Написать схему и механизм реакции алкилирования фенола. Алкилирование фенолов

Федеральное агентство по образованию.

Государственное образовательное учреждение высшего профессионального образования.

Самарский государственный технический университет.

Кафедра: «Технология органического и нефтехимического синтеза»

Курсовой проект по дисциплине:

«Теория химических процессов органического синтеза»

Алкилирование фенола олефинами

Руководитель: доцент, к. х. н. Нестерова Т.Н.


1. Термодинамический анализ

При анализе процесса алкилирования фенола олефинами необходимо, прежде всего, определить какие вещества будут образовываться. В молекуле фенола существует два реакционных центра: ароматическое кольцо и гидроксильная группа. При взаимодействии алкена с ОН- группой образуются простые эфиры, которые легко могут перегруппировываться в алкилфенолы. Установлено, что алкилфенолы преимущественно образуются путем прямого алкилирования в ядро. Рассмотрим влияние гидроксильной группы в молекуле фенола на ароматическое кольцо. Заместитель характеризуется большим положительным эффектом сопряжения по сравнению с отрицательным индуктивным эффектом. Он сильно активирует орто- и пара- положения, поэтому 3-алкилфенолы будут находиться в продуктах в очень малых количествах. Процесс может пойти и дальше с образованием моно-, ди- и триалкилфенолов. Т.к. нас интересуют моно- замещенные фенолы то необходимо проводить процесс при небольшом избытке фенола.

Процесс идет через образование из алкена промежуточного карбкатиона, который является легко изомеризующейся и активной частицей. Возможно следующее: позиционная и структурная изомеризация, реакция крекинга, взаимодействие с ненасыщенными углеводородами, олигомеризация. Реакция изомеризации как правило опережает все прочие превращения, поэтому при алкилировании - олефинами получаем всевозможные изомеры. В условиях относительно нежестких протекают реакции только позиционной изомеризации.

Учитывая выше сказанное, отберем вещества, которые вероятнее всего будут находиться в равновесной смеси:

(a)- 2-(2-гидроксифенил)тетрадекан; (b)- 3-(2-гидроксифенил)тетрадекан;

(c)- 4-(2-гидроксифенил)тетрадекан; (d)- 5-(2-гидроксифенил)тетрадекан;

(i)- 6-(2-гидроксифенил)тетрадекан; (f)- 7-(2-гидроксифенил)тетрадекан;

(g)- 2-(4-гидроксифенил)тетрадекан; (h)- 3-(4-гидроксифенил)тетрадекан;

(m)- 4-(4-гидроксифенил)тетрадекан; (n)- 5-(4-гидроксифенил)тетрадекан;

(o)- 6-(4-гидроксифенил)тетрадекан; (p)- 7-(4-гидроксифенил)тетрадекан.

Выберем (n-1) независимых реакций, где n-количество образовавшихся компонентов:

ab; bc; cd; di; if; ag; gh; hm;

Запишем константы скоростей реакции:

Kx a =; Kx b =; Kx c =; Kx d =; Kx i =; Kx g =; Kx h =;

Kx m =; Kx n =; Kx o =; Kx p =.

Выразим концентрацию каждого компонента через константы реакций и концентрацию компонента g:

=; =; =; =;

=; =; =

Для систем подчиняющихся закону Рауля можно записать для :

В свою очередь:

= - =

В термодинамическом анализе для расчета констант реакций необходимы точные данные энтальпии, энтропии, а если процесс идет в жидкой фазе, то критические параметры для расчета давления насыщенного пара, желательно, если это будут экспериментальные данные.

Энтальпии и энтропии. Метод Бенсона не даст в нашем случае точные значения. Для примера рассмотрим 2-(4-гидроксифенил)тетрадекан и 3-(4-гидроксифенил)тетрадекан. У этих веществ будут одинаковые вклады: Cb-(O)-1; Cb-(H)-4; Cb-(C)-1; O-(H,Cb)-1; CH-(2C,Cb)-1; CH 2 -(2C)-11; CH 3 -(C)-2. Поэтому =0 и =0. Исключение составит реакция (a)(g). =-9,9 кДж/моль за счет орто- взаимодействия в молекуле (a); =-Rln2 кДж/(моль·K) за счет вращения ароматического ядра в молекуле (g).

Давления насыщенного пара. Используя метод Лидерсена или Джобака можно рассчитать критические параметры, а потом и . Но вклады для всех веществ одинаковы, поэтому критические параметры равны, следовательно, равны, их можно не учитывать, =. Давление не оказывает влияние на реакцию. Применение разбавителя скажется отрицательно на скорости реакции.

Зависимость константы скорости реакции от температуры.

Kx a Kx b Kx c Kx d Kx i Kx g Kx h Kx m Kx n Kx o
298 1 1 1 1 1 27,23829 1 1 1 1
350 1 1 1 1 1 15,03934 1 1 1 1
400 1 1 1 1 1 9,827575 1 1 1 1
450 1 1 1 1 1 7,058733 1 1 1 1
500 1 1 1 1 1 5,416903 1 1 1 1
600 1 1 1 1 1 3,641561 1 1 1 1
700 1 1 1 1 1 2,742201 1 1 1 1
800 1 1 1 1 1 2,216706 1 1 1 1
900 1 1 1 1 1 1,878661 1 1 1 1
1000 1 1 1 1 1 1,645737 1 1 1 1

Сумма мольных долей всех компонентов равна 0,95, т.к. реакцию проводим в избытке фенола.

Зависимость мольной доли компонентов от температуры.

Т, К N a b c d i f g h m n o p
298 0,95 0,0056 0,0056 0,0056 0,0056 0,0056 0,0056 0,1527 0,1527 0,1527 0,1527 0,1527 0,1527
350 0,95 0,0099 0,0099 0,0099 0,0099 0,0099 0,0099 0,1485 0,1485 0,1485 0,1485 0,1485 0,1485
400 0,95 0,0146 0,0146 0,0146 0,0146 0,0146 0,0146 0,1437 0,1437 0,1437 0,1437 0,1437 0,1437
450 0,95 0,0196 0,0196 0,0196 0,0196 0,0196 0,0196 0,1387 0,1387 0,1387 0,1387 0,1387 0,1387
500 0,95 0,0247 0,0247 0,0247 0,0247 0,0247 0,0247 0,1337 0,1337 0,1337 0,1337 0,1337 0,1337
600 0,95 0,0341 0,0341 0,0341 0,0341 0,0341 0,0341 0,1242 0,1242 0,1242 0,1242 0,1242 0,1242
700 0,95 0,0423 0,0423 0,0423 0,0423 0,0423 0,0423 0,1160 0,1160 0,1160 0,1160 0,1160 0,1160
800 0,96 0,0497 0,0497 0,0497 0,0497 0,0497 0,0497 0,1103 0,1103 0,1103 0,1103 0,1103 0,1103
900 0,95 0,0550 0,0550 0,0550 0,0550 0,0550 0,0550 0,1033 0,1033 0,1033 0,1033 0,1033 0,1033
1000 0,95 0,0598 0,0598 0,0598 0,0598 0,0598 0,0598 0,0985 0,0985 0,0985 0,0985 0,0985 0,0985

Строим график зависимости «мольная доля – температура» для двух веществ (g) и (a), т.к. параалкилфенолы сольются в одну линию, тоже самое произойдет и с ортоалкилфенолами.

Из графика видно, что при увеличении температуры мольная доля параалкилфенолов уменьшается. Поэтому процесс следует вести при невысоких температурах.

Как правило, параалкилфенолы используется как промежуточный продукт для синтеза неионогенных поверхностно-активных веществ путем их оксиэтилирования:

Чтобы получить продукты с лучшей биохимической разлагаемостью необходим алкил с менее разветвленной цепью.


2. Адиабатический перепад температур в реакторе

(есть ошибка в расчетах энтальпии алкилфенола, реакция экзотермическая)

Рассчитаем тепловой эффект реакции и температуру смеси в конце реакции в адиабатическом реакторе. Предположим, что при алкилировании фенола тетрадеценом-1 образуется 7-(4’-гидроксифенил)тетрадекан.

Количества тепла входящее в реактор складывается из тепла вносимого с фенолом и олефином. Расход фенола 1,1 моль/час, расход олефина 1 моль/час.

Q вх = =

141911,6 (Дж/час)

Необходимо найти температуру выходящей смеси из реактора, для этого нужно знать температуру входящей смеси. После смешения фенола и олефина их средняя температура будет равна T вх,ср. Таким образом Q вх равно:

Используя программу MicrosoftExcel и функцию «подбор параметров», а так же определенные ранее зависимости теплоемкости от температуры и количество тепла входящего в реактор найдем T вх,ср.

T вх,ср = 315,13 К, при этом = 110,45 (Дж/моль), = 328,84(Дж/моль).

Энтальпия реакции из следствия закона Гесса равна:

= - =

= - ( + )

229297 + (98386,5 + 227532) = 96621,5 (Дж/моль)

Реакция эндотермическая, протекает с уменьшением количества тепла во всей системе.

Предположим что степень конверсии олефина 100%.

Количество тепла, выходящее со смесью из предконтактной зоны равно:

Q вых = Q вх - Q реакции

Q вых = 141911,6 - 96621,5 = 45290,1 (Дж/час)

Так же количества тепла выходящее со смесью можно рассчитать через T вых,ср.

Таким образом T вых,ср =171,26 К.


3. Кинетика процесса

Механизм реакции:

1. Происходит протонирование олефина с образованием карбкатиона:

2. Образуется -комплекс:

3. Образуется -комплекс. Данная стадия является лимитирующей.

4. Отрыв протона от ароматического ядра:

Отделившийся протон может взаимодействовать с олефином, и процесс пойдет заново или с катализатором, тогда реакция прекратиться.

В качестве катализаторов – протонных кислот – в промышленности чаще всего применяют серную кислоту. Она является наиболее активной среди других доступных и дешевых кислот, но в то же время катализирует и побочные реакции, приводя дополнительно к сульфированию фенола и сульфированию олефина и образуя фенолсульфокислоты HOC 6 H 4 SO 2 OH и моноалкилсульфаты ROSO 2 OH, которые также участвуют в катализе процесса. С серной кислотой алкилирование н-олифинами происходит при 100-120ºС. Другим катализатором, не вызывающим побочных реакций сульфирования и более мягким по своему действию, является п-толуолсульфокислота CH 3 C 6 H 4 SO 2 OH. Однако она имеет меньшую активность и большую стоимость, чем H 2 SO 4 .

С этими катализаторами алкилирование фенола протекает как гомогенная реакция по следующему уравнению:

Из уравнения видно, что при увеличении концентрации одного из веществ скорость реакции линейно возрастет. В производстве работают при сравнительно небольшом избытке фенола по отношению к олефину и даже при их эквимольном количестве. Если в качестве катализатора берут H 2 SO 4 , то она применяется в количестве 3-10%(масс.). Увеличение температуры положительно скажется на скорости реакции, т.к. процесс эндотермический.

