Доверительные интервалы для оценки математического ожидания. Построение доверительного интервала для математического ожидания генеральной совокупности

Пусть CB X образуют генеральную совокупность и в — неизвестный параметр CB X. Если статистическая оценка в * является состоятельной, то чем больше объем выборки, тем точнее получаем значение в. Однако на практике мы имеем выборки не очень большого объема, поэтому не можем гарантировать большую точность.

Пусть в* — статистическая оценка для в. Величина |в* - в| называется точностью оценки. Ясно, что точность является CB, т. к. в* — случайная величина. Зададим малое положительное число 8 и потребуем, чтобы точность оценки |в* - в| была меньше 8, т. е. | в* - в | < 8.

Надежностью g или доверительной вероятностью оценки в по в * называется вероятность g, с которой осуществляется неравенство |в * - в| < 8, т. е.

Обычно надежность g задают наперед, причем, за g берут число, близкое к 1 (0,9; 0,95; 0,99; ...).

Так как неравенство |в * - в| < S равносильно двойному неравенству в* - S < в < в* + 8, то получаем:

Интервал (в * - 8, в* + 5) называется доверительным интервалом, т. е. доверительный интервал покрывает неизвестный параметр в с вероятностью у. Заметим, что концы доверительного интервала являются случайными и изменяются от выборки к выборке, поэтому точнее говорить, что интервал (в * - 8, в * + 8) покрывает неизвестный параметр в, а не в принадлежит этому интервалу.

Пусть генеральная совокупность задана случайной величиной X, распределенной по нормальному закону, причем, среднее квадратическое отклонение а известно. Неизвестным является математическое ожидание а = М (X). Требуется найти доверительный интервал для а при заданной надежности у.

Выборочная средняя

является статистической оценкой для хг = а.

Теорема. Случайная величина хВ имеет нормальное распределение, если X имеет нормальное распределение, и М (ХВ) = а,

А (XВ) = а, где а = у/Б (X), а = М (X). л/и

Доверительный интервал для а имеет вид:

Находим 8.

Пользуясь соотношением

где Ф(г) — функция Лапласа, имеем:

Р { | XВ - а | <8} = 2Ф

таблице значений функции Лапласа находим значение t.

Обозначив

T, получим F(t) = g Так как g задана, то по

Из равенстваНаходим— точность оценки.

Значит, доверительный интервал для а имеет вид:

Если задана выборка из генеральной совокупности X

нГ к" X2 Xm
n. n1 n2 nm

n = U1 + ... + nm, то доверительный интервал будет:

Пример 6.35. Найти доверительный интервал для оценки математического ожидания а нормального распределения с надежностью 0,95, зная выборочную среднюю Xb = 10,43, объем выборки n = 100 и среднее квадратическое отклонение s = 5.

Воспользуемся формулой

Доверительный интервал – предельные значения статистической величины, которая с заданной доверительной вероятностью γ будет находится в этом интервале при выборке большего объема. Обозначается как P(θ - ε . На практике выбирают доверительную вероятность γ из достаточно близких к единице значений γ = 0.9 , γ = 0.95 , γ = 0.99 .

Назначение сервиса . С помощью этого сервиса определяются:

  • доверительный интервал для генерального среднего, доверительный интервал для дисперсии;
  • доверительный интервал для среднего квадратического отклонения, доверительный интервал для генеральной доли;
Полученное решение сохраняется в файле Word (см. пример). Ниже представлена видеоинструкция, как заполнять исходные данные.

Пример №1 . В колхозе из общего стада в 1000 голов овец выборочной контрольной стрижке подверглись 100 овец. В результате был установлен средний настриг шерсти 4,2 кг на одну овцу. Определить с вероятностью 0,99 среднюю квадратическую ошибку выборки при определении среднего настрига шерсти на одну овцу и пределы, в которых заключена величина настрига, если дисперсия равна 2,5 . Выборка бесповторная.
Пример №2 . Из партии импортируемой продукции на посту Московской Северной таможни было взято в порядке случайной повторной выборки 20 проб продукта «А». В результате проверки установлена средняя влажность продукта «А» в выборке, которая оказалась равной 6 % при среднем квадратическом отклонении 1 %.
Определите с вероятностью 0,683 пределы средней влажности продукта во всей партии импортируемой продукции.
Пример №3 . Опрос 36 студентов показал, что среднее количество учебников, прочитанных ими за учебный год, оказалось равным 6. Считая, что количество учебников, прочитанных студентом за семестр, имеет нормальный закон распределения со средним квадратическим отклонением, равным 6, найти: А) с надежностью 0,99 интервальную оценку для математического ожидания этой случайной величины; Б) с какой вероятностью можно утверждать, что среднее количество учебников, прочитанных студентом за семестр, вычисленное по данной выборке, отклонится от математического ожидания по абсолютной величине не больше, чем на 2.

