Момент в том случае если. Момент силы: правило и применение

Момент пары сил

Моментом силы относительно какой-либо точки (центра) называется вектор, численно равный произведению модуля силы на плечо, т.е. на кратчайшее расстояние от указанной точки до линии действия силы, и направленный перпендикулярно плоскости, проходящей через выбранную точку и линию действия силы в ту сторону, откуда "вращение", совершаемое силой вокруг точки, представляется происходящим против хода часовой стрелки. Момент силы характеризует ее вращательное действие.

Если О – точка, относительно которой находится момент силы F , то момент силы обозначается символом М о (F) . Покажем, что если точка приложения силыF определяется радиус-вектором r , то справедливо соотношение

М о (F)=r×F . (3.6)

Согласно этому соотношению момент силы равен векторному произведению вектора r на вектор F .

В самом деле, модуль векторного произведения равен

М о (F )=rF sin=Fh , (3.7)

где h – плечо силы. Заметим также, что вектор М о (F) направлен перпендикулярно плоскости, проходящей через векторы r и F , в ту сторону, откуда кратчайший поворот вектора r к направлению вектора F представляется происходящим против хода часовой стрелки. Таким образом, формула (3.6) полностью определяет модуль и направление момента силы F .

Иногда формулу (3.7) полезно записывать в виде

М о (F )=2S , (3.8)

где S – площадь треугольника ОАВ .

Пусть x , y , z – координаты точки приложения силы, а F x , F y , F z – проекции силы на координатные оси. Тогда, если точка О находится в начале координат, момент силы выражается следующим образом:

Отсюда следует, что проекции момента силы на координатные оси определяются формулами:

M Ox (F )= yF z -zF y ,

M Oy (F )= zF x -xF z ,

M Oy (F )= xF y -yF x . (3.10)

Введем теперь понятие проекции силы на плоскость.

Пусть даны сила F и некоторая плоскость. Опустим из начала и конца вектора силы перпендикуляры на эту плоскость.

Проекцией силы на плоскость называется вектор , начало и конец которого совпадают с проекцией начала и проекцией конца силы на эту плоскость.

Если в качестве рассматриваемой плоскости принять плоскость хОу , то проекцией силы F на этуплоскость будет вектор F ху .



Момент силы F ху относительно точки О (точки пересечения оси z с плоскостью хОу ) может быть вычислен по формуле (3.9), если в ней принять z =0, F z =0. Получим

M O (F ху )=(xF y -yF x )k .

Таким образом, момент направлен вдоль оси z , а его проекция на ось z в точности совпадает с проекцией на ту же ось момента силы F относительно точки О . Другими словами,

M Oz (F )=M Oz (F ху )= xF y -yF x . (3.11)

Очевидно, тот же результат можно получить, если спроектировать силуF на любую другую плоскость, параллельную хОу . При этом точка пересечения оси z с плоскостью будет уже иной (обозначим новую точку пересечения через О 1). Однако все входящие в правую часть равенства (3.11) величины х , у , F х , F у останутся неизменными, и, следовательно, можно записать

M Oz (F )=M O 1 z (F ху ).

Другими словами, проекция момента силы относительно точки на ось, проходящую через эту точку, не зависит от выбора точки на оси . Поэтому в дальнейшем вместо символа M Oz (F ) будем применять символ M z (F ). Эта проекция момента называется моментом силы относительно оси z . Вычисление момента силы относительно оси часто бывает удобнее производить посредством проектирования силы F на плоскость, перпендикулярную оси, и вычисления величины M z (F ху ).

В соответствии с формулой (3.7) и учитывая знак проекции, получим:

M z (F )=M z (F ху )=± F ху ·h* . (3.12)

Здесь h* – плечо силы F ху относительно точки О . Если наблюдатель видит со стороны положительного направления оси z, что сила F ху стремится повернуть тело вокруг оси z против хода часовой стрелки, то берется знак "+", и в противном случае – знак "–".

Формула (3.12) дает возможность сформулировать следующее правило для вычисления момента силы относительно оси. Для этого нужно:

· выбрать на оси произвольную точку и построить плоскость, перпендикулярную оси;

· спроектировать на эту плоскость силу;

· определить плечо проекции силы h*.

Момент силы относительно оси равен произведению модуля проекции силы на ее плечо, взятому с соответствующим знаком (см. изложенное выше правило).