4. Технология процесса

Для алкилирования фенолов применяют периодический процесс. Реакцию проводят в аппарате с мешалкой и рубашкой для обогрева паром или охлаждения водой. В него загружают фенол и катализатор, нагревают их до 90 ºС, после чего при перемешивании и охлаждении подают жидкий тетрадецен-1 при температуре 25 ºС(температура плавления -12,7 ºС). Делают именно так потому что, если загрузить сначала катализатор с олефином, то там могут пойти реакции олиго- и полимеризации. Во второй половине реакции, наоборот, необходимо подогревать реакционную массу. Общая продолжительность операции составляет 2-4 часа. После этого реакционную массу нейтрализуют в смесителе 5%-ной щелочью, взятой в эквивалентном количестве к кислоте-катализатору, нагревая смесь острым паром. Нейтрализованный органический слой сырых алкилфенолов отделяют от водяного раствора солей и направляют на вакуум перегонку, когда отгоняется вода, остатки олефина и не превращенный фенол.


Задание №1

При окислительном аммонолизе пропилена получена реакционная масса следующего состава (% масс.): - пропилен – 18,94, нитрил акриловой кислоты – 54,85, ацетонитрил – 13,00, ацетальдегид – 1,15, пропионовый альдегид – 5,07, синильная кислота – 4,99, формальдегид – 0,80, СО 2 – 1,20. Вычислить степень конверсии реагентов, селективность процесса по каждому из продуктов реакции в расчете на каждый реагент и выход на пропущенное сырье каждого из продуктов реакции в расчете на один реагент.

Решение: наиболее вероятная схема превращений при окислительном аммонолизе:

Составим таблицу распределения мол. долей исх. вещества:

Компонент % масс. М G Кол-во мол. исх. в-ва
пропилен аммиак кислород
пропилен 18.94 42.08 0.4501 b 1 = 0.4501 0 0
акрилонитрил 54.85 53.06 1.0337 b 2 =1.0337 d 1 =1.0337 0
ацетонитрил 13.00 41.05 0.3167 b 3 =0.3167 d 2 =0.3167 0
ацетальдегид 1.15 44.05 0.0261 b 4 =0.0261 0 e 1 =0.0261
пропионовый альдегид 5.07 58.08 0.0873 b 5 =0.0873 0 e 2 =0.0873
синильная кислота 4.99 27.03 0.1846 b 6 =0.1846 d 3 =0.1846
формальдегид 0.80 30.03 0.0266 b 7 =0.0266 0 e 3 =0.0266
углекислый газ 1.20 44.01 0.0273 b 8 =0.0273 0 e 4 =0.0273

Степень конверсии пропилена определяется по формуле:

Степень конверсии аммиака: и кислорода .

Селективность по пропилену рассчитывается по формуле: , по аммиаку: , по кислороду: . Результаты расчетов приведены в табл. 1.

Таблица 1

Проверка: , .

Выход на пропущенное сырье в расчете на пропилен рассчитывается по формуле: . Результаты представлены в табл. 2:

Таблица 2


Задание 2.

Для изомеризации н-пентана в изопентан вычислить перепад температур в зоне реакции при адиабатическом ведении процесса. Процесс протекает при давлении 1 атм. В реактор подается 10 т/час н-пентана при 650К и 25 молей водорода на 1 моль пентана при 900К. Степень конверсии н-пентана 10, 20, 50, 70%. Селективность процесса 100%. Потери тепла в окружающую среду составляют 3% от прихода тепла в реактор. Провести графическую и аналитическую зависимости адиабатического перепада температур от степени конверсии н-пентана. Аргументировать технологические приемы, используемые при осуществлении промышленной изомеризации углеводородов.

Решение: Схема реакции представлена на рис. 1:

Рис. 1. Изомеризация н-пентана.

Схема реактора представлена на рис. 2.

Рис. 2. Схема теплового баланса реактора.

Тепло, входящее в реактор, определяется по формуле:

, (1) здесь:

Определено для Т = 650К из полиномного уравнения, полученного по табличным данным;

Определено для Т вх из полиномного уравнения для С р н-пентана с помощью функции «Поиск решения» программы «MicrosoftExcel»;

Для 900К определено по табличным данным;

Определено для Т вх из полиномного уравнения для С р воды с помощью функции «Поиск решения» программы «MicrosoftExcel»;

, ,

С помощью функции «Поиск решения» программы «MicrosoftExcel» методом наименьших квадратов определено значение Т вх = 685К.

Энтальпия реакции при данной Т вх:

Теплота реакции определяется величиной энтальпии реакции, массового расхода реагента, степенью конверсии реагента.

Рассмотрим пример, когда степень конверсии .

Согласно уравнению теплового баланса:

Здесь: ,

Определено для Т вых из полиномного уравнения с помощью функции «Поиск решения» программы «MicrosoftExcel»;

Определено для Т вых из полиномного уравнения для С р н-пентана с помощью функции «Поиск решения» программы «MicrosoftExcel»;

Определено для Т вых из полиномного уравнения для С р и-пентана с помощью функции «Поиск решения» программы «MicrosoftExcel»;

С помощью функции «Поиск решения» программы «MicrosoftExcel» методом наименьших квадратов определено значение Т вых = 687К.

Аналогично определяем значения Т вых для различных значений степени конверсии. Полученные значения представлены в таблице 3.

Таблица 3

α Т вых
0,1 662
0,2 663
0,5 667
0,7 669

Графическая зависимость перепада температур на входе и выходе от степени конверсии представлена на рисунке 3.

Рис. 3. Зависимость адиабатического перепада температур от степени конверсии.

При увеличении степени конверсии перепад температур в зоне реакции линейно уменьшается.

По реакция алкилирования и ацилирования в ароматические соединения можно ввести алкильные и ацильные группы.

Как уже было рассмотрено ранее фенолы алкилируются в кольцо под действием самых разнообразных алкилирующих агентов:

  • алкенов;
  • спиртов;
  • алкилгалогенидов в условиях кислотного катализа.

Ацилирование фенолов также осуществляют различными методами.

Алкилирование фенолов по Фриделю-Крафтсу

Фенол подвергается алкилированию по Фриделем - Крафтса при обработке алкилирующим агентом, кислотой Льюиса , такой как $FeBr_3$ или $A1C1_3$ и катализатором. При этом образуются соли типа $ArOAlCl_2$. Примером является взаимодействие крезола с изобутиленом с образованием пространственно затрудненного фенола - 2,6-ди-трет -бутил-4-метилфенола (ионола):

Рисунок 1.

Аналогично по реакции фенола с изопропиловым спиртом получают 2,4,6-триизопропилфенол:

Рисунок 2.

При таком алкилировании по Фриделю - Крафтсу атакующим электрофилом является алкилкатион, образующийсяпо реакции алкил с кислотой Льюиса. При отсутствии других нуклеофилов эти электрофильные частицы реагируют с ароматическим кольцом.

Алкилирование по Фриделю - Крафтсу имеет два важных ограничения, которые сильно уменьшают его ценность и делают реакцию вообще менее выгодной, чем ацилирование. Алкилфенолы в общем случае более реакционные в реакциях электрофильного замещения, чем сам фенол. Учитывая это алкилирование по Фриделю - Крафтсу имеет склонность к дальнейшему алкилированию, в результате чего образуются диалкил- или более алкилированные продукты, как это показано в обоих случаях, рассмотренных выше.

Единственным практическим путем управления подобными реакциями замещения является поддержание большого избытка фенола. Этот способ приемлем для самого бензола, поскольку он относительно дешевый и летучий, но неприемлем для большинства его замещенных производных, которые стоят дороже или менее доступны.

Другое важное ограничение алкилирования по Фриделю - Крафтсу связано с альтернативной реакцией многих карбокатионов, в частности при отсутствии реакционных нуклеофилов, а именно с перегруппировкой в изомерные карбокатионы.

Проведение моноалкилирования по Фриделю - Крафтсу отличается крайне невысокой региоселективностью и приводит к получению смесей орто - и пара -изомерных продуктов. Алкилирование фенолов - обратимая реакция, и при наличии сильных кислот Льюиса, при условии термодинамического контроля реакции происходят перегруппировки:

Рисунок 3.

Классическое ацилирование фенолов по Фриделю-Крафтсу

В классических условиях ацилирование фенолов по Фриделю-Крафтсу с использованием комплексов ацилгалогенида с хлоридом алюминия приводит к неудовлетворительным выходам продуктов, так как в ацилирование вступает и гидроксильная группа фенола. Более эффективным методом является ацилирование с использованием комплекса карбоновой кислоты с трехфтористым бором в качестве ацилирующего агента:

Рисунок 4.

Конденсация фенолов с фталевым ангидридом

Конденсация фенолов с фталевым ангидридом в присутствии минеральных кислот или кислот Льюиса (А. Байер, 1874 г.) также следует рассматривать как одну из разновидностей реакции ацилирования по Фриделю-Крафтсу. В этом случае две молекулы фенола конденсируются с одной молекулой фталевого ангидрида с образованием производных трифенилметана, называемых фталеинами.

Рисунок 5.

При $pH$ выше 9 водные растворы фенолфталеина окрашиваются в малиновый цвет в результате процесса расщепления лактонного цикла с образованием дианиона.

Рисунок 6.

Аминометилирование

Рисунок 7.

Реакция Манниха, или аминометилюванние, характерна для соединений с активной метиленовой группой. Она происходит как многокомпонентная реакция с участием формальдегида и вторичного амина (в виде гидрохлорида) и позволяет ввести в соединения аминометильную группу $-CH_2NR_2$. В реакцию также вступают активированые ароматические субстраты, такие как фенолы, вторичные или третичные ароматические амины, гетероциклические соединения типа индола, пиррола, фурана. Так можно получить ароматические соединения с аминометильным группировкой $-CH_2NR_2$.

Среди аминов часто используют диметиламин, а вместо формальдегида можно вводить другой альдегид.

Механизм реакции заключается в образовании соли имина с формальдегидом и вторичным амином через промежуточный аминаль и его дегидратации при каталитической действия $H^+$. Иминиевий ион является электрофилом атакующим ароматическое кольцо. Иминиевий ион, образованный формальдегидом и диметиламином, можно выделить в виде йодида (соли Ешенмозера - $ICH_2NMe_2$).

