Моделирование динамических систем (метод Лагранжа и Bond graph approach). Условные экстремумы и метод множителей лагранжа

С уть метода Лагранжа заключается в сведении задачи на условный экстремум к решению задачи безусловного экстремума. Рассмотрим модель нелинейного программирования:

(5.2)

где
– известные функции,

а
– заданные коэффициенты.

Отметим, что в данной постановке задачи ограничения заданы равенствами, отсутствует условие неотрицательности переменных. Кроме того, полагаем, что функции
непрерывны со своими первыми частными производными.

Преобразуем условия (5.2) таким образом, чтобы в левых или правых частях равенств стоял ноль :

(5.3)

Составим функцию Лагранжа. В нее входит целевая функция (5.1) и правые части ограничений (5.3), взятые соответственно с коэффициентами
. Коэффициентов Лагранжа будет столько, сколько ограничений в задаче.

Точки экстремума функции (5.4) являются точками экстремума исходной задачи и наоборот: оптимальный план задачи (5.1)-(5.2) является точкой глобального экстремума функции Лагранжа.

Действительно, пусть найдено решение
задачи (5.1)-(5.2), тогда выполняются условия (5.3). Подставим план
в функцию (5.4) и убедимся в справедливости равенства (5.5).

Таким образом, чтобы найти оптимальный план исходной задачи, необходимо исследовать на экстремум функцию Лагранжа. Функция имеет экстремальные значения в точках, где ее частные производные равны нулю . Такие точки называютсястационарными.

Определим частные производные функции (5.4)

,

.

После приравнивания нулю производных получим системуm+n уравнений сm+n неизвестными

,(5.6)

В общем случае система (5.6)-(5.7) будем иметь несколько решений, куда войдут все максимумы и минимумы функции Лагранжа. Для того чтобы выделить глобальный максимум или минимум, во всех найденных точках вычисляют значения целевой функции. Наибольшее из этих значений будет глобальным максимумом, а наименьшее – глобальным минимумом. В некоторых случаях оказывается возможным использование достаточных условий строгого экстремума непрерывных функций (см. ниже задачу 5.2):

пусть функция
непрерывна и дважды дифференцируема в некоторой окрестности своей стационарной точки(т.е.
)). Тогда:

а ) если
,
(5.8)

то – точка строгого максимума функции
;

б) если
,
(5.9)

то – точка строгого минимума функции
;

г ) если
,

то вопрос о наличии экстремума остается открытым.

Кроме того, некоторые решения системы (5.6)-(5.7) могут быть отрицательными. Что не согласуется с экономическим смыслом переменных. В этом случае следует проанализировать возможность замены отрицательных значений нулевыми.

Экономический смысл множителей Лагранжа. Оптимальное значение множителя
показывает на сколько изменится значение критерияZ при увеличении или уменьшении ресурсаj на одну единицу, так как

Метод Лагранжа можно применять и в том случае, когда ограничения представляют собой неравенства. Так, нахождение экстремума функции
при условиях

,

выполняют в несколько этапов:

1. Определяют стационарные точки целевой функции, для чего решают систему уравнений

.

2. Из стационарных точек отбирают те, координаты которых удовлетворяют условиям

3. Методом Лагранжа решают задачу с ограничениями-равенствами (5.1)-(5.2).

4. Исследуют на глобальный максимум точки, найденные на втором и третьем этапах: сравнивают значения целевой функции в этих точках – наибольшее значение соответствует оптимальному плану.

Задача 5.1 Решим методом Лагранжа задачу 1.3, рассмотренную в первом разделе. Оптимальное распределение водных ресурсов описывается математической моделью

.

Составим функцию Лагранжа

Найдем безусловный максимум этой функции. Для этого вычислим частные производные и приравняем их к нулю

,

Таким образом, получили систему линейных уравнений вида

Решение системы уравнений представляет собой оптимальный план распределения водных ресурсов по орошаемым участкам

, .

Величины
измеряются в сотнях тысяч кубических метров.
- величина чистого дохода на одну сотню тысяч кубических метров поливной воды. Следовательно, предельная цена 1 м 3 оросительной воды равна
ден. ед.

Максимальный дополнительный чистый доход от орошения составит

160·12,26 2 +7600·12,26-130·8,55 2 +5900·8,55-10·16,19 2 +4000·16,19=

172391,02 (ден. ед.)

Задача 5.2 Решить задачу нелинейного программирования

Ограничение представим в виде:

.

Составим функцию Лагранжа и определим ее частные производные

.

Чтобы определить стационарные точки функции Лагранжа, следует приравнять нулю ее частные производные. В результате получим систему уравнений

.

Из первого уравнения следует

. (5.10)

Выражение подставим во второе уравнение

,

откуда следует два решения для :

и
. (5.11)

Подставив эти решения в третье уравнение, получим

,
.

Значения множителя Лагранжа и неизвестной вычислим по выражениям (5.10)-(5.11):

,
,
,
.

