядов, прежде всего связано с задачей представления данного движения, описанного уравнением у = ƒ(χ), в

виде суммы простейших гармонических колебаний, часто взятых в бесконечно большом числе, т. е. в качестве суммы ряда вида (1).

Таким образом, мы приходим к следующей задаче: выяснить существует ли для данной функции ƒ(x) на заданном промежутке такой ряд (1),который сходился бы на этом промежутке к данной функции. Если это возможно, то говорят, что на этом промежутке функция ƒ(x) разлагается в тригонометрический ряд.

Ряд (1) сходится в некоторой точке х 0 , в силу периодичности функций

(n=1,2,..), он окажется сходящимся и во всех точках вида (m- любое целое число), и тем самым его сумма S(x) будет (в области сходимости ряда) периодической функцией: если S n (x) – n-я частичная сумма этого ряда, то имеем

а потому и

, т. е. S(x 0 +T)=S(x 0). Поэтому, говоря о разложении некоторой функции ƒ(x) в ряд вида (1), будем предполагать ƒ(x) периодической функцией.

2. Определение коэффициентов ряда по формулам Фурье.

Пусть периодическая функция ƒ(х) с периодом 2π такая, что она представляется тригонометрическим рядом, сходящимся к данной функции в интервале (-π, π), т. е. является суммой этого ряда:

. (2)

Предположим, что интеграл от функции, стоящей в левой части этого равенства, равняется сумме интегралов от членов этого ряда. Это будет выполняться, если предположить, что числовой ряд, составленный из коэффициентов данного тригонометрического ряда, абсолютно сходится, т. е.. сходится положительный числовой ряд

(3)

Ряд (1) мажорируем и его можно почленно интегрировать в промежутке (-π, π). Проинтегрируем обе части равенства (2):

.

Вычислим отдельно каждый интеграл, встречающийся в правой части:

, , .

Таким образом,

, откуда . (4)

Оценка коэффициентов Фурье. (Бугров)

Теорема 1. Пусть функция ƒ(x) периода 2π имеет непрерывную производную ƒ ( s) (x) порядка s, удовлетворяющей на всей действительной оси неравенству:

│ ƒ (s) (x)│≤ M s ; (5)

тогда коэффициенты Фурье функции ƒ удовлетворяют неравенству

(6)

Доказательство. Интегрируя по частям и учитывая, что

ƒ(-π) = ƒ(π), имеем


Интегрируя правую часть (7) последовательно, учитывая, что производные ƒ ΄ , …, ƒ (s-1) непрерывны и принимают одинаковые значения в точках t = -π и t = π, а также оценку (5), получим первую оценку (6).

Вторая оценка (6) получается подобным образом.

Теорема 2. Для коэффициентов Фурье ƒ(x) имеет место неравенство

(8)

Доказательство. Имеем

Разложение в ряд Фурье четных и нечетных функций разложение функции заданной на отрезке в ряд по синусам или по косинусам Ряд Фурье для функции с произвольным периодом Комплексная запись ряда Фурье Ряды Фурье по общим ортогональным системам функций Ряд Фурье по ортогональной системе Минимальное свойство коэффициентов Фурье Неравенство Бесселя Равенство Парсеваля Замкнутые системы Полнота и замкнутость систем