Из формулы (3.12) следует, что момент силы относительно оси равен нулю в двух случаях:

· когда проекция силы на плоскость, перпендикулярную оси, равна нулю, т.е. когда сила и ось параллельны ;

· когда плечо проекции h* равно нулю, т.е. когдалиния действия пересекает ось .

Оба эти случая можно объединить в один: момент силы относительно оси равен нулю тогда и только тогда, когда линия действия силы и ось находятся в одной плоскости .

Задача 3.1. Вычислить относительно точки О момент силы F , приложеннойк точке А и направленной по диагонали грани куба со стороной а .

При решении подобных задач целесообразно сначала вычислить моменты силы F относительно координатных осей x , y , z . Координаты точки А приложения силы F будут

Проекции силы F на координатные оси:

Подставляя эти значения в равенства (3.10), найдем

, , .

Эти же выражения для моментов силы F относительно координатных осей можно получить, пользуясь формулой (3.12). Для этого спроектируем силу F на плоскости, перпендикулярные оси х и у . Очевидно, что . Применяя изложенное выше правило, получим, как и следовало ожидать, те же выражения:

, , .

Модуль момента определится равенством

.

Введем теперь понятие момента пары. Найдем сначала, чему равна сумма моментов сил, составляющих пару, относительно произвольной точки. Пусть О – произвольная точка пространства, а F и F" – силы, составляющие пару.

Тогда М о (F)=ОА ×F , М о (F")=ОВ ×F" ,

М о (F)+ М о (F")= ОА ×F + ОВ ×F" ,

но так как F= -F" , то

М о (F)+ М о (F")= ОА ×F - ОВ ×F =(ОА -ОВ F .

Принимая во внимание равенство ОА-ОВ=ВА , окончательно находим:

М о (F)+ М о (F")= ВА ×F .

Следовательно, сумма моментов сил, составляющих пару, не зависит от положения точки, относительно которой берутся моменты .

Векторное произведение ВА ×F и называется моментом пары . Обозначается момент пары символом М(F, F") , причем

М(F, F") = ВА ×F= АВ ×F" ,

или, короче,

М = ВА ×F= АВ ×F" . (3.13)

Рассматривая правую часть этого равенства, замечаем, что момент пары представляет собой вектор, перпендикулярный плоскости пары, равный по модулю произведению модуля одной сил пары на плечо пары (т.е. на кратчайшее расстояние между линиями действия сил, составляющих пару) и направленный в ту сторону, откуда "вращение" пары видно происходящим против хода часовой стрелки . Если h – плечо пары, то М(F, F") =h×F .

Из самого определения видно, что момент пары сил представляет собой свободный вектор, линия действия которого не определена (дополнительное обоснование этого замечания следует из теорем 2 и 3 этой главы).

Для того, чтобы пара сил составляла уравновешенную систему (систему сил, эквивалентную нулю), необходимо и достаточно, чтобы момент пары равнялся нулю. Действительно, если момент пары равен нулю, М =h×F , то либо F =0, т.е. нет сил, либо плечо пары h равно нулю. Но в этом случае силы пары будут действовать по одной прямой; так как они равны по модулю и направлены в противоположные стороны, то на основании аксиомы 1 они составят уравновешенную систему. Обратно, если две силы F 1 иF 2 , составляющие пару, уравновешены, то на основании той же аксиомы 1 они действуют по одной прямой. Но в этом случае плечо пары h равно нулю и, следовательно, М =h×F =0.

Теоремы о парах

Докажем три теоремы, с помощью которых становятся возможными эквивалентные преобразования пар. При всех рассмотрениях следует помнить, что они относятся к парам, действующим на какое-либо одно твердое тело.

Теорема 1. Две пары, лежащие в одной плоскости, можно заменить одной парой, лежащей в той же плоскости, с моментом, равным сумме моментов данных двух пар.

Для доказательства этой теоремы рассмотрим две пары (F 1 ,F" 1 ) и (F 2 ,F" 2 ) и перенесем точки приложения всех сил вдоль линий их действия в точки А и В соответственно. Складывая силы по аксиоме 3, получим

R=F 1 +F 2 и R"=F" 1 +F" 2 ,

но F 1 =-F" 1 и F 2 =-F" 2 .