Реакция алкилирования фенола олефинами и области ее применения. Характеристика исходного сырья и получаемого продукта. Устройство и принцип действия основного аппарата. Технологический расчет основного аппарата и материальный баланс производства.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и науки РФ

Нижнекамский нефтехимический университет

Специальность 240503 группа 1711-з

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА

Тема: Алкилирование фенола тримерами пропилена (п роизводительность 125000 т. в год алкил фенола )

Выполнил

Проверил

Введение

1. Технологическая часть

1.6.2 Спецификация средств КИП и А

1.8 Промышленная экология очистки сточных вод в производстве неонолов

2. Расчётная часть

2.2 Расчет основного аппарата

Литература

Введение

Актуальность темы настоящей выпускной квалификационной работы «Алкилирование фенола тримерами пропилена» обусловлена тем, что к настоящему времени внешнеторговый оборот России значительно опережает по темпам роста увеличение выпуска промышленной продукции. В целом это прогрессивная тенденция, проявляющаяся в большинстве развитых стран мира в конкурентной борьбе на мировом рынке. В ходе этой торговли осуществляется также интенсивный обмен научно-техническими достижениями отдельных стран.

Состояние химической, нефтехимической промышленности во многом зависят от общероссийского экспорта. ОАО «НКНХ» занимает лидирующее положение среди российских производителей и экспортеров нефтехимической продукции. Практически вся выпускаемая в ОАО «НКНХ» продукция пользуется широким спросом на внешнем рынке, многократно превышающим по емкости внутренний рынок.

Цель работы: алкилирование фенола тримерами пропилена.

Исходя из поставленной цели, выделяются следующие задачи данной работы:

1.Рассмотреть теоретические основы метода производства алкилирования фенола.

2.Произвести расчёты в производстве фенола.

Структуру работы составляют введение, две главы, заключение и список использованной литературы.

1. Технологическая часть

1.1 Теоретические основы принятого метода производства

Алкилированием называют процессы введения алкильных групп в молекулы органических веществ.

Реакция алкилирования фенола олефинами является источником получения алкилфенола.

Данный метод является высокотемпературным, он протекает при следующих условиях:

температура? 85 - 125оС

давление 0,4МПа

катализатор Леватит-SRC-108/4 ВС.

Олефины имеют первостепенное значение в качестве алкилирующих агентов. Алкилирование олефинами протекает по ионному механизму через образование карбокатионов и катализируется протонными и апротонными кислотами. Реакционная способность олефинов определяется их склонностью к образованию карбокатионов:

RCH = CH2 + H+ - RC+H - CH3.

Это означает, что удлинение и разветвление цепи углеродных атомов в олефине значительно повышает его способность к алкилированию:

CH2 = CH2 < CH3 - CH = CH2 < CH3 - CH2 - CH = CH2 < (CH3)2C = CH2

Алкилирование протекает последовательно с образованием моно-, ди-, и триалкилфенолов, но одновременно происходит катализируемая кислотами перегруппировка с миграцией орто-алкильных групп с образованием пара-изомеров, которые в данном случае являются наиболее стабильными. Таким образом, схема превращений следующая:

Алкилирование фенола олефинами сопровождается побочными реакциями полимеризации олефинов и деструкция алкильных групп. При целевом направлении алкилирования эти побочные процессы нежелательны.

Реакцию алкилирования проводят в адиабатическом реакторе. Продукты реакции после алкилирования подвергают ректификации. Степень превращения тримеров пропилена составляет 98,5 %.

Соотношение фенола к тримерам пропилена - 4:1.

Проведение процесса алкилирования фенола тримерами пропилена предусматривается в реакторе с аксиальным вводом сырья.

Управление технологическим процессом производства осуществляется при помощи автоматизированной системы управления с применением ЭВМ и APACS+.

Обогрев технологических трубопроводов предусматривается теплофикационной водой с температурой 150оС. /2.245./

1.2 Характеристика сырья материалов и готового продукта

Таблица 1. Характеристика исходного сырья и получаемого продукта

Наименование сырья, материалов, реагентов, катализаторов, полуфабрикатов, изготовляемой продукции

Номер государственного или отраслевого стандарта, технических условий, стандарта предприятия

Показатели качества, обязательные для проверки

Норма по ГОСТу, ОСТу или стандарту предприятия

Назначение, область применения

Фенол марки “Б”

ГОСТ23 51979

1. Внешний вид

2. Температура кристаллизации, оС не ниже

3. Массовая доля нелетучего остатка, % не более

4. Оптическая плотность водного раствора фенола (0,8 г марки Б в 100 см3 (воды) при 20оС, не более

5. Оптическая плотность сульфированного фенола, не более

6. Цветность расплава фенола по платиновокобальтовой шкале, не более

Белая жидкость

40,6

0,008

0,03

не нормируется

Тримеры пропилена

ТУ2211031

1.Внешний вид

прозрачная бесцветная жидкость безмеханических примесей и нерастворимой влаги

Используется для синтеза алкилфенола

2. Массовая доля тримеров пропилена, % не менее

3. Массовая доля олефинов С8 и ниже, % не более

4. Массовая доля олефинов С10 и выше, % не более

5. Массовая доля влаги, % не более

6. Бромное число, мг. брома на 100 г. продукта, не ниже

7. Малеиновое число

мг. малеинового ангидрида на 1г. продукта, не более

8.Массовая доля парафинов, %, не более

9.Массовая доля перекисных соединений, %, не более

10.Массовая доля

ионола, %. в пределах

95,0

2,0

3,0

0,02

120

2,0

1,0

0,0005

1. Внешний вид

Бесцветная прозрачная

жидкость

Натр едкий технический марки РР

1. Внешний вид

2. Массовая доля гидроксида натрия, %, не менее

3. Массовая доля углекислого натрия, %, не более

4. Массовая доля хлористого натрия, %, не более

5. Массовая доля железа в пересчете на Fe2О3, %, не более

6. Сумма массовых долей окислов железа, алюминия, %, не более

сульфата натрия, %, не более

Бесцветная прозрачная

жидкость

42,0

0,5

0,05

0,0015

0,02

Для нейтрализации кислой среды алкилата

Азот газообразный и жидкий повышенной чистоты, 2й сорт

1. Объёмная доля азота, %, не менее

2. Объёмная доля кислорода, %, не более

Объёмная доля водяного пара в газообразном азоте, %, не более

99,95

0,05

Применяется при подготовке оборудования к ремонту и для опрессовки систем, для осушки отработанного катализатора

Моноалкилфенолы

ТУ 38. 602 09 20 91

1.Внешний вид

2. Цветность, единицы йодной шкалы, не более

3. Массовая доля моноалкилфенолов, %, не менее

4. Массовая доля диалкилфенолов, %, не более

5. Массовая доля фенола, %, не более

6. Массовая доля воды, %, не более

7. Температура вспышки в открытом тигле, оС, не ниже

Маслянистая прозрачная жидкость

10

98,0

1,0

0,1

0,05

Применяются в производстве оксиэтилированных моноалкилфенолов (неонолов), присадок к смазочным маслам, смол типа «Октофор»

Фенол (оксибензол, карболовая кислота) С6Н5ОН - это белое кристаллическое вещество со специфическим «дегтярным» запахом с температурой плавления 40,9 оС, температурой кипения 181,75 оС и плотностью 1057,6 кг/м3. Растворим в воде, образуя с ней азеотропную смесь с температурой кипения 99,6 оС. Хорошо растворим в этаноле, диэтиловом эфире, бензоле ацетоне, хлороформе. Обладает слабо кислыми свойствами и растворяется в водных растворах щелочей с образованием соответствующих фенолятов. Легко окисляется кислородом воздуха, образуя продукты окисления, окрашивающие его в розовый, а затем в бурый цвет. В виде паров, пыли и растворов

токсичен. При попадании на кожу фенол вызывает ожоги, в парах раздражает слизистые оболочки глаз и дыхательных путей.

Фенол относится к числу многотоннажных продуктов основного органического синтеза. Мировое производство его составляет около 5 млн. т. Около половины производимого фенола используется при получении фенолформальдегидных полимеров. Также фенол потребляется в производствах дифенилопропана, капролактама, алкилфенолов, адипиновой кислоты и различных пластификаторов.

Тримеры пропилена С9Н18 - это прозрачная бесцветная жидкость с температурой вспышки 21 оС, температурой кипения 125 оС и плотностью 749 кг/м3. Труднорастворимы в воде.

Моноалкилфенол - маслянистая прозрачная жидкость с температурой кипения 250оС

Температурой вспышки 112оС и плотностью 944 кг/м3. Не растворяется в воде. Моноалкилфенолы с алкильной группой из 5-8 атомов углерода являются сильными бактерицидными средствами, а при удлинении до 8-12 атомов углерода оказываются ценными промежуточными продуктами для синтеза неионогенных поверхностно-активных веществ путем их оксоэтилирования:

Важнейшей областью применения алкилфенолов и продуктов их дальнейшего превращения является производство стабилизаторов полимеров и масел против термоокислительной деструкции, развивающейся при эксплуатации этих материалов, особенно при повышенной температуре. /3.750./

1.3 Описание технологической схемы

Процесс алкилирования фенола тримерами пропилена или олефинами проводится в жидкой фазе в двух последовательно включенных реакторах с образовании рекционноспособного катиона. Катализатор в общем случае присоединяется к тримеру или протонирует его. Алкилирующим агентом может быть и комплекс катализатора и тримера.

Основная реакция образования моноалкилфенола (МАФ) может быть следующая:неподвижным слоем катализатора. Роль катализатора алкилирования заключается

С6Н6О + С9Н18 С15Н24О

Побочная реакция образования диалкилфенола (ДАФ):

С15Н24О + С9Н18 С24Н42О

Реакция алкилирования при средней температуре 110оС протекает с выделением тепла 14,82 ккал/моль тримеров пропилена.

При принятых для процесса условиях образуется на 1 моль моноалкилфенола 0,083 моля диалкилфенола.

Образование побочных высокоалкилированных фенолов зависит от ряда факторов, например, от температуры, соотношения фенола и олефина, времени пребывания алкилата в зоне реакции и т.п.

Реакционная масса (алкилат) после реакторов алкилирования в среднем содержит:

- 0,60 % масс. - тримеров пропилена, парафинов;

- 32,65 % масс. - фенола;

- 58,60 % масс. - алкилфенолов

- 7,65 % масс. - диалкилфенолов и других.

Реакция алкилирования фенола тримерами пропилена происходит в адиабатическом реакторе при давлении 0,4 МПа (4 бар) и температуре от 80оС до 125о С.

Повышение температуры в реакторе происходит за счет выделения тепла при экзотермической реакции. Конечная температура обусловлена работоспособностью катализатора, который теряет свою активность при 170 оС. Скорость движения жидкости относительно свободного сечения реактора 0,7 см/сек, время пребывания 15 минут. Активность катализатора в процессе работы снижается и после 12 - 13ти месяцев работы требуется замена катализатора. Повышение температуры в реакторах оказывает существенное влияние на работоспособность катализатора, поэтому работа на свежем катализаторе требует более мягкого температурного режима алкилирования. Температура низа реактора выдерживается 70-800С.

При низких нагрузках во второй по ходу реактор реакционная смесь подаётся с начальной температурой 60-800С. Мольное соотношение фенол: тримеры пропилена выдерживается не менее 2:1. Это достигается регулированием расхода основных потоков - фенола и тримеров пропилена или олефинов - в смеситель поз. С-1.