Таким образом, получили две точки экстремума:

;
.

Для того чтобы узнать являются ли данные точки точками максимума или минимум, воспользуемся достаточными условиями строгого экстремума (5.8)-(5.9). Предварительно выражение для , полученное из ограничения математической модели, подставим в целевую функцию

,

. (5.12)

Для проверки условий строгого экстремума следует определить знак второй производной функции (5.11) в найденных нами экстремальных точках
и
.

,
;

.

Таким образом, (·)
является точкой минимума исходной задачи (
), а (·)
– точкой максимума.

Оптимальный план :

,
,
,

.

Жозеф Луи Лагранж родился в Турине (Италия) в итало-французской семье. Он учился, а затем преподавал в Артиллерийском училище. В 1759 г. по рекомендации Эйлера 23-летнего Лагранжа избирают в члены Берлинской академии наук. В 1766 г. он уже стал ее президентом. Фридрих II пригласил Лагранжа в Берлин. После смерти Фридриха II в 1786 г. Лагранж переехал в Париж. С 1722 г. он был членом Парижской академии наук, в 1795 г. его назначили членом Бюро долгот, и он принял активное участие в создании метрической системы мер. Круг научных исследований Лагранжа был необычайно широк. Они посвящены механике, геометрии, математическому анализу, алгебре, теории чисел, а также теоретической астрономии. Основным направлением исследований Лагранжа было представление самых различных явлений в механике с единой точки зрения. Он вывел уравнение, описывающее поведение любых систем под действием сил. В области астрономии Лагранж много сделал для решения проблемы устойчивости Солнечной системы; доказал некоторые частные случаи устойчивого движения, в частности для малых тел находящихся в так называемых треугольных точках либрации.

Метод Лагранжа ─ это метод решения задачи условной оптимизации, при котором ограничения, записываемые как неявные функции, объединяются с целевой функцией в форме нового уравнения, называемого лагранжианом .

Рассмотрим частный случай общей задачи нелинейного программирования:

Дана система нелинейных уравнений (1):

(1) gi(x1,x2,…,xn)=bi (i=1..m),

Найти наименьшее (или наибольшее) значение функции (2)

(2) f (х1,х2,…,хn),

если отсутствуют условия неотрицательности переменных и f(х1,х2,…,хn) и gi(x1,x2,…,xn) ─ функции, непрерывные вместе со своими частными производными.

Чтобы найти решение этой задачи, можно применить следующий метод: 1. Вводят набор переменных λ1, λ2,…, λm, называемых множителями Лагранжа, составляют функцию Лагранжа (3)

(3) F(х1,х2,…,хn , λ1,λ2,…,λm) = f(х1,х2,…,хn)+ λi .

2. Находят частные производные от функции Лагранжа по переменным xi и λi и приравнивают их нулю.

3. Решая систему уравнений, находят точки, в которых целевая функция задачи может иметь экстремум.

4.Среди точек, подозрительных не экстремум, находят такие, в которыхдостигается экстремум, и вычисляют значения функции в этих точках.

4. Сравнить полученные значения функции f и выбрать наилучшее.

По плану производства продукции предприятию необходимо изготовить 180 изделий. Эти изделия могут быть изготовлены двумя технологическими способами. При производстве х1 изделия I способом затраты равны 4*х1+х1^2 руб., а при изготовлении х2 изделий II способом они составляют 8*х2+х2^2 руб. Определить, сколько изделий каждым из способов следует изготовить, так чтобы общие затраты на производство продукции были минимальными.

Решение: Математическая постановка задачи состоит в определении наименьшего значения функции двух переменных:

f = 4*x1+x1^2 +8*x2 +x2^2, при условии x1 +x2 = 180.

Составим функцию Лагранжа:

F(x1,x2,λ) = 4*x1+x1^2+8*x2+x2^2+λ*(180-x1-x2).

Вычислим ее частные производные по х1,х2, λ и приравняем их к 0:

Перенесем в правые части первых двух уравнений λ и приравняем их левые части, получим 4 + 2*x1 = 8 + 2*x2, или x1 − x2 = 2.

Решая последнее уравнение совместно с уравнением x1 + x2 = 180, находим x1 = 91, x2 = 89, то есть получили решение, удовлетворяющее условиям:

Найдем значение целевой функции f при этих значениях переменных:

F(x1, x2) = 17278

Эта точка является подозрительной на экстремум. Используя вторые частные производные, можно показать, что в точке (91,89) функция f имеет минимум.

Наименование параметра Значение
Тема статьи: Метод Лагранжа.
Рубрика (тематическая категория) Математика

Найти полином означает определить значения его коэффициента . Для этого используя условие интерполяции можно сформировать систему линœейных алгебраических уравнений (СЛАУ).

Определитель этой СЛАУ принято называть определителœем Вандермонда. Определитель Вандермонда не равен нулю при для , то есть в том случае, когда в интерполяционной таблице нет совпадающих узлов. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, можно утверждать, что СЛАУ имеет решение и это решение единственно. Решив СЛАУ и определив неизвестные коэффициенты можно построить интерполяционный полином .