Следовательно, R=- R" , т.е. силы R и R" образуют пару. Найдем момент этой пары, воспользовавшись формулой (3.13):

М=М (R , R" )=ВА× R=ВА× (F 1 +F 2 )=ВА× F 1 +ВА× F 2 . (3.14)

При переносе сил, составляющих пару, вдоль линий их действия ни плечо, ни направление вращения пар не меняются, следовательно, не меняется и момент пары. Значит,

ВА×F 1 =М (F 1 ,F" 1 )=М 1 , ВА× F 2 = М (F 2 ,F" 2 )=М 2

и формула (3.14) примет вид

М=М 1 +М 2 , (3.15)

что и доказывает справедливость сформулированной выше теоремы.

Сделаем два замечания к этой теореме.

1. Линии действия сил, составляющих пары, могут оказаться параллельными. Теорема остается справедливой и в этом случае, но для ее доказательства следует воспользоваться правилом сложения параллельных сил.

2. После сложения может получиться, что М (R , R" )=0; на основании сделанного ранее замечания из этого следует, что совокупность двух пар (F 1 ,F" 1 , F 2 ,F" 2 )=0.

Теорема 2. Две пары, имеющие геометрически равные моменты, эквивалентны.

Пусть на тело в плоскости I действует пара (F 1 ,F" 1 ) с моментом М 1 . Покажем, что эту пару можно заменить другой с парой (F 2 ,F" 2 ), расположенной в плоскости II , если только ее момент М 2 равен М 1 (согласно определению (см. 1.1) это и будет означать, что пары (F 1 ,F" 1 ) и (F 2 ,F" 2 ) эквивалентны). Прежде всего заметим, что плоскости I и II должны быть параллельны, в частности они могут совпадать. Действительно, из параллельности моментов М 1 и М 2 (в нашем случае М 1 =М 2 ) следует, что плоскости действия пар, перпендикулярные моментам, также параллельны.

Введем в рассмотрение новую пару (F 3 ,F" 3 ) и приложим ее вместе с парой (F 2 ,F" 2 ) к телу, расположив обе пары в плоскости II . Для этого, согласно аксиоме 2 нужно подобрать пару (F 3 ,F" 3 ) с моментом М 3 так, чтобы приложенная система сил (F 2 ,F" 2 , F 3 ,F" 3 ) была уравновешена. Это можно сделать, например, следующим образом: положим F 3 =-F" 1 и F" 3 = -F 1 и совместим точки приложения этих сил с проекциями А 1 и В 1 точек А и В на плоскость II . В соответствии с построением будем иметь: М 3 = -М 1 или, учитывая, что М 1 = М 2 ,

М 2 +М 3 = 0.

Принимая во внимание второе замечание к предыдущей теореме, получим (F 2 ,F" 2 , F 3 ,F" 3 )=0. Таким образом, пары (F 2 ,F" 2 ) и (F 3 ,F" 3 ) взаимно уравновешены и присоединение их к телу не нарушает его состояния (аксиома 2), так, что

(F 1 ,F" 1 )= (F 1 ,F" 1 , F 2 ,F" 2 , F 3 ,F" 3 ). (3.16)

С другой стороны, силы F 1 и F 3 , а также F" 1 и F" 3 можно сложить по правилу сложения параллельных сил, направленных в одну сторону. По модулю все эти силы равны друг другу, поэтому их равнодействующие R и R" должны быть приложены в точке пересечения диагоналей прямоугольника АВВ 1 А 1 ; кроме того, они равны по модулю и направлены в противоположные стороны. Это означает, что они составляют систему, эквивалентную нулю. Итак,

(F 1 ,F" 1 , F 3 ,F" 3 )=(R , R" )=0.

Теперь мы можем записать

(F 1 ,F" 1 , F 2 ,F" 2 , F 3 ,F" 3 )=(F 3 ,F" 3 ). (3.17)

Сравнивая соотношения (3.16) и (3.17), получим (F 1 ,F" 1 )=(F 2 ,F" 2 ), что и требовалось доказать.

Из этой теоремы следует, что пару сил можно перемещать в плоскости ее действия, переносить в параллельную плоскость; наконец, в паре можно менять одновременно силы и плечо, сохраняя лишь направление вращения пары и модуль ее момента (F 1 h 1 = F 2 h 2).