Расход фенола в смеситель поз. С-1 выдерживается регулятором расхода поз.6-6, установленного на линии подачи

фенола, а тримеров пропилена регулятором расхода поз.5-6. После перемешивания в смесителе поз. С-1 реакционная смесь поступает в межтрубное пространство холодильника поз. Т-1, где охлаждается вторичной охлаждающей водой до температуры 80оС. Обратная охлаждающая вода из холодильника поз. Т-1 поступает в цеховой коллектор обратной воды.

Из холодильника поз. Т-1 реакционная смесь поступает на алкилирование в первый реактор поз. Р-1а снизу по ходу процесса, алкилат поступает через промежуточный холодильник поз. Т-2, где охлаждается вторичной охлаждающей водой, в нижнюю часть второго по ходу процесса реактора поз. Р-1б.

Температура верха первого по ходу процесса реактора выдерживается автоматически регулятором температуры поз.11-7 за счет охлаждения реакционной смеси в холодильнике поз. Т-1 вторичной охлаждающей водой, при помощи регулирующего клапана поз. 11-12, который установлен на линии сброса вторичной охлаждающей воды из холодильника поз. Т-1.

Температура верха второго по ходу процесса реактора выдерживается автоматически регулятором температуры поз. 14-5 за счет охлаждения алкилата в холодильнике поз. Т-2 вторичной охлаждающей водой, регулирующий клапан которого поз. 14-11 установлен на линии сброса вторичной охлаждающей воды из холодильника поз. Т-2.

Во избежание разгерметизации реакторов в случае завышения давления в них, установлены спаренные предохранительные клапаны.

В связи с тем, что алкилат имеет кислую среду, для предотвращения коррозии оборудования цеха, алкилат из второго по ходу процесса реактора поз. Р-1б поступает в

смеситель поз. С-2 для нейтрализации. Основная нейтрализация алкилата производится 20 - 42 % раствором едкого натра после включения в работу нового реактора со свежим катализатором до рН=6,5 - 7,0. Дальнейшее поддержание рН=6,5-7,0 производится тримерами пропилена рН=7,0. Смеситель внутри снабжен направляющими пластинами, за счет которых происходит смешивание потоков.

Из емкости поз. Е-2 в смеситель поз. С-2 щелочь по мере необходимости подается плунжерным насосом поз. Н-2а,б. Дозировка щелочи в алкилат производится в зависимости от кислотности алкилата.

Из смесителя поз. С-2 нейтрализованный алкилат поступает в емкость поз. Е-3, при этом часть его постоянно отводится в анализаторную на хроматограф.

Алкилат в емкости поз. Е-3 хранится под азотной “подушкой” при постоянном давлении, которое выдерживается автоматически регулятором давления поз. 18-5.

1.4 Устройство и принцип действия основного аппарата

алкилирование фенол пропилен

Основным аппаратом для проведения процесса алкилирования является реактор поз. Р-1 а, б, предназначенный для алкилирования фенола тримерами пропилена.

Аппарат представляет собой вертикальный цилиндрический сосуд поз. 1 с верхней поз. 3 и нижней поз. 2 крышками, выполненные из нержавеющей стали. Цилиндрическая часть соединена с крышкой и днищем шпильками. Фланцевые соединения выполнены по типу «шип - паз». Между цилиндрической частью и днищем расположена решетка поз. 4, предназначенная для удерживания слоя катализатора. Решетка представляет собой продольные и поперечные металлические пластины, обтянутые сеткой с мелкой ячейкой на свету 0,25х0,25мм, которая исключает провал катализатора. Катализатор внутри аппарата расположен по насыпному методу. Реакционная смесь проходит через слой катализатора, где происходит реакция алкилирования на активных центрах катализатора. Алкилат выходит из реактора через фильтр поз. 5, встроенный в центр штуцера поз. З. Фильтр представляет собой цилиндр с множеством отверстий, обтянутый металлической сеткой с мелкой ячейкой на свету 0,25х0,25мм.

Сбоку нижней крышки врезан штуцер поз. А для входа реакционной смеси, выход прореагировавшей смеси осуществляется через штуцер поз. Б, врезанный в верхнюю крышку. Загрузка катализатора происходит через штуцер поз. В, установленный в крышке реактора под углом к основной оси аппарата, выгрузка происходит штуцер поз. Ж, расположенного внизу цилиндрической части аппарата, который также можно использовать в качестве люка для монтажа и осмотра внутренних устройств. В нижней точке аппарата врезан штуцер поз. Д, предназначенный для опорожнения реактора от продукта перед выгрузкой катализатора и ремонтом аппарата.

Снаружи к цилиндрической части приварена опора, состоящая из юбки и десяти лап. Технические характеристики:

1. Емкость 10,3 м3

2. Среда в аппарате токсичная, взрывоопасная

3. Рабочее давление 0,4 МПа

4. Рабочая температура 95 0С

5. Основной материал Сталь Х18Н10Т

6. Масса аппарата 5030 кг

7. Габаритные размеры:

а) высота 9550 мм

б) диаметр 1200 мм

/4.86/

1.5 Аналитический контроль производства

ГОСТ 14870-77 Измерение концентрации влаги методом Фишера

Метод заключается в растворении или диспергировании пробы в соответствующем растворителе и титровании реактивом Карла Фишера, который представляет собой смесь йода, диоксида серы, пиридина и метанола. В присутствии воды йод взаимодействует с сернистым ангидридом с образованием бесцветной йодисто-водородной кислоты и серного ангидридом в соответствии со следующим уравнением реакции:

С5Н5 · I2 + С5Н5N · SO2 + С5Н5N + H2O + CH3OH

2С5Н5N · HI + С5Н5N · HSO4 CH3

За конечную точку титрования принимают момент появления свободного йода, определяемый электрометрически или визуально.

Этим методом определяется гидроскопическая, кристаллизационная, сорбированная вода.

Хроматографический метод № 307-007-92

Метод основан на хроматографическом разделении компонентов смеси с последующей их регистрацией на выходе из хроматографической колонки детектором по теплопроводности.

Хроматографический метод ТУ 2211-031 05766801

Метод основан на разделении компонентов анализируемой пробы на хроматографической колонке с последующей их регистрацией системой, связанной с пламенно-ионизационным детектором.

Потенциометрический метод № 8 Измерение водородного показателя (pH)

Методика предназначена для измерения pH водного конденсата, сточных и производственных вод. Метод измерений Величина pH соответствует отрицательному десятичному логарифму активности ионов водорода в растворе pH=-lg ан. Водородный показатель является мерой кислотности или щелочности раствора.

Таблица 2.18 Определение среды водных растворов

ГОСТ 4333 - 87

Сущность метода заключается в нагревании пробы нефтепродукта в открытом тигле с установленной скоростью до тех пор пока не произойдет вспышка паров (температура вспышки) нефтепродукта над его поверхностью от зажигательного устройства и пока при дальнейшем нагревании не произойдет загорание продукта (температура воспламенении) с продолжительностью горения не мене 5 секунд.

ГОСТ 14871 - 76

Цветность является условно принятой количественной характеристикой для жидких химических реактивов и их растворов, имеющих незначительную окраску.

Метод основан на определении цветности, путем визуального сравнения с цветовой шкалой.

1.6 Автоматизация производства

1.6.1 Описание контура регулирования расхода сырья

803-1 - диафрагма ДК 25- 100

803-2 - датчик избыточного давления Метран-100 ДД-2430

803-3 - барьер искробезопасности HID 2029

803-4 - барьер искробезопасности HID 2037

803-5 - электропневматический позиционер ЭПП-Ex

803-6 - односедельный регулирующий клапан - тип НЗ РК201нж

Описание контура регулирования расхода флегмы в Кт-2

Перепад давления от диафрагмы (поз. 803-1) поступает на датчик избыточного давления с встроенным микропроцессором Метран-100 ДД-2430 (поз.803-2). Нормированный электрический сигнал в 4 - 20 мА с датчика через барьер искробезопасности HID 2029 (поз. 803-3) подается в контроллер, где он регистрируется, сравнивается с ранее заданным значением. При наличии отклонений измеряемого параметра от заданного значения система APACS вырабатывает управляющее воздействие на

односедельный регулирующий клапан - тип НЗ РК201нж (поз. 803-6) через барьер искробезопасности HID 2037 (поз. 803-4) и через электропневматический позиционер ЭПП-Ex (поз. 803-5) до тех пор, пока рассогласование не станет равным нулю.

Рисунок 1. Контур расхода тримеров пропилена в смеситель С-3

1.6.2 Спецификация средств КИПиА

Таблица - Спецификация средств КИПиА

Номер позиции

Наименование

параметра

установки прибора

Контролируемая среда

Наименование и характеристика прибора

Модель прибора

Количество (шт)

Контроль давления в трубопроводе тримеров пропилена

На трубопроводе

тримеры пропилена

Метран - 100-Ех- ДИ- 3141-МП

Регулирование расхода тримеров пропиленаВ Е-1

В трубопроводе

тримеры пропилена

Тип ДК 25200 ГОСТ 8.563.1

На трубопроводе

Метран-100-Ех-ДД-2430-МП

Шкаф барьеров искробезопасности

4-20 мА, выходной от 4-20 мА

Шкаф барьеров искробезопасности

4-20 мА, выходной от 4-20 мА

На клапане

На трубопроводе

Шкаф барьеров искробезопасности

Барьер искробезопасности серии HID входной, двухканальный. Входной сигнал от 4-20 мА, выходной от 4-20 мА

Шкаф барьеров искробезопасности

Барьер искробезопасности серии HID выходной, двухканальный. Входной сигнал от

4-20 мА, выходной от 4-20 мА

Температура в Е-1

На трубопроводе

тримеры пропилена

ТСП Метран-256

Шкаф барьеров искробезопасности

Барьер искробезопасности серии HID входной, двухканальный. Входной сигнал от

4-20 мА, выходной от 4-20 мА

Регулирование давления в Е-1

На трубопроводе

Метран - 100-Ех- ДИ- 3141-МП

Шкаф барьеров искробезопасности

Барьер искробезопасности серии HID входной, двухканальный. Входной сигнал от 4-20 мА, выходной от 4-20 мА

Шкаф барьеров искробезопасности

Барьер искробезопасности серии HID выходной, двухканальный. Входной сигнал от 4-20 мА, выходной от 4-20 мА

На клапане

Рассчитан на ход

На трубопроводе

Исполнительный механизм регулирующий клапан с пневмоприводом

Регулирование расхода тримеров пропиленав С-1

В трубопроводе

тримеры пропилена

Диафрагма камерная, устанавливаемая во фланцах трубопровода ДСК по ГОСТ 8.563.1, 8.563.2, 8.563.3.

