Дисперсионный анализ. Однофакторный дисперсионный анализ фишера

Предположим, что на автоматической линии несколько станков параллельно выполняют одинаковую операцию. Для правильного планирования последующей обработки важно знать, насколько однотипны средние размеры деталей, получаемые на параллельно работающих станках. Здесь имеет место лишь один фактор, влияющий на размер деталей, это станки, на которых они изготовляются. Необходимо выяснить, насколько существенно влияние этого фактора на размеры деталей. Предположим, что совокупности размеров деталей, изготовленных на каждом станке, имеют нормальное распределение и равные дисперсии.

Имеем т станков, следовательно, т совокупностей или уровней, на которых произведено n 1 , n 2 ,..., п т наблюдений. Для простоты рассуждений предположим, что n 1 =n 2 =…= п т. Размеры деталей, составляющие n i наблюдений на i -м уровне, обозначим х i 1 ,х i 2 ,..., x in . Тогда все наблюдения можно представить в виде таблицы, которая называется матрицей наблюдений (табл. 3.1).

Таблица 3.1

Уровни Результаты наблюдений
1 2 j n
x 11 x 12 x 1 j x 1 n
x 21 x 22 x 2 j x 2 n
x 31 x 32 x 3 j x 3 n
i x i1 x i2 x i j x i n
m x m1 x m2 x mj x mn

Будем полагать, что для i -го уровня п наблюдений имеют среднюю β i , равную сумме общей средней µ и вариации ее, обусловленной i -м уровнем фактора, т.е. β i = µ + γ i . Тогда одно наблюдение можно представить в следующем виде:

x i j = µ + γ i . +ε ij = β i +ε ij (3.1)

где µ - общая средняя; γ i - эффект, обусловленный i -м уровнем фактора; ε ij - вариация результатов внутри отдельного уровня.

Член ε ij характеризует влияние всех не учтенных моделью (3.1) факторов. Согласно обшей задаче дисперсионного анализа нужно оценить существенность влияния фактора γ на размеры деталей. Общую вариацию переменной x i j можно разложить на части, одна из которых характеризует влияние фактора γ, другая - влияние неучтенных факторов. Для этого необходимо найти оценку общей средней µ и оценки средних по уровням β i . Очевидно, что оценкой β является средняя арифметическая п наблюдений i-го уровня, т.е.

Звездочка в индексе при х означает, что наблюдения фиксированы на i-м уровне. Средняя арифметическая всей совокупности наблюдений является оценкой общей средней µ, т.е.

Найдем сумму квадратов отклонений x i j от , т.е.

Представим ее в виде (3.2)

Причем =

Но = 0, так как это есть сумма отклонений переменных одной совокупности от средней арифметической этой же совокупности, т.е. вся сумма равна нулю. Второй член суммы (3.2) запишем в виде:



Или

Слагаемое является суммой квадратов разностей между средними уровней и средней всей совокупности наблюдений. Эта сумма называется суммой квадратов отклонений между группами и характеризует расхождение между уровнями. Величину , называют также рассеиванием по факторам, т.е. рассеиванием за счет исследуемого фактора.

Слагаемое является суммой квадратов разностей между отдельными наблюдениями и средней i-го уровня. Эта сумма назы­вается суммой квадратов отклонений внутри группы и характеризует расхождение между наблюдениями i-го уровня. Величину называют также остаточным рассеиванием, т.е. рассеиванием за счет неучтенных факторов.

Величину называется общей или полной суммой квадратов отклонений отдельных наблюдений от общей средней .

Зная суммы квадратов SS, SS 1 и SS 2 , можно оценить несмещенные оценки соответствующих дисперсий - общей, межгрупповой и внутригрупповой (таблица 3.2).

Если влияние всех уровней фактора γ одинаково, то и - оценки общей дисперсии.

Тогда для оценки существенности влияния фактора γ достаточно проверить нулевую гипотезу H 0: = .

Для этого вычисляют критерий Фишера F B = , с числом степеней свободы k 1 = т - 1 и k 2 = т(п - 1). Затем по таблице F-распределения (см. таблицу распределения критерия Фишера) для уровня значимости α находят критическое значение F кр.

Таблица 3.2

Если F B > F кр то нулевая гипотеза отвергается и делается заключение о существенном влиянии фактора γ.

При F B < F кр нет основания отвергать нулевую гипотезу и можно считать, что влияние фактора γ несущественно.



Сравнивая межгрупповую и остаточную дисперсии, по величине их отношения судят, насколько сильно проявляется влияние факторов.

Пример 3.1. Имеется четыре партии тканей для спецодежды. Из каждой партии отобрано по пять образцов и проведены испытания на определение величины разрывной нагрузки. Результаты испытаний приведены в табл. 3.3.

Таблица 3.3

Номер партии, т

Требуется выяснить, существенно ли влияние различных партий сырья на величину разрывной нагрузки.