Полином, удовлетворяющий условиям интерполяции, при интерполяции методом Лагранжа строится в виде линœейной комбинации многочленов n-ой степени:

Многочлены принято называть базисными многочленами. Для того, чтобы многочлен Лагранжа удовлетворял условиям интерполяции крайне важно, чтобы для его базисных многочленов выполнялись следующие условия:

для .

В случае если эти условия выполняются, то для любого имеем:

Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, выполнение заданных условий для базисных многочленов означает, что выполняются и условия интерполяции.

Определим вид базисных многочленов исходя из наложенных на них ограничений.

1-е условие: при .

2-е условие: .

Окончательно для базисного многочлена можно записать:

Тогда, подставляя полученное выражение для базисных многочленов в исходный полином, получаем окончательный вид многочлена Лагранжа:

Частная форма многочлена Лагранжа при принято называть формулой линœейной интерполяции:

.

Многочлен Лагранжа взятый при принято называть формулой квадратичной интерполяции:

Метод Лагранжа. - понятие и виды. Классификация и особенности категории "Метод Лагранжа." 2017, 2018.

  • - Метод Лагранжа (метод вариации произвольной постоянной).

    Линейные ДУ. Определение. ДУ вида т.е. линейное относ-но неизвестной ф-ции и ее производной наз-ся линейным. Для реш-я такого типа ур-й рассмотрим два метода: метод Лагранжа и метод Бернулли.Рассмотрим однородное ДУ Это ур-е с разделяющимися переем-ми Решение ур-я Общее... .


  • - Линейные ДУ, однород-е и неоднород-е. Понятие общего реш-я. Метод Лагранжа вариации произв-х постоянных.

    Определение. ДУ наз-ся однород-м, если ф-я может быть представлена, как ф-я отнош-я своих аргументов Пример. Ф-я наз-ся однородной ф-й измерения если Примеры: 1) - 1-й порядок однородности. 2) - 2-й порядок однородности. 3) - нулевой порядок однородности (просто однородная... .


  • - Лекция 8. Применение частных производных: задачи на экстремум. Метод Лагранжа.

    Задачи на экстремум имеют большое значение в экономических расчетах. Это вычисление, например, максимумов дохода, прибыли, минимума издержек в зависимости от нескольких переменных: ресурсов, производственных фондов и т.д. Теория нахождения экстремумов функций... .


  • - Т.2.3. ДУ высших порядков. Уравнение в полных дифференциалах. Т.2.4. Линейные ДУ второго порядка с постоянными коэффициентами. Метод Лагранжа.

    3. 2. 1. ДУ с разделяющимися переменными С.Р. 3. В естествознании, технике и экономике часто приходится иметь дело с эмпирическими формулами, т.е. формулами, составленными на основе обработки статистических данных или...

  • ЛАГРАНЖА МЕТОД

    Метод приведения квадратичной формы к сумме квадратов, указанный в 1759 Ж. Лагранжем (J. Lagrange). Пусть дана

    от ппеременных х 0 , x 1 ,..., х п . с коэффициентами из поля k характеристики Требуется привести эту форму к канонич. виду

    при помощи невырожденного линейного преобразования переменных. Л. м. состоит в следующем. Можно считать, что не все коэффициенты формы (1) равны нулю. Поэтому возможны два случая.

    1) При некотором g, диагональный Тогда

    где форма f 1 (х).не содержит переменную x g . 2) Если же все но то


    где форма f 2 (х).не содержит двух переменных x g и x h . Формы, стоящие под знаками квадратов в (4), линейно независимы. Применением преобразований вида (3) и (4) форма (1) после конечного числа шагов приводится к сумме квадратов линейно независимых линейных форм. С помощью частных производных формулы (3) и (4) можно записать в виде


    Лит. : Г а н т м а х е р Ф. Р., Теория матриц, 2 изд., М., 1966; К у р о ш А. Г., Курс высшей алгебры, 11 изд., М., 1975; Александров П. С., Лекции по аналитической геометрии..., М., 1968. И. В. Проскуряков.


    Математическая энциклопедия. - М.: Советская энциклопедия . И. М. Виноградов . 1977-1985 .

    Смотреть что такое "ЛАГРАНЖА МЕТОД" в других словарях:

      Лагранжа метод - Лагранжа метод — метод решения ряда классов задач математического программирования с помощью нахождения седловой точки (x*, λ*) функции Лагранжа., что достигается приравниванием нулю частных производных этой функции по… … Экономико-математический словарь

      Лагранжа метод - Метод решения ряда классов задач математического программирования с помощью нахождения седловой точки (x*, ?*) функции Лагранжа., что достигается приравниванием нулю частных производных этой функции по xi и?i . См. Лагранжиан. }

    Поделитесь с друзьями или сохраните для себя:

    Загрузка...