Тип ДК 25200 ГОСТ 8.563.1

На трубопроводе

Интеллектуальный датчик давления серии Метран-100 предназначен для измерения и непрерывного преобразования в унифицированный аналоговый токовый сигнал

4-20 мА и/или цифровой сигнал в стандарте протокола HART, или цифровой сигнал на базе интерфейса RS485 входного сигнала разности давлений.

Метран-100-Ех-ДД-2430-МП

Шкаф барьеров искробезопасности

Барьер искробезопасности серии HID входной, двухканальный. Входной сигнал от 4-20 мА, выходной от 4-20 мА

Шкаф барьеров искробезопасности

Барьер искробезопасности серии HID выходной, двухканальный. Входной сигнал от

4-20 мА, выходной от 4-20 мА

На клапане

10…100 мм. Взрывозащита: ExdsllB+H2T6

На трубопроводе

Исполнительный механизм регулирующий клапан с пневмоприводом

Регулирование расхода фенолав С-1

В трубопроводе

Диафрагма камерная, устанавливаемая во фланцах трубопровода ДСК по ГОСТ 8.563.1, 8.563.2, 8.563.3.

Тип ДК 25200 ГОСТ 8.563.1

На трубопроводе

Интеллектуальный датчик давления серии Метран-100 предназначен для измерения и непрерывного преобразования в унифицированный аналоговый токовый сигнал

4-20 мА и/или цифровой сигнал в стандарте протокола HART, или цифровой сигнал на базе интерфейса RS485 входного сигнала разности давлений.

Метран-100-Ех-ДД-2430-МП

Шкаф барьеров искробезопасности

Барьер искробезопасности серии HID входной, двухканальный. Входной сигнал от 4-20 мА, выходной от 4-20 мА

Шкаф барьеров искробезопасности

Барьер искробезопасности серии HID выходной, двухканальный. Входной сигнал от

4-20 мА, выходной от 4-20 мА

На клапане

Электропневматический позиционер. Давление питающего воздуха 0.14 мПа. Входной сигнал 0.02-0.1 мПа. Рассчитан на ход 10…100 мм. Взрывозащита: ExdsllB+H2T6

На трубопроводе

Исполнительный механизм регулирующий клапан с пневмоприводом

Температура алкилата до Т-4

На трубопроводе

Термопреобразователь с унифицированным сигналом предназначен для измерения температуры нейтральных и агрессивных сред, применяют во взрывоопасных зонах. Диапазон унифицированного выходного сигнала постоянного тока 4-20 мА

ТСП Метран-256

Шкаф барьеров искробезопасности

Барьер искробезопасности серии HID входной, двухканальный. Входной сигнал от

4-20 мА, выходной от 4-20 мА

Температура алкилата после Т-4

На трубопроводе

Термопреобразователь с унифицированным сигналом предназначен для измерения температуры нейтральных и агрессивных сред, применяют во взрывоопасных зонах. Диапазон унифицированного выходного сигнала постоянного тока 4-20 мА

ТСП Метран-256

Шкаф барьеров искробезопасности

Барьер искробезопасности серии HID входной, двухканальный. Входной сигнал от

4-20 мА, выходной от 4-20 мА

Контроль давления алкилата на входе в Р-5

На трубопроводе

Интеллектуальный датчик давления серии Метран-100-Ди-Еx предназначен для измерения и непрерывного преобразования в унифицированный аналоговый токовый сигнал 4-20 мА и/или цифровой сигнал на базе интерфейса RS485 выходной сигнал избыточного давления

Метран - 100-Ех- ДИ- 3141-МП

Шкаф барьеров искробезопасности

Барьер искробезопасности серии HID входной, двухканальный. Входной сигнал от 4-20 мА, выходной от 4-20 мА

Регулирование расхода промводы на выходе из Т-4

В трубопроводе

промвода

Диафрагма камерная, устанавливаемая во фланцах трубопровода ДСК по ГОСТ 8.563.1, 8.563.2, 8.563.3.

Тип ДК 25200 ГОСТ 8.563.1

На трубопроводе

Интеллектуальный датчик давления серии Метран-100 предназначен для измерения и непрерывного преобразования в унифицированный аналоговый токовый сигнал

4-20 мА и/или цифровой сигнал в стандарте протокола HART, или цифровой сигнал на базе интерфейса RS485 входного сигнала разности давлений.

Метран-100-Ех-ДД-2430-МП

Шкаф барьеров искробезопасности

Барьер искробезопасности серии HID входной, двухканальный. Входной сигнал от 4-20 мА, выходной от 4-20 мА

Шкаф барьеров искробезопасности

Барьер искробезопасности серии HID выходной, двухканальный. Входной сигнал от

4-20 мА, выходной от 4-20 мА

На клапане

Электропневматический позиционер. Давление питающего воздуха 0.14 мПа. Входной сигнал 0.02-0.1 мПа. Рассчитан на ход

10…100 мм. Взрывозащита: ExdsllB+H2T6

На трубопроводе

Исполнительный механизм регулирующий клапан с пневмоприводом

Температура верха Р-5

На трубопроводе

Термопреобразователь с унифицированным сигналом предназначен для измерения температуры нейтральных и агрессивных сред, применяют во взрывоопасных зонах. Диапазон унифицированного выходного сигнала постоянного тока 4-20 мА

ТСП Метран-256

Шкаф барьеров искробезопасности

Барьер искробезопасности серии HID входной, двухканальный. Входной сигнал от

4-20 мА, выходной от 4-20 мА

Шкаф барьеров искробезопасности

Барьер искробезопасности с гальванической развязкой, выходной. Сигнал опасной зоны (вход) - 4-20 мА. Сигнал безопасной зоны (выход) - 4-20 мА. Питание 24 В постоянного тока. Одноканальный.

Клапан отсечной, 0% закрыт, 100% открыт

Температура середины Р-5

На трубопроводе

Термопреобразователь с унифицированным сигналом предназначен для измерения температуры нейтральных и агрессивных сред, применяют во взрывоопасных зонах. Диапазон унифицированного выходного сигнала постоянного тока 4-20 мА

ТСП Метран-256

Шкаф барьеров искробезопасности

Барьер искробезопасности серии HID входной, двухканальный. Входной сигнал от

4-20 мА, выходной от 4-20 мА

Температура низа Р-5

На трубопроводе

Термопреобразователь с унифицированным сигналом предназначен для измерения температуры нейтральных и агрессивных сред, применяют во взрывоопасных зонах. Диапазон унифицированного выходного сигнала постоянного тока 4-20 мА

ТСП Метран-256

Шкаф барьеров искробезопасности

Барьер искробезопасности серии HID входной, двухканальный. Входной сигнал от

4-20 мА, выходной от 4-20 мА

Контроль давления Р-5

На трубопроводе

Интеллектуальный датчик давления серии Метран-100-Ди-Еx предназначен для измерения и непрерывного преобразования в унифицированный аналоговый токовый сигнал 4-20 мА и/или цифровой сигнал на базе интерфейса RS485 выходной сигнал избыточного давления

Метран - 100-Ех- ДИ- 3141-МП

Шкаф барьеров искробезопасности

Барьер искробезопасности серии HID входной, двухканальный. Входной сигнал от 4-20 мА, выходной от 4-20 мА

Регулирование расхода промводы на выходе из Т-6

В трубопроводе

промвода

Диафрагма камерная, устанавливаемая во фланцах трубопровода ДСК по ГОСТ 8.563.1, 8.563.2, 8.563.3.

Тип ДК 25200 ГОСТ 8.563.1

На трубопроводе

Интеллектуальный датчик давления серии Метран-100 предназначен для измерения и непрерывного преобразования в унифицированный аналоговый токовый сигнал

4-20 мА и/или цифровой сигнал в стандарте протокола HART, или цифровой сигнал на базе интерфейса RS485 входного сигнала разности давлений.

Метран-100-Ех-ДД-2430-МП

Шкаф барьеров искробезопасности

Барьер искробезопасности серии HID входной, двухканальный. Входной сигнал от 4-20 мА, выходной от 4-20 мА

Шкаф барьеров искробезопасности

Барьер искробезопасности серии HID выходной, двухканальный. Входной сигнал от

4-20 мА, выходной от 4-20 мА

На клапане

Электропневматический позиционер. Давление питающего воздуха 0.14 мПа. Входной сигнал 0.02-0.1 мПа. Рассчитан на ход

10…100 мм. Взрывозащита: ExdsllB+H2T6

На трубопроводе

Исполнительный механизм регулирующий клапан с пневмоприводом

Температура верха Р-7

На трубопроводе

Термопреобразователь с унифицированным сигналом предназначен для измерения температуры нейтральных и агрессивных сред, применяют во взрывоопасных зонах. Диапазон унифицированного выходного сигнала постоянного тока 4-20 мА

ТСП Метран-256

Шкаф барьеров искробезопасности

Барьер искробезопасности серии HID входной, двухканальный. Входной сигнал от

4-20 мА, выходной от 4-20 мА

Температура середины Р-7

На трубопроводе

Термопреобразователь с унифицированным сигналом предназначен для измерения температуры нейтральных и агрессивных сред, применяют во взрывоопасных зонах. Диапазон унифицированного выходного сигнала постоянного тока 4-20 мА

ТСП Метран-256

Шкаф барьеров искробезопасности

Барьер искробезопасности серии HID входной, двухканальный. Входной сигнал от

4-20 мА, выходной от 4-20 мА

Температура низа Р-7

На трубопроводе

Термопреобразователь с унифицированным сигналом предназначен для измерения температуры нейтральных и агрессивных сред, применяют во взрывоопасных зонах. Диапазон унифицированного выходного сигнала постоянного тока 4-20 мА

ТСП Метран-256

Шкаф барьеров искробезопасности

Барьер искробезопасности серии HID входной, двухканальный. Входной сигнал от

4-20 мА, выходной от 4-20 мА

Контроль давления Р-7

На трубопроводе

Интеллектуальный датчик давления серии Метран-100-Ди-Еx предназначен для измерения и непрерывного преобразования в унифицированный аналоговый токовый сигнал 4-20 мА и/или цифровой сигнал на базе интерфейса RS485 выходной сигнал избыточного давления

Метран - 100-Ех- ДИ- 3141-МП

Шкаф барьеров искробезопасности

Барьер искробезопасности серии HID входной, двухканальный. Входной сигнал от 4-20 мА, выходной от 4-20 мА

Контроль уровня в Е-8

На трубопроводе

Интеллектуальный датчик давления серии Метран-100 предназначен для измерения и непрерывного преобразования в унифицированный аналоговый токовый сигнал 4-20 мА и/или цифровой сигнал в стандарте протокола HART, или цифровой сигнал на базе интерфейса RS485 гидростатического давления

Метран-100-ДГ-Ех

Шкаф барьеров искробезопасности

Барьер искробезопасности серии HID входной, двухканальный. Входной сигнал от 4-20 мА, выходной от 4-20 мА

рН алкилата после реакторов алкилирования

в трубопроводе

Электрод со встроенным температурным сенсором Рt -100, длина 120мм, диаметр 12 мм. Температура измеряемой среды 0-120оС. Диапазон измеряемой среды 0-14.