В дальнейшем мы будем широко пользоваться такими эквивалентными преобразованиями пары.

Теорема 3. Две пары, лежащие в пересекающихся плоскостях, эквивалентны одной паре, момент которой равен сумме моментов двух данных пар.

Пусть пары (F 1 ,F" 1 ) и (F 2 ,F" 2 ) расположены в пересекающихся плоскостях I и II соответственно. Пользуясь следствием теоремы 2, приведем обе пары к плечу АВ , расположенному на линии пересечения плоскостей I и II . Обозначим трансформированные пары через (Q 1 ,Q" 1 ) и (Q 2 ,Q" 2 ). При этом должны выполняться равенства

М 1 =М (Q 1 ,Q" 1 )=М (F 1 ,F" 1 ) и М 2 =М (Q 2 ,Q" 2 )=М (F 2 ,F" 2 ).

Сложим по аксиоме 3 силы, приложенные в точках А и В соответственно. Тогда получим R=Q 1 +Q 2 и R"= Q" 1 +Q" 2 . Учитывая, что Q" 1 =-Q 1 и Q" 2 =-Q 2 , получим R=-R" . Таким образом, мы доказали, что система двух пар эквивалентна одной паре (R ,R" ).

Найдем момент М этой пары. На основании формулы (3.13) имеем

М (R ,R" )=ВА× (Q 1 +Q 2 )=ВА× Q 1 +ВА× Q 2 =

=М (Q 1 ,Q" 1 )+М (Q 2 ,Q" 2 )=М (F 1 ,F" 1 )+М (F 2 ,F" 2 )

М=М 1 +М 2 ,

т.е. теорема доказана.

Заметим, что полученный результат справедлив и для пар, лежащих в параллельных плоскостях. По теореме 2 такие пары можно привести к одной плоскости, а по теореме 1 их можно заменить одной парой, момент которой равен сумме моментов составляющих пар.

Доказанные выше теоремы о парах позволяют сделать важный вывод: момент пары является свободным вектором и полностью определяет действие пары на абсолютно твердое тело . В самом деле, мы уже доказали, что если две пары имеют одинаковые моменты (следовательно, лежат в одной плоскости или в параллельных плоскостях), то они друг другу эквивалентны (теорема 2). С другой стороны, две пары, лежащие в пересекающихся плоскостях, не могут быть эквивалентны, ибо это означало бы, что одна из них и пара, противоположная другой, эквивалентны нулю, что невозможно, так как сумма моментов таких пар отлична от нуля.

Таким образом, введенное понятие момента пары чрезвычайно полезно, так как оно полностью отражает механическое действие пары на тело. В этом смысле можно сказать, что момент исчерпывающим образом представляет действие пары на твердое тело.

Для деформируемых тел изложенная выше теория пар неприменима. Две противоположные пары, действующие, например, по торцам стержня, с точки зрения статики твердого тела эквивалентны нулю. Между тем их действие на деформируемый стержень вызывает его кручение, и тем большее, чем больше модули моментов.

Перейдем к решению первой и второй задач статики, когда на тело действуют только пары сил.

Момент силы (синонимы: крутящий момент, вращательный момент, вертящий момент, вращающий момент ) - векторная физическая величина , равная векторному произведению радиус-вектора , проведённого от оси вращения к точке приложения силы, на вектор этой силы. Характеризует вращательное действие силы на твёрдое тело .

Понятия «вращающий» и «крутящий» моменты в общем случае не тождественны, так как в технике понятие «вращающий» момент рассматривается как внешнее усилие, прикладываемое к объекту, а «крутящий» - внутреннее усилие, возникающее в объекте под действием приложенных нагрузок (этим понятием оперируют в сопротивлении материалов).

Общие сведения

Специальные случаи

Формула момента рычага

Очень интересен особый случай, представляемый как определение момента силы в поле:

\left|\vec M\right| = \left|\vec{M}_1\right| \left|\vec F\right|, где: \left|\vec{M}_1\right| - момент рычага, \left|\vec F\right| - величина действующей силы.

Проблема такого представления в том, что оно не дает направления момента силы, а только его величину. Если сила перпендикулярна вектору \vec r, момент рычага будет равен расстоянию до центра и момент силы будет максимален:

\left|\vec{T}\right| = \left|\vec r\right| \left|\vec F\right|

Сила под углом

Если сила \vec F направлена под углом \theta к рычагу r, то M = r F \sin\theta.