Классификация доверительных интервалов

По виду оцениваемого параметра:

По типу выборки:

  1. Доверительный интервал для бесконечной выборки;
  2. Доверительный интервал для конечной выборки;
Выборка называется повторной , если отобранный объект перед выбором следующего возвращается в генеральную совокупность. Выборка называется бесповторной , если отобранный объект в генеральную совокупность не возвращается. На практике обычно имеют дело с бесповторными выборками.

Расчет средней ошибки выборки при случайном отборе

Расхождение между значениями показателей, полученных по выборке, и соответствующими параметрами генеральной совокупности называется ошибкой репрезентативности .
Обозначения основных параметров генеральной и выборочной совокупности.
Формулы средней ошибки выборки
повторный отбор бесповторный отбор
для средней для доли для средней для доли
Соотношение между пределом ошибки выборки (Δ), гарантируемым с некоторой вероятностью Р(t), и средней ошибкой выборки имеет вид: или Δ = t·μ, где t – коэффициент доверия, определяемый в зависимости от уровня вероятности Р(t) по таблице интегральной функции Лапласа.

Формулы расчета численности выборки при собственно-случайном способе отбора

ДОВЕРИТЕЛЬНЫЙ ИНТЕРВАЛ ДЛЯ МАТЕМАТИЧЕСКОГО ОЖИДАНИЯ

1. Пусть известно, что сл. величина x подчиняется нормальному закону с неизвестным средним μ и известной σ 2: X~N(μ,σ 2 ), σ 2 задано, μ не известно. Задано β. По выборке x 1, x 2, … , x n надо построить I β (θ) (сейчас θ=μ), удовлетворяющий (13)

Выборочное среднее (говорят также выборочная средняя) подчиняется нормальному закону с тем же центром μ, но меньшей дисперсией X~N (μ , D ), где дисперсией D =σ 2 =σ 2 /n.

Нам понадобится число К β , определяемое для ξ~N(0,1) условием

Словами: между точками -К β и К β оси абсцисс лежит площадь под кривой плотности стандартного нормального закона, равная β

Например, К 0,90 =1,645 квантиль уровня 0,95 величины ξ

K 0,95 = 1,96. ; К 0,997 =3 .

В частности, отложив от центра любого нормального закона 1,96 стандартных отклонений вправо и столько же влево, мы захватим площадь под кривой плотности, равную 0.95, в силу чего К 0 95 является квантилью уровня 0,95 + 1/2*0,005 = 0,975 для этого за­кона.

Искомый доверительный интервал для генерального среднего μ есть I А (μ) = (х-σ, х+σ),

где δ = (15)

Дадим обоснование:

По сказанному, сл. величина в интервал J=μ±σ попадает с вероятностью β (рис.9). В этом случае величина отклоняется от центра μ меньше, чем на δ , и случайный интервал ± δ (со случайным центром и такой же как у J ширины) накроет точку μ. То есть Є J <=> μ Є I β , а потому Р{μЄІ β } = Р{ Є J }=β.

Итак, постоянный по выборке интервал I β содержит среднее μ с вероятностью β.

Ясно, чем больше n, тем меньше σ и уже интервал, а чем больше мы берем гарантию β, тем доверительный интервал шире.

Пример 21.

По выборке с n=16 для нормальной величины с известной дисперсией σ 2 =64 найдено х=200. Построить доверительный интервал для генерального среднего (иначе говоря, для математического ожидания) μ, приняв β=0,95.

Решение. I β (μ)= ± δ, где δ = К β σ/ -> К β σ/ =1.96*8/ = 4

I 0.95 (μ)=200 4=(196;204).

Делая вывод, что с гарантией β=0,95 истинное среднее принадлежат интервалу (196,204), мы понимаем, что возможна ошибка.

Из 100 доверительных интервалов I 0. 95 (μ) в среднем 5 не содержат μ.

Пример 22.