На трубопроводе

Преобразователь измерительный рН метра с кристаллическим дисплеем. Выходной сигнал 4ч20 мА, погрешность измерения 0,1%. Температура окружающей среды -20 ч +55 оС

Шкаф барьеров искробезопасности

Барьер искробезопасности серии HID выходной, двухканальный. Входной сигнал от

4-20 мА, выходной от 4-20 мА

Контроль расхода алкилата на выходе из реакторов

В трубопроводе

Диафрагма камерная, устанавливаемая во фланцах трубопровода ДСК по ГОСТ 8.563.1, 8.563.2, 8.563.3.

Тип ДК 25200 ГОСТ 8.563.1

На трубопроводе

Интеллектуальный датчик давления серии Метран-100 предназначен для измерения и непрерывного преобразования в унифицированный аналоговый токовый сигнал

4-20 мА и/или цифровой сигнал в стандарте протокола HART, или цифровой сигнал на базе интерфейса RS485 входного сигнала разности давлений.

Метран-100-Ех-ДД-2430-МП

Шкаф барьеров искробезопасности

Барьер искробезопасности серии HID входной, двухканальный. Входной сигнал от 4-20 мА, выходной от 4-20 мА

Регулирование давления в Е-11

На трубопроводе

Интеллектуальный датчик давления серии Метран-100-Ди-Еx предназначен для измерения и непрерывного преобразования в унифицированный аналоговый токовый сигнал

4-20 мА и/или цифровой сигнал на базе интерфейса RS485 выходной сигнал избыточного давления

Метран - 100-Ех- ДИ- 3141-МП

Шкаф барьеров искробезопасности

Барьер искробезопасности серии HID входной, двухканальный. Входной сигнал от 4-20 мА, выходной от 4-20 мА

Шкаф барьеров искробезопасности

Барьер искробезопасности серии HID выходной, двухканальный. Входной сигнал от 4-20 мА, выходной от

На клапане

Электропневматический позиционер. Давление питающего воздуха 0.14 мПа. Входной сигнал 0.02-0.1 мПа.

Рассчитан на ход 10…100 мм. Взрывозащита: ExdsllB+H2T6

На трубопроводе

Исполнительный механизм регулирующий клапан с пневмоприводом

1.7 Охрана труда и безопасность производства

Требования к обеспечению взрывоопасности процесса алкилирования фенола.

Проектируемая установка производства алкилфенолов размещена в непосредственной близости от крупных предприятий: «НШЗ», завода «Эластик», ТЭЦ-1, ОАО «НКНХ» вблизи г. Нижнекамска с учетом “розы ветров”. Господствующие здесь ветра уносят значительную часть вредных выбросов в противоположную сторону от жилых массивов. Технологическое оборудование размещено на наружной установке размерами 24 на 24 метра высотой 17 метров. Управление технологическим процессом автоматизировано, осуществляется дистанционно при помощи системы APACS из здания операторной. Размеры операторной 15 на 20 метров высота 4 метра.

На основании свойств веществ по нормам пожарной безопасности НПБ 105-03 устанавливаем категорию и класс взрывоопасной зоны: для операторной категория “Д”, а для производства категория ”Ан”. Согласно ПБ 09.107-03 по энергетическому потенциалу взрыва и количеству взрывоопасных веществ процесс относится к I категории, так как Q > 54 и m > 9600 кг.

Согласно ПУЭ наружная установка относится к классу взрывоопасной зоны - В-1г.

Согласно ГОСТ 12.2.007.0-75 к электротехническим изделиям на наружных установках и в операторной используется трехфазное четырех проводная глухозаземленная электрическая сеть U = 380/220В. В соответствии с ПУЭ по степени опасности поражения электрическим током наружная установка приравнивается к особо опасным помещениям, операторная относится к помещениям без повышенной опасности.

По степени опасности поражения людей электрическим током операторная относится к классу повышенной опасности. Для операторной, согласно ПУЭ, минимальная допустимая степень защиты электрооборудования соответствует IP44 (от попадания твердых веществ диаметром более 1 мм и брызг воды в любом направлении).

В соответствии с ГОСТ 12.1.019-79 и ГОСТ 12.1.009-76 электробезопасность персонала обеспечивается конструктивными решениями электроустановок; применение защитного заземления всего оборудования, размещение электрооборудования РСУ в закрытых шкафах.

Все конструкции электрооборудования соответствуют условиям эксплуатации и обеспечивают защиту персонала от соприкосновения с токоведущими частями.

Для предотвращения нарушения изоляции от действия влаги все кабельное хозяйство герметизируется в трубные разводки.

Источником воспламенения являются: раскалённые или нагретые стенки оборудования, искры электрооборудования, статическое электричество, искры удара и трения.

Здания и сооружения проектируемого производства выполнены из железобетона и относятся ко II степени огнестойкости.

При подготовке на ремонт аппараты продувают азотом. Всё оборудование и соединения являются герметичными. Ремонтные работы проводятся только искробезопасным инструментом. С целью своевременного обнаружения пожара предусмотрена автоматически действующая сигнализация. В помещениях предусмотрена система электрической пожарной сигнализации, с целью обнаружения начальной стадии пожара с ручным и автоматическим включением. Для ручного включения используются кнопочные извещатели типа ПКИЛ-9. Для автоматического включения используются дымовые извещатели типа ДИ-1. Во взрывоопасной среде используются извещатели взрывозащищенного исполнения ДСП-1АГ (дифференциальные).

Для тушения пожара в цехе предусмотрены следующие первичные средства пожаротушения: противопожарный водопровод, огнетушители, асбестовые одеяла, песок, азот,

водяной пар. По периметру цеха расположены лафетные установки и пожарные гидранты.

Для тушения электрооборудования применяют углекислотные и порошковые огнетушители ОУ-8, ОУ-25, ОП-100.

С целью своевременного оповещения о возникновении пожара, а также вызова пожарных команд действует система пожарной связи.

Согласно пожарно-технической классификации в зданиях выполнены необходимые требования по безопасной эвакуации людей через эвакуационные выходы. Количество эвакуационных выходов - два.

Во избежание термических ожогов оборудование и трубопроводы с высокой температурой стенок изолированы минеральной ватой и оцинкованными металлическими листами.

Для защиты аппаратов, от избыточного давления сверх допустимого, применяются предохранительные клапаны марки ППК4-150-40, ППК4-125-40.

При проведении процесса выделения необходимо измерять температуру, давление и уровень в аппаратах, а так же расход поступающих продуктов.

Для измерения давления используется интеллектуальный датчик избыточного давления фирмы «Метран» во взрывозащищенном исполнении. Уровень измеряем цифровым датчиком уровня буйковым фирмы Masoneilan

во взрывозащищенном исполнении. Для измерения температуры используем термопреобразователь сопротивления платиновый. Расход измеряем диафрагмой камерной для трубопроводов фирмы «Метран». Управление процессом осуществляется дистанционно из операторной.

Контроллер обеспечивает поддержание заданных параметров процесса и быстроту регулирования, осуществляет сигнализацию и блокировку при отклонении параметров от допустимых величин по заданной программе.

1.8 Промышленная экология

Защита водного бассейна от промышленных стоков.

На установке алкилирования фенола тримерами пропилена имеется следующее выбросы в сточные воды ОАО «НКНХ» в таблице 4 .

Сточные воды образуются: при подготовке емкостного и теплообменного оборудования к ремонту (1 раз в год). Сбрасываются в ХЗК через колодцы. ПДК для водоемов санитарно-бытового водопользования установлена для фенола 0,1 мг/л. ПДК для рыбо - хозяйственных вод для фенола 0,025мг/л.

Таблица 4. Сточные воды

Стоки из ХЗК попадают на БОС. Нормы для слива воды ХЗК, ХПК не выше 500мг/л, рН - 6,5ч12,5, при несоответствии, стоки выдавливаются на отпарку органики. Состояние воды анализируется на ХПК бихроматным способом №25.

Для защиты водоемов от вредных выбросов и предотвращения загрязнения почвы в цехе оборудованы лотки и подземные емкости для сбора атмосферных осадков, из которых по мере накопления стоки откачиваются в химически загрязненную канализацию.

Методы очистки производственных сточных вод принято подразделять на механические, химические, биологические и физико-химические. Указанными методами сточную воду кондиционируют для последующей очистки, либо полностью очищают от примесей.

При этом очистка может быть осуществлена как с выделением примесей в газообразную, твёрдую или жидкую фазу, так и с разрушением их.

2. Расчётная часть

2.1 Материальный баланс производства

Исходные данные:

(94) (126) (220)

С6Н6О + 2 С9Н18 = С24Н42О - побочная реакция образования

(94) (126) (346)

диалкилфенола. (2)

Производительность установки по алкилфенолу составляет 125000

тонн в год.

Календарный фонд времени 365 дней.

Время, затраченное на капитальный ремонт - 10 дней.

Конверсия по тримерам пропилена составляет 98,5 %.

Состав реакционной смеси (% масс)

Тримеры пропилена - 40

Состав алкилата (% масс)

Алкилфенол - 58,60

В том числе:

Фенол - 32,65

Тримеры пропилена - 0,60

Диалкилфенол -7,65

Процесс считается непрерывным.

Составляем схему материальных потоков

Рисунок 2.1 Схема материальных потоков производства алкилфенола

Р - реактор алкилирования фенола тримерами пропилена; G1 - материальный поток фенола и тримеров пропилена соответственно; G2 - питание колонны Кт-1, алкилат

Эффективный фонд работы оборудования (час)

Тэф=Тк - ?Тр

Тэф=365 · 24 - 10 · 24=8520 часов

Производительность по алкилфенолу (кг/час)

Алкилфенол

Х=8597,42 кг/ч

Х=4790,20кг/ч

Тримеры пропилена

Тяжелые остатки

Диалкилфенол

Х=1122,36кг/ч

Питание колонны Кт-1 - алкилат реактора Р-1 (поток G2). Исходя из конверсии по тримерам пропилена, определяем количество поданного сырья. Рассчитываем количество участников реакции (1) (кг/час)

Тримеры пропилена

Рассчитываем количество участников реакции (2) (кг/час)

Тримеры пропилена

Определяем общее количество веществ, принявших участие в реакциях (1) и (2)

Тримеры пропилена

Рассчитываем количество поданного сырья (кг/час)

Тримеры пропилена

Составляем таблицу материального баланса

Таблица 5. Сводная таблица материального баланса

2.2 Расчет основного аппарата

2.2.1 Технологический расчет основного аппарата

Назначение: Алкилирование фенола тримерами пропилена производится в жидкой фазе в присутствии катализатора.