Статическое равновесие

Для того чтобы объект находился в равновесии, должна равняться нулю не только сумма всех сил, но и сумма всех моментов силы вокруг любой точки. Для двумерного случая с горизонтальными и вертикальными силами: сумма сил в двух измерениях ΣH=0, ΣV=0 и момент силы в третьем измерении ΣM=0.

Момент силы как функция от времени

\vec M = \frac{d\vec L}{dt},

где \vec L - момент импульса.

Возьмём твердое тело. Движение твёрдого тела можно представить как движение конкретной точки и вращения вокруг неё.

Момент импульса относительно точки O твёрдого тела может быть описан через произведение момента инерции и угловой скорости относительно центра масс и линейного движения центра масс.

\vec{L_o} = I_c\,\vec\omega +

Будем рассматривать вращающиеся движения в системе координат Кёнига , так как описывать движение твёрдого тела в мировой системе координат гораздо сложнее.

Продифференцируем это выражение по времени. И если I - постоянная величина во времени, то

\vec M = I\frac{d\vec\omega}{dt} = I\vec\alpha,

Отношение между моментом силы и работой

A = \int_{\theta_1}^{\theta_2} \left|\vec M\right| \mathrm{d}\theta

В случае постоянного момента получаем:

A = \left|\vec M\right|\theta

Обычно известна угловая скорость \omega в радианах в секунду и время действия момента t.

Тогда совершённая моментом силы работа рассчитывается как:

A = \left|\vec M\right|\omega t

Момент силы относительно точки

Если имеется материальная точка O_F, к которой приложена сила \vec F, то момент силы относительно точки O равен векторному произведению радиус-вектора \vec r, соединяющего точки O и O_F, на вектор силы \vec F:

\vec{M_O} = \left[\vec r \times \vec F\right].

Момент силы относительно оси

Момент силы относительно оси равен алгебраическому моменту проекции этой силы на плоскость, перпендикулярную этой оси относительно точки пересечения оси с плоскостью, то есть M_z(F) = M_o(F") = F"h".

Единицы измерения

Момент силы измеряется в ньютон-метрах . 1 Н·м - это момент, который производит сила 1 Н на рычаг длиной 1 м, приложенная к концу рычага и направленная перпендикулярно ему.

Измерение момента

На сегодняшний день измерение момента силы осуществляется с помощью тензометрических, оптических и индуктивных датчиков нагрузки .

См. также

Напишите отзыв о статье "Момент силы"