Разложение в ряд Фурье четных и нечетных функций Функция f(x), определенная на отрезке \-1, где I > 0, называется четной, если График четной функции симметричен относительно оси ординат. Функция f(x), определенная на отрезке J), где I > 0, называется нечетной, если График нечетной функции симметричен относительно начала координат. Пример. а) Функция является четной на отрезке |-jt, jt), так как для всех х е б) Функция является нечетной, так как Разложение в ряд Фурье четных и нечетных функций разложение функции заданной на отрезке в ряд по синусам или по косинусам Ряд Фурье для функции с произвольным периодом Комплексная запись ряда Фурье Ряды Фурье по общим ортогональным системам функций Ряд Фурье по ортогональной системе Минимальное свойство коэффициентов Фурье Неравенство Бесселя Равенство Парсеваля Замкнутые системы Полнота и замкнутость систем в) Функция f(x)=x2-x, где не принадлежит ни к четным, ни к нечетным функциям, так как Пусть функция f(x), удовлетворяющая условиям теоремы 1, является четной на отрезке х|. Тогда для всех т.е. /(ж) cos nx является четной функцией, a f(x)sinnx - нечетной. Поэтому коэффициенты Фурье четной функции /(ж) будут равны Следовательно, ряд Фурье четной функции имеет вид 00 Если f(x) - нечетная функция на отрезке [-тг, ir|, то произведение f(x)cosnx будет нечетной функцией, а произведение f(x) sin пх - четной функцией. Поэтому будем иметь Таким образом, ряд Фурье нечетной функции имеет вид Пример 1. Разложить в ряд Фурье на отрезке -х ^ х ^ п функцию 4 Так как эта функция четная и удовлетворяет условиям теоремы 1, то ее ряд Фурье имеет вид Находим коэффициенты Фурье. Имеем Применяя дважды интегрирование по частям, получим, что Значит, ряд Фурье данной функции выглядит так: или, в развернутом виде, Это равенство справедливо для любого х € , так как в точках х = ±ir сумма ряда совпадает со значениями функции f(x) = х2, поскольку Графики функции f(x) = х и суммы полученного ряда даны на рис. Замечание. Этот ряд Фурье позволяет найти сумму одного из сходящихся числовых рядов, а именно, при х = 0 получаем, что Пример 2. Разложить в ряд Фурье на интервале функцию /(х) = х. Функция /(х) удовлетворяет условиям теоремы 1, следовательно ее можно разложить в ряд Фурье, который в силу нечетности этой функции будет иметь вид Интегрируя по частям, находим коэффициенты Фурье Следовательно, ряд Фурье данной функции имеет вид Это равенство имеет место для всех х В точках х - ±тг сумма ряда Фурье не совпадает со значениями функции /(х) = х, так как она равна Вне отрезка [-*, я-] сумма ряда является периодическим продолжением функции /(х) = х; ее график изображен на рис. 6. § 6. Разложение функции, заданной на отрезке, в ряд по синусам или по косинусам Пусть ограниченная кусочно-монотонная функция / задана на отрезке . Значения этой функции на отрезке 0| можно доопределить различным образом. Например, можно определить функцию / на отрезке тс] так, чтобы /. В этом случае говорят, что) «продолжена на отрезок 0] четным образом»; ее ряд Фурье будет содержать только косинусы. Если же функцию /(ж) определить на отрезке [-л-, тс] так, чтобы /(, то получится нечетная функция, и тогда говорят, что / «продолжена на отрезок [-*, 0] нечетным образом»; в этом случае се ряд Фурье будет содержать только синусы. Итак, каждую ограниченную кусочно-монотонную функцию /(ж), определенную на отрезке , можно разложить в ряд Фурье и по синусам, и по косинусам. Пример 1. Функцию разложить в ряд Фурье: а) по косинусам; б) по синусам. М Данная функция при ее четном и нечетном продолжениях в отрезок |-х,0) будет ограниченной и кусочно-монотонной. а) Продолжим /(z) в отрезок 0) а) Продолжим j\x) в отрезок (-тг,0| четным образом (рис. 7), тогда ее ряд Фурье i будет иметь вид П=1 где коэффициенты Фурье равны соответственно для Следовательно, б) Продолжим /(z) в отрезок [-x,0] нечетным образом (рис. 8). Тогда ее ряд Фурье §7. Ряд Фурье для функции с произвольным периодом Пусть функция fix) является периодической с периодом 21,1 ^ 0. Для разложения ее в ряд Фурье на отрезке где I > 0, сделаем