Каким в условиях предыдущего примера 21 следует взять n, чтобы вдвое сузить доверительный интервал? Чтобы иметь 2δ=4, надо взять

На практике часто пользуются односторонними доверительными интервалами. Так, если полезны или не страшны высокие значения μ, но не.приятны низкие, как в случае с прочностью или надежностью, то резонно строить односторонний интервал. Для этого следует максимально поднять его верхнюю границу. Если мы построим, как в примере 21, двусторонний доверительный интервал для заданного β, а затем максимально расширим его за счет одной из границ, то получим односторонний интервал с большей гарантией β" = β + (1-β) / 2 = (1+β)/2, например, если β = 0,90, то β = 0,90 + 0,10/2 = 0,95.

Например, будем считать, что речь идет о прочности изделия и поднимем верхнюю границу интервала до . Тогда для μ в примере 21 получим односторонний доверительный интервал (196,°°) с нижней границей 196 и доверительной вероятностью β"=0,95+0,05/2=0,975.

Практическим недостатком формулы (15)_является то, что она выведена в предположении, что дисперсия = σ 2 (отсюда и = σ 2 /n) известна; а это бывает в жизни редко. Исключение составляет случай, когда объем выборки велик, скажем, n измеряется сотнями или тысячами и тогда за σ 2 можно практически принять ее оценку s 2 или .

Пример 23.

Положим, в некотором большом городе в результате выборочного обследования жилищных условий жителей получена следу­ющая таблица данных (пример из работы ).

Таблица 8

Исходные данные к примеру

Естественно допустить, что сл. величина X - общая (полезная) площадь (в м 2), приходящаяся на одного человека подчиняется нор­мальному закону. Среднее μ и дисперсия σ 2 не известны. Для μ тре­буется построить 95%-ный доверительный интервал. Чтобы по группи­рованным данным найти выборочные средние и дисперсию, составим следующую таблицу выкладок (табл.9).

Таблица 9

Вычисления X и 5 по сгруппированным данным

N группы з Общая площадь в расчете на 1 человека, м 2 Число жителей в группе г j Середина интервала x j r j x j rjxj 2
До 5.0 2.5 20.0 50.0
5.0-10.0 7.5 712.5 5343.75
10.0-15.0 12.5 2550.0 31875.0
15.0-20.0 17.5 4725.0 82687.5
20.0-25.0 22.5 4725.0 106312.5
25.0-30.0 27.5 3575.0 98312.5
более 30.0 32.5 * 2697.5 87668.75
- 19005.0 412250.0

В этой вспомогательной таблице по формуле (2) подсчитаны первый и второй начальные статистические моменты а 1 и а 2

Хотя дисперсия σ 2 здесь неизвестна, из-за большого объема выборки можно практически применить формулу (15), положив в ней σ= =7.16.

Тогда δ=k 0.95 σ/ =1.96*7.16/ =0.46.

Доверительный интервал для генерального среднего при β=0,95 равен I 0.95 (μ) = ± δ = 19 ± 0.46 = (18.54; 19.46).

Следовательно, среднее значение площади на одного человека в данном городе с гарантией 0.95 лежит в промежутке (18.54; 19.46).



2. Доверительный интервал для математического ожидания μ в случае неизвестной дисперсии σ 2 нормальной величины. Этот интервал для заданной гарантии β строится по формуле ,где ν = n-1 ,

(16)

Коэффициент t β,ν имеет тот же смысл для t – распределения с ν степенями свободы, что к β для распределения N(0,1), а именно:

.

Другими словами, сл. Величина tν попадает в интервал (-t β,ν ; +t β,ν) с вероятностью β. Значения t β,ν даны в табл.10 для β=0.95 и β=0.99.

Таблица 10.

Значения t β,ν

Возвращаясь к примеру 23, видим, что в нем доверительный интервал был построен по формуле (16) с коэффициентом t β,υ =k 0..95 =1.96, т. к. n=1000.

Вы можете использовать данную форму поиска, чтобы найти нужную задачу. Вводите слово, фразу из задачи или ее номер, если он вам известен.


Искать только в данном разделе


Доверительные интервалы: список решений задач

Доверительные интервалы: теория и задачи

Общие сведения о доверительных интервалах

Введем кратко понятие доверительного интервала, который
1) оценивает некоторый параметр числовой выборки непосредственно по данным самой выборки,
2) накрывает значение этого параметра с вероятностью γ.

Доверительным интервалом для параметра X (при вероятности γ) называется интервал вида , такой что , а значения вычисляются некоторым образом по выборке .

Обычно в прикладных задачах доверительную вероятность берут равной γ = 0,9; 0,95; 0,99.