Отрывок, характеризующий Момент силы

Но хотя уже к концу сражения люди чувствовали весь ужас своего поступка, хотя они и рады бы были перестать, какая то непонятная, таинственная сила еще продолжала руководить ими, и, запотелые, в порохе и крови, оставшиеся по одному на три, артиллеристы, хотя и спотыкаясь и задыхаясь от усталости, приносили заряды, заряжали, наводили, прикладывали фитили; и ядра так же быстро и жестоко перелетали с обеих сторон и расплюскивали человеческое тело, и продолжало совершаться то страшное дело, которое совершается не по воле людей, а по воле того, кто руководит людьми и мирами.
Тот, кто посмотрел бы на расстроенные зады русской армии, сказал бы, что французам стоит сделать еще одно маленькое усилие, и русская армия исчезнет; и тот, кто посмотрел бы на зады французов, сказал бы, что русским стоит сделать еще одно маленькое усилие, и французы погибнут. Но ни французы, ни русские не делали этого усилия, и пламя сражения медленно догорало.
Русские не делали этого усилия, потому что не они атаковали французов. В начале сражения они только стояли по дороге в Москву, загораживая ее, и точно так же они продолжали стоять при конце сражения, как они стояли при начале его. Но ежели бы даже цель русских состояла бы в том, чтобы сбить французов, они не могли сделать это последнее усилие, потому что все войска русских были разбиты, не было ни одной части войск, не пострадавшей в сражении, и русские, оставаясь на своих местах, потеряли половину своего войска.
Французам, с воспоминанием всех прежних пятнадцатилетних побед, с уверенностью в непобедимости Наполеона, с сознанием того, что они завладели частью поля сраженья, что они потеряли только одну четверть людей и что у них еще есть двадцатитысячная нетронутая гвардия, легко было сделать это усилие. Французам, атаковавшим русскую армию с целью сбить ее с позиции, должно было сделать это усилие, потому что до тех пор, пока русские, точно так же как и до сражения, загораживали дорогу в Москву, цель французов не была достигнута и все их усилия и потери пропали даром. Но французы не сделали этого усилия. Некоторые историки говорят, что Наполеону стоило дать свою нетронутую старую гвардию для того, чтобы сражение было выиграно. Говорить о том, что бы было, если бы Наполеон дал свою гвардию, все равно что говорить о том, что бы было, если б осенью сделалась весна. Этого не могло быть. Не Наполеон не дал своей гвардии, потому что он не захотел этого, но этого нельзя было сделать. Все генералы, офицеры, солдаты французской армии знали, что этого нельзя было сделать, потому что упадший дух войска не позволял этого.
Не один Наполеон испытывал то похожее на сновиденье чувство, что страшный размах руки падает бессильно, но все генералы, все участвовавшие и не участвовавшие солдаты французской армии, после всех опытов прежних сражений (где после вдесятеро меньших усилий неприятель бежал), испытывали одинаковое чувство ужаса перед тем врагом, который, потеряв половину войска, стоял так же грозно в конце, как и в начале сражения. Нравственная сила французской, атакующей армии была истощена. Не та победа, которая определяется подхваченными кусками материи на палках, называемых знаменами, и тем пространством, на котором стояли и стоят войска, – а победа нравственная, та, которая убеждает противника в нравственном превосходстве своего врага и в своем бессилии, была одержана русскими под Бородиным. Французское нашествие, как разъяренный зверь, получивший в своем разбеге смертельную рану, чувствовало свою погибель; но оно не могло остановиться, так же как и не могло не отклониться вдвое слабейшее русское войско. После данного толчка французское войско еще могло докатиться до Москвы; но там, без новых усилий со стороны русского войска, оно должно было погибнуть, истекая кровью от смертельной, нанесенной при Бородине, раны. Прямым следствием Бородинского сражения было беспричинное бегство Наполеона из Москвы, возвращение по старой Смоленской дороге, погибель пятисоттысячного нашествия и погибель наполеоновской Франции, на которую в первый раз под Бородиным была наложена рука сильнейшего духом противника.