замену переменной, положив х = jt. Тогда функция F(t) = / ^tj будет периодической функцией аргумента t с периодом и ее можно разложить на отрезке в ряд Фурье Возвращаясь к переменной ж, т. е. положив, получим Все теоремы, справедливые для рядов Фурье периодических функций с периодом 2тг, остаются в силе и для периодических функций с произвольным периодом 21. В частности, сохраняет свою силу и достаточный признак разложимости функции в ряд Фурье. Пример 1. Разложить в ряд Фурье периодическую функцию с периодом 21, заданную на отрезке [-/,/] формулой (рис.9). Так как данная функция четная, то ее ряд Фурье имеет вид Подставляя в ряд Фурье найденные значения коэффициентов Фурье, получим Отметим одно важное свойство периодических функций. Теорема 5. Если функция имеет период Т и интегрируема, то для любого числа а выполняется равенство m. е. интеграл no отрезку, длина которого равна периоду Т, имеет одно и то же значение независимо от положения этого отрезка на числовой оси. В самом деле, Делаем замену переменной во втором интеграле, полагая. Это дает и следовательно, Геометрически это свойство означает, что в случае площади заштрихованных на рис. 10 областей равны между собой. В частности, для функции f(x) с периодом получим при Разложение в ряд Фурье четных и нечетных функций разложение функции заданной на отрезке в ряд по синусам или по косинусам Ряд Фурье для функции с произвольным периодом Комплексная запись ряда Фурье Ряды Фурье по общим ортогональным системам функций Ряд Фурье по ортогональной системе Минимальное свойство коэффициентов Фурье Неравенство Бесселя Равенство Парсеваля Замкнутые системы Полнота и замкнутость систем Пример 2. Функция x является периодической с периодом В силу нечетности данной функции без вычисления интегралов можно утверждать, что при любом Доказанное свойство, в частности, показывает, что коэффициенты Фурье периодической функции f(x) с периодом 21 можно вычислять по формулам где а - произвольное действительное число (отметим, что функции cos - и sin имеют период 2/). Пример 3. Разложить в ряд Фурье заданную на интервале функцию с периодом 2х (рис. 11). 4 Найдем коэффициенты Фурье данной функции. Положив в формулах найдем, что для Следовательно, ряд Фурье будет выглядеть так: В точке х = jt (точка разрыва первого рода) имеем §8. Комплексная запись ряда Фурье В этом параграфе используются некоторые элементы комплексного анализа (см. главу XXX, где все, производимые здесь действия с комплексными выражениями, строго обоснованы). Пусть функция f(x) удовлетворяет достаточным условиям разложимости в ряд Фурье. Тогда на отрезке ж] ее можно представить рядом вида Используя формулы Эйлера Подставляя эти выражения в ряд (1) вместо cos пх и sin пху будем иметь Введем следующие обозначения Тогда ряд (2) примет вид Таким образом, ряд Фурье (1) представлен в комплексной форме (3). Найдем выражения коэффициентов через интегралы. Имеем Аналогично находим Окончательно формулы для с„, с_п и со можно записать так: . . Коэффициенты с„ называются комплексными коэффициентами Фурье функции Для периодической функции с периодом) комплексная форма ряда Фурье примет вид где коэффициенты Сп вычисляются по формулам Сходимость рядов (3) и (4) понимается так: ряды (3) и (4) называются сходящимися для данного значения ж, если существуют пределы Пример. Разложить в комплексный ряд Фурье функцию периода Данная функция удовлетворяет достаточным условиям разложимости в ряд Фурье. Пусть Найдем комплексные коэффициенты Фурье этой функции. Имеем для нечетных для четных n, или,короче. Подставляя значения), окончательно получим Заметим, что этот ряд можно записать и так: Ряды Фурье по общим ортогональным системам функций 9.1. Ортогональные системы функций Обозначим через множество всех (действительных) функций, определенных и интегрируемых на отрезке [а, 6] с квадратом, т. е. таких, для которых существует интеграл В частности, все функции f(x), непрерывные на отрезке [а, 6], принадлежат 6], и значения их интегралов Лебега совпадают со значениями интегралов Римана. Определение. Система