Количество сырья, поступающего в реактор

Gр=26784,11 кмоль (см. материальный баланс)

Режим работы:

P = 0,4 МПа (4кмоль/см2)

Объёмная скорость подачи реакционной смеси 7,2 час-1

Катализатор

Срок службы катализатора - 12-13 месяцев

Площадь сечения аппарата:

где: Vф? объемный расход реакционной смеси, м3/с;

W - линейная скорость потока в аппарате, м/с.

Диаметр аппарата:

D = 1,13 v1 = 1,13 м

Принимаем реактор диаметром 1200 мм.

Необходимый объём катализатора:

Vоб - объемная скорость подачи сырья, час-1;

Vоб = 7,2 час-1 = 0,002 с-1

Объем катализатора необходимого для проведения процесса равен 5 м3, следовательно, высота слоя катализатора соответствующая данному объему определяется по формуле:

Расчет высоты реактора. Высота реактора определяется следующими характеристиками:

Hреак.зоны = 7 м - высота реакционной зоны;

Нкат. реш. = 0,035 м - высота катализаторной решетки;

Нштуц. = 0,55 м - высота устанавливаемых штуцеров;

Ндн. = 1 м - высота днища;

Нкр = 1 м - высота крышки.

Нреакт = 7 + 0,035 + 0,55 + 1 + 1 = 9,5 м.

Принимаем реактор высотой 9550 мм.

Следовательно, к установке принимается два реактора для обеспечения максимальной конверсии со следующими основными характеристиками:

диаметр - 1200 мм;

высота - 9550 мм;

высота слоя катализатора - 5,35 м;

объем катализатора 5 м3.

Расчёт реактора Р-1в проводиться аналогично, данные расчёта сводим

в таблицу 6

Таблица 6. Характеристика реакторного оборудования

2.2.2 Тепловой расчет аппарата

Исходные данные:

В реактор поступает реакционная смесь с температурой 70 0С.

Потери теплоты в окружающую среду 1,1% от прихода тепла.

Остальные данные из материального баланса.

На основании схемы тепловых потоков составляем уравнение теплового баланса.

Q1 + Q2 = Q3 + Q4 - уравнение для первого реактора,

Q5 + Q6 = Q7 + Q8 - уравнение для второго реактора.

Определим количество теплоты, поступающей с реакционной смесью

Q1 = G1 Ср1 t1

G1 - количество поступающего сырья, кмоль;

Ср1 - удельная теплоемкость реакционной смеси, кДж/кг·К;

t - температура реакционной смеси, 0С.

G1 = 26784,11 кг/ч =7,44 кмоль

Определим удельную теплоемкость реакционной смеси

Ср (фенола) = 2344,98

Состав реакционной смеси:

Фенол - 60 %,

Тримеры пропилена - 40 %.

Ср = У сpi·wi

Cр = 2344,98 0,60 + 2027,3 0,40 = 2217,90

Cр = 2217,9 = 2,218

Количество теплоты, поступающей с реакционной смесью

Q1 = 7,44 · 2,218 70 = 1155,13 кВт

Определим количество теплоты, выделившейся в результате экзотермических реакций

С6Н6О + С9Н18 = С15Н24О - целевая реакция образования алкилфенола; (1)

С6Н6О + 2 С9Н18 = С24Н42О - побочная реакция образования диалкилфенола. (2)

Q2 = Q1цел + Q2поб,

Q1цел - количество теплоты, выделившаяся в результате экзотермической реакции (1),

Q2поб - количество теплоты, выделившаяся в результате экзотермической реакции (2).

Q1цел = G1 ?Нр

Q2поб = G2 ?Нр,

Нр1, ?Нр2 - изменения энтальпий в результате реакций (1) и (2), кДж/кг;

G1, G2 - количество образовавшегося алкилфенола и диалкилфенола после первого реактора (30 % алкилфенола и 1 % диалкилфенола от образовавшегося алкилата 26784,11 кг/ч), кмоль.

Нр1 = 281,56 кДж/кг

Нр2 = 106,52 кДж/кг

G1 = 8035,23 кг/час = 2,23 кмоль

G2 = 267,84 кг/час = 0,07 кмоль

Q1цел = 2,23 281,56 = 627,87 кВт

Q2поб = 0,07 106,52 = 7,46 кВт

Q2 = 627,87 + 19,70 = 635,33 кВт

Определяем количество теплоты, уходящей с алкилатом из уравнения теплового баланса для первого реактора

Q1 + Q2 = Q3 + Q4

Q3 = Q1 + Q2 - Q4,

но для этого необходимо найти Q4 - потери в окружающую среду.

Q4 = (Q1 + Q2) 1,1%

Q4 = (1155,13 + 635,33) 0,011 = 19,70 кВт

Отсюда находим Q3

Q3 = 1155,13 + 635,33 - 19,70 = 1770,76 кВт

Определяем температуру реакционной смеси на выходе из первого реактора

G3 - количество образовавшегося алкилата, кмоль

Ср3 - удельная теплоемкость алкилата, кДж/кг·К.

G3 = 26784,11 кг/час = 7,44 кмоль

Определим удельную теплоемкость алкилата

Ср (фенола) = 2344,98

Ср (тримера пропилена) = 2027,3

Ср (алкилфенола) = 2450,63

Ср (диалкилфенола) = 2373,48

Состав алкилата:

фенол - 49 %,

тримеры пропилена - 20 %,

алкилфенол - 30 %,

диалкилфенол - 1%.

Ср = У сpi·wi

Ср = 2344,98 0,49 + 2027,3 0,20 + 2450,63 0,30 + 2373,48 0,01 =

2313,42 = 2,313

Составляем таблицу теплового баланса для первого реактора

Таблица 7. Тепловой баланс для первого реактора

Определим количество теплоты, уходящей с хладагентом из теплообменника

Qводы = Gводы Срводы (t2к - t2н)

Gводы - расход охлаждающей воды, кмоль;

Срводы - удельная теплоемкость воды, ;

t2к, t2н - конечная и начальная температура воды, 0С.

Подобные документы

    Процесс алкилирования фенола олефинами. Термодинамический анализ. Зависимость мольной доли компонентов от температуры. Адиабатический перепад температур в реакторе. Протонирование олефина с образованием карбкатиона. Окислительный аммонолиз пропилена.

    курсовая работа , добавлен 04.01.2009

    Фенол как химическое вещество, его применение и значение. Особенности стадий получения фенола. Краткая характеристика процесса его производства через бензолсульфокислоту, хлорбензол, изопропилбензол, окислительным хлорированием бензола. Виды сырья.

    реферат , добавлен 18.02.2011

    Способы получения фенола. Открытие цеолитных катализаторов для окисления бензола закисью азота. Природа каталитической активности цеолитов. Новые пути синтеза фенола. Активное состояние железа в цеолитной матрице. Биомиметические свойства кислорода.

    реферат , добавлен 24.04.2010

    Понятие и номенклатура фенолов, их основные физические и химические свойства, характерные реакции. Способы получения фенолов и сферы их практического применения. Токсические свойства фенола и характер его негативного воздействия на организм человека.

    курсовая работа , добавлен 16.03.2011

    Классификация, физические и химические свойства фенолов. Изучение строения молекулы. Влияние бензольного кольца на гидроксильную группу. Диссоциация и нитрование фенола. Взаимодействие его с натрием, щелочами. Реакции окисления, замещения и гидрирования.

    презентация , добавлен 17.02.2016

    Отношение бензола к раствору KMnO4 и бромной воде, нитрование бензола. Окисление толуола, техника безопасности, операции с толуолом. Взаимодействие расплавленного фенола с натрием, раствором щелочи, вытеснение фенола из фенолята натрия угольной кислотой.

    лабораторная работа , добавлен 02.11.2009

    Токсическое действие фенола и формальдегида на живые организмы, методы их качественного определения. Количественное определение фенола в пробах природных вод. Метод для определения минимальных концентраций обнаружения органических токсикантов в воде.

    курсовая работа , добавлен 20.05.2013

    Характеристика промышленных способов алкилирования бензола пропиленом. Принципы алкилирования бензола олефинами в химической технологии. Проблемы проектирования технологических установок алкилирования бензола. Описание технологии процесса производства.

    дипломная работа , добавлен 15.11.2010

    Титриметрический метод анализа. Теория броматометрического метода анализа. Техника титрования. Достоинства и недостатки броматометрического метода. Фенолы. Определение фенола. Химические реакции, используемые в методах титриметрии.

    курсовая работа , добавлен 26.03.2007

    Описание технологической схемы процесса и вспомогательных материалов. Материальный баланс при переработке предельных газов. Расчет основного аппарата - колонны стабилизации. Расчет температура ввода сырья. Определение внутренних материальных потоков.

Курсовая работа

Алкилирование фенолов

Введение 3

1. Характеристика процессов алкилирования 4

2. Химия и теоретические основы алкилирования фенолов 10

3. Технология процесса алкилирования фенолов 14

4. Продукты получения 15

Список литературы 18

Введение

Алкилированием называют процессы введения алкильных групп в молекулы органических и некоторых неорганических веществ. Эти реакции имеют очень большое практическое значение для синтеза алкилированных в ядро ароматических соединений, изопарафинов, многих меркаптанов и сульфидов, аминов, веществ с простой эфирной связью, элемент - и металлорганических соединений, продуктов переработки -оксидов и ацетилена. Процессы алкилирования часто являются промежуточными стадиями в производстве мономеров, моющих веществ и т. д.

Многие из продуктов алкилирования производятся в очень крупных масштабах. Так, в США синтезируют ежегодно около 4 млн. т этилбензола, 1,6 млн. т изопропилбензола, 0,4 млн. т высших алкилбензолов, свыше 4 млн. т гликолей и других продуктов переработки алкиленоксидов, около 30 млн. т изопарафинового алкилата, около 1 млн. т трет-бутилметилового эфира и т. д.

1. Характеристика процессов алкилирования

1. Классификация реакций алкилирования

Наиболее рациональная классификация процессов алкилирования основана на типе вновь образующейся связи.

Алкилирование по атому углерода (C-алкилирование) состоит в замещении на алкильную группу атома водорода , находившегося при атоме углерода. К этому замещению способны парафины, но наиболее характерно алкилирование для ароматических соединений (реакция Фриделя – Крафтса):


Алкилирование по атомам кислорода и серы (O - и S-алкилирование) представляет собой реакцию, в результате которой алкильная группа связывается с атомом кислорода или серы:

ArOH + RCI ArOH + NaCI + H2O

NaSH + RCI → RSH + NaCI

В данном случае под слишком общее определение алкилирования подпадают и такие процессы, как гидролиз хлорпроизводных или гидратация олефинов, и это показывает, что алкилированием следует называть только такие реакции введения алкильной группы, которые не имеют других, более существенных и определяющих классификационных признаков.