Для человеческого ума непонятна абсолютная непрерывность движения. Человеку становятся понятны законы какого бы то ни было движения только тогда, когда он рассматривает произвольно взятые единицы этого движения. Но вместе с тем из этого то произвольного деления непрерывного движения на прерывные единицы проистекает большая часть человеческих заблуждений.
Известен так называемый софизм древних, состоящий в том, что Ахиллес никогда не догонит впереди идущую черепаху, несмотря на то, что Ахиллес идет в десять раз скорее черепахи: как только Ахиллес пройдет пространство, отделяющее его от черепахи, черепаха пройдет впереди его одну десятую этого пространства; Ахиллес пройдет эту десятую, черепаха пройдет одну сотую и т. д. до бесконечности. Задача эта представлялась древним неразрешимою. Бессмысленность решения (что Ахиллес никогда не догонит черепаху) вытекала из того только, что произвольно были допущены прерывные единицы движения, тогда как движение и Ахиллеса и черепахи совершалось непрерывно.
Принимая все более и более мелкие единицы движения, мы только приближаемся к решению вопроса, но никогда не достигаем его. Только допустив бесконечно малую величину и восходящую от нее прогрессию до одной десятой и взяв сумму этой геометрической прогрессии, мы достигаем решения вопроса. Новая отрасль математики, достигнув искусства обращаться с бесконечно малыми величинами, и в других более сложных вопросах движения дает теперь ответы на вопросы, казавшиеся неразрешимыми.
Эта новая, неизвестная древним, отрасль математики, при рассмотрении вопросов движения, допуская бесконечно малые величины, то есть такие, при которых восстановляется главное условие движения (абсолютная непрерывность), тем самым исправляет ту неизбежную ошибку, которую ум человеческий не может не делать, рассматривая вместо непрерывного движения отдельные единицы движения.
В отыскании законов исторического движения происходит совершенно то же.
Движение человечества, вытекая из бесчисленного количества людских произволов, совершается непрерывно.
Постижение законов этого движения есть цель истории. Но для того, чтобы постигнуть законы непрерывного движения суммы всех произволов людей, ум человеческий допускает произвольные, прерывные единицы. Первый прием истории состоит в том, чтобы, взяв произвольный ряд непрерывных событий, рассматривать его отдельно от других, тогда как нет и не может быть начала никакого события, а всегда одно событие непрерывно вытекает из другого. Второй прием состоит в том, чтобы рассматривать действие одного человека, царя, полководца, как сумму произволов людей, тогда как сумма произволов людских никогда не выражается в деятельности одного исторического лица.
Историческая наука в движении своем постоянно принимает все меньшие и меньшие единицы для рассмотрения и этим путем стремится приблизиться к истине. Но как ни мелки единицы, которые принимает история, мы чувствуем, что допущение единицы, отделенной от другой, допущение начала какого нибудь явления и допущение того, что произволы всех людей выражаются в действиях одного исторического лица, ложны сами в себе.
Всякий вывод истории, без малейшего усилия со стороны критики, распадается, как прах, ничего не оставляя за собой, только вследствие того, что критика избирает за предмет наблюдения большую или меньшую прерывную единицу; на что она всегда имеет право, так как взятая историческая единица всегда произвольна.
Только допустив бесконечно малую единицу для наблюдения – дифференциал истории, то есть однородные влечения людей, и достигнув искусства интегрировать (брать суммы этих бесконечно малых), мы можем надеяться на постигновение законов истории.
Первые пятнадцать лет XIX столетия в Европе представляют необыкновенное движение миллионов людей. Люди оставляют свои обычные занятия, стремятся с одной стороны Европы в другую, грабят, убивают один другого, торжествуют и отчаиваются, и весь ход жизни на несколько лет изменяется и представляет усиленное движение, которое сначала идет возрастая, потом ослабевая. Какая причина этого движения или по каким законам происходило оно? – спрашивает ум человеческий.
Историки, отвечая на этот вопрос, излагают нам деяния и речи нескольких десятков людей в одном из зданий города Парижа, называя эти деяния и речи словом революция; потом дают подробную биографию Наполеона и некоторых сочувственных и враждебных ему лиц, рассказывают о влиянии одних из этих лиц на другие и говорят: вот отчего произошло это движение, и вот законы его.
Но ум человеческий не только отказывается верить в это объяснение, но прямо говорит, что прием объяснения не верен, потому что при этом объяснении слабейшее явление принимается за причину сильнейшего. Сумма людских произволов сделала и революцию и Наполеона, и только сумма этих произволов терпела их и уничтожила.

Момент силы относительно оси или просто момент силы называется проекция силы на прямую, которая перпендикулярна радиусу и проведена в точке приложения силы умноженная на расстояние от этой точки до оси. Либо произведение силы на плечо ее приложения. Плечо в данном случае это расстояние от оси до точки приложения силы. Момент силы характеризует вращательное действие силы на тело. Ось в данном случае это место крепления тела, относительно которого оно может совершать вращение. Если тело не закреплено, то осью вращения можно считать центр масс.

Формула 1 - Момент силы.


F - Сила действующая на тело.

r - Плечо силы.

Рисунок 1 - Момент силы.


Как видно из рисунка, плечо силы это расстояние от оси до точки приложения силы. Но это в случае если угол между ними равен 90 градусов. Если это не так, то необходимо вдоль действия силы провести линию и из оси опустить на нее перпендикуляр. Длинна этого перпендикуляра и будет равна плечу силы. А перемещение точки приложения силы вдоль направления силы не меняет ее момента.

Принято считать положительным такой момент силы, который вызывает поворот тела по часовой стрелки относительно точки наблюдения. А отрицательным соответственно вызывающий вращение против нее. Измеряется момент силы в Ньютонах на метр. Один Ньютонометр это сила в 1 Ньютон действующая на плечо в 1 метр.

Если сила, действующая на тело, проходит вдоль лини идущей через ось вращения тела, или центр масс, если тело не имеет оси вращения. То момент силы в этом случае будет равен нулю. Так как эта сила не будет вызывать вращения тела, а попросту будет перемещать его поступательно вдоль лини приложения.