функций, где, называется ортогональной на отрезке [а, Ь\, если Условие (1) предполагает, в частности, что ни одна из функций не равна тождественно нулю. Интеграл понимается в смысле Лебега. и назовем величину нормой функции Если в ортогональной системе для всякого п имеем, то система функций называется ортонормированной. Если система {у>„(ж)} ортогональна, то система Пример 1. Тригонометрическая система ортогональна на отрезке. Система функций является ортонормированной системой функций на, Пример 2. Косинус-система и синус-система ортонормирована. Введем обозначение являются ортогональными на отрезке (0, f|, но не ортонормированными (при I Ф- 2). так как их нормы COS Пример 3. Многочлены, определяемые равенством, называются многочленами (полиномами) Лежандра. При п = 0 имеем Можно доказать, что функции образуют ортонормированную систему функций на отрезке. Покажем, например, ортогональность полиномов Лежандра. Пусть т > п. В этом случае, интегрируя п раз по частям, находим поскольку для функции t/m = (z2 - I)m все производные до порядка m - I включительно обращаются в нуль на концах отрезка [-1,1). Определение. Система функций {pn(x)} называется ортогональной на интервале (а, Ь) свесом р(х), если: 1) для всех п = 1,2,... существуют интегралы Здесь предполагается, что весовая функция р(х) определена и положительна всюду на интервале (а, Ь) за возможным исключением конечного числа точек, где р(х) может обращаться в нуль. Выполнив дифференцирование в формуле (3), находим. Можно показать, что многочлены Чебышева-Эрмита ортогональны на интервале Пример 4. Система функций Бесселя {jL(pix)^ ортогональна на интервале нули функции Бесселя Пример 5. Рассмотрим многочлены Чебышева-Эрмита, которые могут быть определены при помощи равенства. Ряд Фурье по ортогональной системе Пусть ортогональная система функций в интервале (a, 6) и пусть ряд (cj = const) сходится на этом интервале к функции f(x): Умножая обе части последнего равенства на - фиксировано) и интегрируя по ж от а до 6, в силу ортогональности системы получим, что Эта операция имеет, вообще говоря, чисто формальный характер. Тем не менее, в некоторых случаях, например, когда ряд (4) сходится равномерно, все функции непрерывны и интервал (a, 6) конечен, эта операция законна. Но для нас сейчас важна именно формальная трактовка. Итак, пусть задана функция. Образуем числа с* по формуле (5) и напишем Ряд, стоящий в правой части, называется рядом Фурье функции f(x) относительно системы {^п(я)}- Числа Сп называются коэффициентами Фурье функции f(x) по этой системе. Знак ~ в формуле (6) означает лишь, что числа Сп связаны с функцией /(ж) формулой (5) (при этом не предполагается, что ряд справа вообще сходится, а тем более сходится к функции f(x)). Поэтому естественно возникает вопрос: каковы свойства этого ряда? В каком смысле он «представляет» функцию f(x)? 9.3. Сходимость в среднем Определение. Последовательность, сходится к элементу ] в среднем, если норма в пространстве Теорема 6. Если последовательность } сходится равномерно, то она сходится и в среднем. М Пусть последовательность {)} сходится равномерно на отрезке [а, Ь] к функции /(х). Это означает, что для всякого при всех достаточно больших п имеем Следовательно, откуда вытекает наше утверждение. Обратное утверждение неверно: последовательность {} может сходиться в среднем к /(х), но не быть равномерно сходящейся. Пример. Рассмотрим последовательность пх Легко видеть, что Но эта сходимость не равномерна: существует е, например, такое, что сколь бы большим ни было л, на отрезке , Разложение в ряд Фурье четных и нечетных функций разложение функции заданной на отрезке в ряд по синусам или по косинусам Ряд Фурье для функции с произвольным периодом Комплексная запись ряда Фурье Ряды Фурье по общим ортогональным системам функций Ряд Фурье по ортогональной системе Минимальное свойство коэффициентов Фурье Неравенство Бесселя Равенство Парсеваля Замкнутые системы Полнота и замкнутость систем и пусть Обозначим через с* коэффициенты Фурье функции /(х) по ортонормированной системе ь Рассмотрим