Решение.

В данном случае т = 4, п = 5. Среднюю арифметическую каждой строки вычисляем по формуле

Имеем: =(200+140+170+145+165)/5=164; =170; =202; = 164.

Найдем среднюю арифметическую всей совокупности:

Вычислим величины, необходимые для построения табл. 3.4:

· сумму квадратов отклонений между группами SS 1 , с k 1 =т –1=

4-1=3 степенями свободы:

· сумму квадратов отклонений внутри группы SS 2 с k 2 = тп – т= =20-4=16 степенями свободы:

· полную сумму квадратов SS c k=mn-1=20-1=19 степенями свободы:

По найденным значениям оценим дисперсию, по формулам (табл. 3.2) составим (табл. 3.4) для рассматриваемого примера.

Таблица 3.4

Проведем статистический анализ по критерию Фишера. Вычислим F B = =(4980 1/3)/(7270 1/16) =1660/454,4= 3,65.

По таблице F-распределения (см. приложения) находим значение F Kp при k 2 = 16 и k 1 = 3 степенях свободы и уровне значимости α = 0,01. Имеем F Kp = 5,29.

Вычисленное значение F B меньше табличного, поэтому можно утверждать, что нулевая гипотеза не отвергается, а это значит, что различие между тканями в партиях не влияет на величину разрывной нагрузки.

В пакете Анализ данных инструмент Однофакторный дисперсионный анализ используется для проверки гипотезы о сходстве средних значений двух или более выборок, принадлежащих одной и той же генеральной совокупности. Рассмотрим работу пакета для проведения однофакторного дисперсионного анализа.

Решим пример 3.1, используя инструмент Однофакторный дисперсионный анализ.

Однофакторная дисперсионная модель имеет вид

где Xjj - значение исследуемой переменной, полученной на г-м уровне фактора (г = 1, 2,..., т) су-м порядковым номером (j- 1,2,..., п); /у - эффект, обусловленный влиянием г-го уровня фактора; е^. - случайная компонента, или возмущение, вызванное влиянием неконтролируемых факторов, т.е. вариацией переменной внутри отдельного уровня.

Под уровнем фактора понимается некоторая его мера или состояние, например, количество вносимых удобрений, вид плавки металла или номер партии деталей и т.п.

Основные предпосылки дисперсионного анализа.

1. Математическое ожидание возмущения ? (/ - равно нулю для любых i, т.е.

  • 2. Возмущения взаимно независимы.
  • 3. Дисперсия возмущения (или переменной Ху) постоянна для любых ij> т.е.

4. Возмущение е# (или переменная Ху) имеет нормальный закон распределения N( 0; а 2).

Влияние уровней фактора может быть как фиксированным , или систематическим (модель I), так и случайным (модель II).

Пусть, например, необходимо выяснить, имеются ли существенные различия между партиями изделий по некоторому показателю качества, т.е. проверить влияние на качество одного фактора - партии изделий. Если включить в исследование все партии сырья, то влияние уровня такого фактора систематическое (модель I), а полученные выводы применимы только к тем отдельным партиям, которые привлекались при исследовании; если же включить только отобранную случайно часть партий, то влияние фактора случайное (модель II). В многофакторных комплексах возможна смешанная модель III, в которой одни факторы имеют случайные уровни, а другие - фиксированные.

Рассмотрим эту задачу подробнее. Пусть имеется т партий изделий. Из каждой партии отобрано соответственно п Л, п 2 ,п т изделий (для простоты полагаем, что щ = п 2 =... = п т = п). Значения показателя качества этих изделий представим в виде матрицы наблюдений


Необходимо проверить существенность влияния партий изделий на их качество.

Если полагать, что элементы строк матрицы наблюдений - это численные значения (реализации) случайных величин X t , Х 2 ,..., Х т, выражающих качество изделий и имеющих нормальный закон распределения с математическими ожиданиями соответственно a v а 2 , ..., а т и одинаковыми дисперсиями а 2 , то данная задача сводится к проверке нулевой гипотезы # 0: a v = a 2l = ... = а т,осуществляемой в дисперсионном анализе.

Обозначим усреднение по какому-либо индексу звездочкой (или точкой) вместо индекса, тогда средний показатель качества изделий г’-й партии, или групповая средняя для г-го уровня фактора, примет вид

а общая средняя -

Рассмотрим сумму квадратов отклонений наблюдений от общей средней х„:

или Q = Q, + Q 2 + ?>з Последнее слагаемое

так как сумма отклонений значений переменной от ее средней, т.е. ? 1.г у - х) равна нулю. ) =х

Первое слагаемое можно записать в виде

В результате получим следующее тождество:

т п. _

где Q = Y, X [ х ij _ х„, I 2 - общая, или полная, сумма квадратов отклонений; 7=1

Q, - n^}

Поделитесь с друзьями или сохраните для себя:

Загрузка...