Рисунок 2 - Момент силы равен нулю.


В случае если на тело действует несколько сил, то момент силы будет определять их равнодействующая. К примеру, на тело могут действовать две силы равные по модулю и направленные противоположно. При этом суммарный момент силы будет равен нулю. Так как эти силы будут компенсировать друг друга. Если по простому, то представьте себе детскую карусель. Если один мальчик ее толкает по часовой стрелке, а другой с той же силой против, то карусель останется неподвижной.

Часто мы слышим выражения: «он инертный», «двигаться по инерции», «момент инерции». В переносном значении слово «инерция» может трактоваться как отсутствие инициативы и действий. Нас же интересует прямое значение.

Что такое инерция

Согласно определению инерция в физике – это способность тел сохранять состояние покоя или движения в отсутствие действия внешних сил.

Если с самим понятием инерции все понятно на интуитивном уровне, то момент инерции – отдельный вопрос. Согласитесь, сложно представить в уме, что это такое. В этой статье Вы научитесь решать базовые задачи на тему «Момент инерции» .

Определение момента инерции

Из школьного курса известно, что масса – мера инертности тела . Если мы толкнем две тележки разной массы, то остановить сложнее будет ту, которая тяжелее. То есть чем больше масса, тем большее внешнее воздействие необходимо, чтобы изменить движение тела. Рассмотренное относится к поступательному движению, когда тележка из примера движется по прямой.

По аналогии с массой и поступательным движением момент инерции – это мера инертности тела при вращательном движении вокруг оси.

Момент инерции – скалярная физическая величина, мера инертности тела при вращении вокруг оси. Обозначается буквой J и в системе СИ измеряется в килограммах, умноженных на квадратный метр.

Как посчитать момент инерции? Есть общая формула, по которой в физике вычисляется момент инерции любого тела. Если тело разбить на бесконечно малые кусочки массой dm , то момент инерции будет равен сумме произведений этих элементарных масс на квадрат расстояния до оси вращения.

Это общая формула для момента инерции в физике. Для материальной точки массы m , вращающейся вокруг оси на расстоянии r от нее, данная формула принимает вид:

Теорема Штейнера

От чего зависит момент инерции? От массы, положения оси вращения, формы и размеров тела.

Теорема Гюйгенса-Штейнера – очень важная теорема, которую часто используют при решении задач.

Кстати! Для наших читателей сейчас действует скидка 10% на

Теорема Гюйгенса-Штейнера гласит:

Момент инерции тела относительно произвольной оси равняется сумме момента инерции тела относительно оси, проходящей через центр масс параллельно произвольной оси и произведения массы тела на квадрат расстояния между осями.

Для тех, кто не хочет постоянно интегрировать при решении задач на нахождение момента инерции, приведем рисунок с указанием моментов инерции некоторых однородных тел, которые часто встречаются в задачах:


Пример решения задачи на нахождение момента инерции

Рассмотрим два примера. Первая задача – на нахождение момента инерции. Вторая задача – на использование теоремы Гюйгенса-Штейнера.

Задача 1. Найти момент инерции однородного диска массы m и радиуса R. Ось вращения проходит через центр диска.

Решение:

Разобьем диск на бесконечно тонкие кольца, радиус которых меняется от 0 до R и рассмотрим одно такое кольцо. Пусть его радиус – r , а масса – dm . Тогда момент инерции кольца:

Массу кольца можно представить в виде:

Здесь dz – высота кольца. Подставим массу в формулу для момента инерции и проинтегрируем:

В итоге получилась формула для момента инерции абсолютного тонкого диска или цилиндра.

Задача 2. Пусть опять есть диск массы m и радиуса R. Теперь нужно найти момент инерции диска относительно оси, проходящей через середину одного из его радиусов.

Решение:

Момент инерции диска относительно оси, проходящей через центр масс, известен из предыдущей задачи. Применим теорему Штейнера и найдем:

Кстати, в нашем блоге Вы можете найти и другие полезные материалы по физике и .

Надеемся, что Вы найдете в статье что-то полезное для себя. Если в процессе расчета тензора инерции возникают трудности, не забывайте о студенческом сервисе . Наши специалисты проконсультируют по любому вопросу и помогут решить задачу в считанные минуты.

Поделитесь с друзьями или сохраните для себя:

Загрузка...