Рассмотрим некоторую выборку объема n, сделанную из генеральной совокупности, распределенной предположительно по нормальному закону распределения . Покажем, по каким формулам находятся доверительные интервалы для параметров распределения - математического ожидания и дисперсии (среднего квадратического отклонения).

Доверительный интервал для математического ожидания

Случай 1. Дисперсия распределения известна и равна . Тогда доверительный интервал для параметра a имеет вид:
t определяется из таблицы распределения Лапласа по соотношению

Случай 2. Дисперсия распределения неизвестна, по выборке вычислена точечная оценка дисперсии . Тогда доверительный интервал для параметра a имеет вид:
, где - выборочное среднее, вычисленное по выборке, параметр t определяется из таблицы распределения Стьюдента

Пример. По данным 7 измерений некоторой величины найдены средняя результатов измерений, равная 30 и выборочная дисперсия, равная 36. Найдите границы, в которых с надежностью 0,99 заключено истинное значение измеряемой величины.

Решение. Найдем . Тогда доверительные границы для интервала, заключающего истинное значение измеряемой величины можно найти по формуле:
, где - выборочное среднее, - выборочная дисперсия. Подставляем все величины и получаем:

Доверительный интервал для дисперсии

Считаем, что вообще говоря, математическое ожидание неизвестно, а известна только точечная несмещенная оценка дисперсии . Тогда доверительный интервал имеет вид:
, где - квантили распределения , определяемые из таблиц.

Пример. По данным 7 испытаний найдено значение оценки для среднеквадратического отклонения s=12 . Найти с вероятностью 0,9 ширину доверительного интервала, построенного для оценки дисперсии.

Решение. Доверительный интервал для неизвестной дисперсии генеральной совокупности можно найти по формуле:

Подставляем и получаем:


Тогда ширина доверительного интервала равна 465,589-71,708=393,881.

Доверительный интервал для вероятности (доли)

Случай 1. Пусть в задаче известен объем выборки и выборочная доля (относительная частота) . Тогда доверительный интервал для генеральной доли (истинной вероятности) имеет вид:
, где параметр t определяется из таблицы распределения Лапласа по соотношению .

Случай 2. Если в задаче дополнительно известен общий объем совокупности , из которой была сделана выборка, доверительный интервал для генеральной доли (истинной вероятности) можно найти по скорректированной формуле:
.

Пример. Известно, что Найти границы, в которых с вероятностью заключена генеральная доля.

Решение. Используем формулу:

Найдем параметр из условия , получим Подставляем в формулу:


Другие примеры задач по математической статистике вы найдете на странице

Для начала напомним следующее определение:

Будем рассматривать следующую ситуацию. Пусть варианты генеральной совокупности имеет нормальное распределение с математическим ожиданием $a$ и среднем квадратическим отклонением $\sigma $. Выборочное среднее в данном случае будет рассматриваться как случайная величина. Когда величина $X$ распределена нормально, выборочное среднее будет также иметь нормальное распределение с параметрами

Найдем доверительный интервал, который покрывает величину $a$ с надежностью $\gamma $.

Для этого нам необходимо, чтобы выполнялось равенство

Из нее получим

Отсюда мы можем легко найти $t$ по таблицы значений функции $Ф\left(t\right)$ и, как следствие, найти $\delta $.

Напомним таблицу значений функции $Ф\left(t\right)$:

Рисунок 1. Таблица значений функции $Ф\left(t\right).$

Доверительный интеграл для оценки математического ожидания при неизвестном ${\mathbf \sigma }$

В этом случае мы будем пользоваться значением исправленной дисперсии $S^2$. Заменяя в выше выведенной формуле $\sigma $ на $S$, получим:

Пример задач на нахождение доверительного интервала

Пример 1

Пусть величина $X$ имеет нормальное распределение с дисперсией $\sigma =4$. Пусть объем выборки $n=64$, а надежность равна $\gamma =0,95$. Найти доверительный интервал для оценки математического ожидания данного распределения.

Нам необходимо найти интервал ($\overline{x}-\delta ,\overline{x}+\delta)$.

Как мы видели выше

\[\delta =\frac{\sigma t}{\sqrt{n}}=\frac{4t}{\sqrt{64}}=\frac{\ t}{2}\]

Параметр $t$ найдем из формулы

\[Ф\left(t\right)=\frac{\gamma }{2}=\frac{0,95}{2}=0,475\]

Из таблицы 1 получаем, что $t=1,96$.

Поделитесь с друзьями или сохраните для себя:

Загрузка...