линейную комбинацию где n ^ 1 - фиксированное целое число, и найдем значения постоянных, при которых интеграл принимает минимальное значение. Запишем его подробнее Интефируя почленно, в силу ортонормированности системы получим Первые два слагаемых в правой части равенства (7) не зависят, а третье слагаемое неотрицательно. Поэтому интеграл (*) принимает минимальное значение при ак = ск Интеграл называют средним квадратичным приближением функции /(х) линейной комбинацией Тп(х). Таким образом, среднее квадратичное приближение функции/\ принимает минимальное значение, когда. когда Тп(х) есть 71-я частичная сумма ряда Фурье функции /(х) по системе {. Полагая ак = ск, из (7) получаем Равенство (9) называется тождеством Бесселя. Так как его левая часть неотрицательна, то из него следует неравенство Бесселя Поскольку я здесь произвольно, то неравенство Бесселя можно представить в усиленной форме т. е. для всякой функции / ряд из квадратов коэффициентов Фурье этой функции по ортонормированной системе } сходится. Так как система ортонормирована на отрезке [-х, тг], то неравенство (10) в переводе на привычную запись тригонометрического ряда Фурье дает соотношение do справедливое для любой функции /(х) с интегрируемым квадратом. Если f2(x) интегрируема, то в силу необходимого условия сходимости ряда в левой части неравенства (11) получаем, что. Равенство Парсе валя Для некоторых систем {^„(х)} знак неравенства в формуле (10) может быть заменен (для всех функций /(х) 6 Ч) знаком равенства. Получаемое равенство называется равенством Парсеваля-Стеклова (условием полноты). Тождество Бесселя (9) позволяет записать условие (12) в равносильной форме Тем самым выполнение условия полноты означает, что частичные суммы Sn(x) ряда Фурье функции /(х) сходятся к функции /(х) в среднем, т.е. по норме пространства 6]. Определение. Ортонормированная система { называется полной в Ь2[ау Ь], если всякую функцию можно с любой точностью приблизить в среднем линейной комбинацией вида с достаточно большим числом слагаемых, т. е. если для всякой функции/(х) € Ь2[а, Ь\ и для любого е > 0 найдется натуральное число nq и числа а\, а2у..., такие, что No Из приведенных рассуждений следует Теорема 7. Если ортонормированием система } полна в пространстве ряд Фурье всякой функции / по этой системе сходится к f(x) в среднем, т. е. по норме Можно показать, что тригонометрическая система полна в пространстве, Отсюда следует утверждение. Теорема 8. Если функция /о ее тригонометрический ряд Фурье сходится к ней в среднем. 9.5. Замкнутые системы. Полнота и замкнутость систем Определение. Ортонормированная система функций \, называется замкнутой, если в пространстве Li\a, Ь) не существует отличной от нуля функции, ортогональной ко всем функциям В пространстве L2\a, Ь\ понятия полноты и замкнутости ортонормированных систем совпадают. Упражнения 1. Разложите в ряд Фурье в интервале (-я-, ж) функцию 2. Разложите в ряд Фурье в интервале (-тг, тг) функцию 3. Разложите в ряд Фурье в интервале (-тг, тг) функцию 4. Разложите в ряд Фурье в интервале (-jt, тг) функцию 5. Разложите в ряд Фурье в интервале (-тг, тг) функцию f(x) = ж + х. 6. Разложите в ряд Фурье в интервале (-jt, тг) функцию п 7. Разложите в ряд Фурье в интервале (-тг, ж) функцию /(х) = sin2 х. 8. Разложите в ряд Фурье в интервале (-тг, jt) функцию f(x) = у 9. Разложите в ряд Фурье в интервале (-тт, -к) функцию /(х) = | sin х|. 10. Разложите в ряд Фурье в интервале (-я-, тг) функцию /(х) = §. 11. Разложите в ряд Фурье в интервале (-тг, тг) функцию f(x) = sin §. 12. Разложите в ряд Фурье функцию f(x) = п -2х, заданную в интервале (0, х), продолжив ее в интервал (-х, 0): а) четным образом; б) нечетным образом. 13. Разложите в ряд Фурье по синусам функцию /(х) = х2, заданную в интервале (0, х). 14. Разложите в ряд Фурье функцию /(х) = 3-х, заданную в интервале (-2,2). 15. Разложите в ряд Фурье функцию f(x) = |х|, заданную в интервале (-1,1). 16. Разложите в ряд Фурье по синусам функцию f(x) = 2х, заданную в интервале (0,1).

Поделитесь с друзьями или сохраните для себя:

Загрузка...