Алкилирование по атому азота (N-алкилирование) состоит в замещении атомов водорода в аммиаке или в аминах на алкильные группы. Это - важнейший из методов синтеза аминов:

ROH + NH3 → RNH2 + H2O

Как и в случае реакций гидролиза и гидратации, N-алкилирование нередко классифицируют как аммонолиз (или аминолиз) органических соединений).

Алкилирование по атомам других элементов (Si-, Pb-, AI-алкилирование) представляет собой важнейший путь получения элемент - и металлорганических соединений, когда алкильная группа непосредственно связывается с гетероатомом:

2RCI + Si R2SiCI2

4C2H5CI + 4PbNa → Pb(C2H5)4 + 4NaCI + 3Pb

3C3H6 + AI + 1,5H2 → Al(C3H7)3

Другая классификация реакций алкилирования основана на различиях в строении алкильной группы, вводимой в органическое или неорганическое соединение. Она может быть насыщенной алифатической (этильной и изопропильной) или циклической. В последнем случае реакцию иногда называют циклоалкилированием:

При введении фенильной или вообще арильной группы образуется непосредственная связь с углеродным атомом ароматического ядра (арилирование):

C6H5CI + NH3 → C6H5NH2 + HCI

В алкильную группу может входить ароматическое ядро или двойная связь, и, если последняя достаточно удалена от реакционного центра, реакция мало отличается от обычных процессов алкилирования:

CH2=CH-CH2CI + RNH2 → RNHCH2-CH=CH2 + HCI

Однако введение винильной группы (винилирование) занимает особое место и осуществляется главным образом при помощи ацетилена:

ROH + CH≡CH ROCH=CH2

CH3-COOH + CH≡CH CH3-COO-CH=CH2

Наконец, алкильные группы могут содержать различные заместители, например атомы хлора, гидрокси-, карбокси-, сульфокислотные группы:

C6H5ONa + CICH2-COONa → C6H5O-CH2-COONa + NaCI

ROH + HOCH2-CH2SO2ONa → ROCH2–CH2SO2ONa + H2O

Важнейшей из реакций введения замещенных алкильных групп является процесс -оксиалкилирования (в частном случае оксиэтилирование), охватывающий широкий круг реакций оксидов олефинов:

2. Алкилирующие агенты и катализаторы

Все алкилирующие агенты по типу связи, разрывающейся в них при алкилировании, целесообразно разделить на следующие группы:

1. Ненасыщенные соединения (олефин и ацетилен), у которых происходит разрыв -электронной связи между атомами углерода;

2. Хлорпроизводные с достаточно подвижным атомом хлора, способным замещаться под влиянием различных агентов;

3. Спирты, простые и сложные эфиры, в частности оксиды олефинов, у которых при алкилировании разрывается углерод-кислородная связь.


Олефины (этилен, пропилен, бутены и высшие) имеют первостепенное значение в качестве алкилирующих агентов. Ввиду дешевизны ими стараются пользоваться во всех случаях, где это возможно. Главное применение они нашли для С-алкилирования парафинов и ароматических соединений. Они неприменимы для N-алкилирования и не всегда эффективны при S - и O-алкилировании и синтезе металлорганических соединений.

Алкилирование олефинами в большинстве случаев протекает по ионному механизму через промежуточное образование карбокатионов и катализируется протонными и апротонными кислотами. Реакционная способность олефинов при реакциях такого типа определяется их склонностью к образованию карбокатионов:

Это означает, что удлинение и разветвление цепи углеродных атомов в олефине значительно повышает его способность к алкилированию:

CH2=CH2 < CH3-CH=CH2 < CH3-CH2-CH=CH2 < (CH3)2C=CH2

В ряде случаев алкилирование олефинами протекает под влиянием инициаторов радикально-цепных реакций, освещения или высокой температуры. Здесь промежуточными активными частицами являются свободные радикалы. Реакционная способность разных олефинов при таких реакциях значительно сближается.

Хлорпроизводные являются алкилирующими агентами наиболее широкого диапазона действия. Они пригодны для С-, О-, S - и N-алкилирования и для синтеза большинства элементо - и металлорганических соединений. Применение хлорпроизводных рационально для тех процессов, в которых их невозможно заменить олефинами или когда хлорпроизводные дешевле и доступнее олефинов.

Алкилирующее действие хлорпроизводных проявляется в трех различных типах взаимодействий: в электрофильных реакциях, при нуклеофильном замещении и в свободно-радикальных процессах. Механизм электрофильного замещения характерен для алкилирования по атому углерода, но, в отличие от олефинов, реакции катализируются только апротонными кислотами (хлориды алюминия , железа). В предельном случае процесс идет с промежуточным образованием карбокатиона:

в связи, с чем реакционная способность алкилхлоридов зависит от поляризации связи C-CI или от стабильности карбокатионов и повышается при удлинении и разветвлении алкильной группы:

При другом типе реакций, характерном для алкилирования по атомам кислорода, серы и азота, процесс состоит в нуклеофильном замещении атома хлора. Механизм аналогичен гидролизу хлорпроизводных, причем реакция протекает в отсутствие катализаторов:

Реакционная способность хлорпроизводных изменяется в данных процессах таким же образом, как при гидролизе, а именно:

ArCH2CI > CH2=CH-CH2CI > AIkCI > ArCI

перв-AIkCI > втор-AIkCI > трет-AIkCI

Целый ряд процессов алкилирования хлорпроизводными протекает по свободно-радикальному механизму. Это особенно характерно для синтезов элементо - и металлорганических соединений, когда свободные радикалы образуются за счет взаимодействия с металлами:

4PbNa + 4C2H5CI → 4Pb + 4NaCI + 4C2H → 4NaCI + Pb(C2H5)4 + 3Pb

Спирты и простые эфиры способны к реакциям С-, О-, N - и S-алкилирования. К простым эфирам можно отнести и оксиды олефинов, являющиеся внутренними эфирами гликолей, причем из всех простых эфиров только оксиды олефинов практически используют в качестве алкилирующих агентов. Спирты применяют для О - и N-алкилирования в тех случаях, когда они дешевле и доступнее хлорпроизводных. Для разрыва их алкил-кислородной связи требуются катализаторы кислотного типа:

R-OH + H+ ↔ R-OH2 ↔ R+ + H2O

3. Энергетическая характеристика основных реакций алкилирования

В зависимости от алкилирующего агента и типа разрывающейся связи в алкилируемом веществе процессы алкилирования имеют сильно различающиеся энергетические характеристики. Значения тепловых эффектов для газообразного состояния всех веществ в некоторых важных процессах алкилирования по С-, О - и N-связям приведены в таблице 1. Так как они существенно зависят от строения алкилирующих веществ, то в таблице приводятся наиболее часто встречающиеся пределы изменения тепловых эффектов.

Таблица 1

Тепловой эффект важнейших реакций алкилирования

Алкилирующий агент

Разрываемая связь

Из сравнения приведенных данных видно, что при использовании одного и того же алкилирующего агента теплота реакции при алкилированием по разным атомам уменьшается в следующем порядке Сар > Салиф > N > O, а для разных алкилирующих агентов изменяется так:

Особенно большой тепловой эффект алкилирования с участием этиленоксида и ацетилена обусловлен значительной напряженностью трехчленного оксидного цикла и высокой эндотермичностью соединений с тройной связью.

2. Химия и теоретические основы алкилирования фенолов

Фенолы образуют с AICI3 неактивные соли ArOAICI2, поэтому для алкилирования фенолов в качестве катализаторов применяют протонные кислоты или металлоксидные катализаторы кислотного типа. Это позволяет использовать в качестве алкилирующих агентов только спирты и олефины. Наряду с продуктами замещения в ядре получается немного простых эфиров фенола, которые легко перегруппировываются в алкилфенолы:

Установлено, что алкилфенолы преимущественно образуются путем прямого алкилирования в ядро. Механизм этой реакции аналогичен механизму для ароматических углеводородов, причем гидроксогруппа фенолов сильно активирует в особенности 4- и 2-положения при почти полном отсутствии в продуктах мета-изомеров.

Алкилирование протекает последовательно с образованием моно-, ди, и триалкилфенолов, но одновременно происходит катализируемая кислотами перегруппировка с миграцией орто-алкильных групп с образованием пара-изомеров, которые в данном случае являются термодинамически наиболее стабильными. Таким образом, схема превращений следующая:

Из моноалкилфенолов при катализе протонными кислотами всегда преобладает пара-изомер, но при повышении активности катализатора, температуры и продолжительности реакции доля этого изомера среди монозамещенных может возрастать от 60 – 80 до 95% и более в связи с изомеризацией орто-изомера.

Из дизамещенных всегда значительно преобладает 2,4-диалкилфенол, доли которого еще больше растет при указанных выше условиях.

При последовательном введение алкильных групп, в отличие от алкилирования ароматических углеводородов, первая стадия протекает быстрее второй, а последняя быстрее третьей. На состав продуктов последовательного замещения влияет обратимая реакция переалкилирования:

R2C6H4OH + C6H5OH ↔ 2RC6H4OH

Равновесие которой значительно сдвинуто вправо. Поэтому при повышении активности катализатора, температуры и продолжительности реакции в получаемой смеси может значительно возрасти содержание моноалкилфенола. Так, в сравнении с алкилированием бензола (рис. 1) максимум моноалкилфенола в кинетическом режиме процесса составляет 50% (молю), а в состоянии, приближающемся к равновесию, достигает 75-80% (мол.). При целевом синтезе моноалкилфенолов это позволяет работать при сравнительно небольшом избытке фенола по отношению к олефину (=0,8-0,95) и даже при их эквимольном количестве. Селективность еще более возрастает в том случае, когда побочно образовавшиеся диалкилфенолы подвергают переалкилированию с фенолом.

Рис. 1 Зависимость состава реакционной массы при необратимом (а) и обратимом (б) алкилировании бензола от соотношения исходных реагентов: 1. Бензол, 2. Моноалкилбензолов, 3. Диалилбензол

При целевом синтезе диалкилфенолов применяют избыток олефина, зависящий от соотношения скоростей и термодинамических факторов при последующих стадиях реакции.

Кроме эфиров фенолов и полиалкилзамещенных фенолов побочными продуктами алкилирования являются полиолефины и образующиеся из них алкилфенолы с более длинной цепью атомов углерода. Наоборот, при реакции с высшими, особенно с разветвленными олефинами наблюдается их деполимеризация с получением алкилфенолов, имеющих более короткую алкильную группу. Общий метод подавления этих побочных реакций – понижение температуры, поскольку алкилирование имеет самую низкую энергию активации (20 кДж/моль). Во избежание полимеризвации олефина необходимо также снижать его концентрацию в жидкости, что достигается постепенным введением олефина в реакционную массу. Отметим, что реакции фенолов с изоолефинами в заметной степени обратимы, и нагревание соответствующих алкилфенолов с кислотным катализатором ведет к выделению олефина:

(CH3)3C-C6H4OH (CH3)2C=CH2 + C6H5OH

Изомеризация и переалкилирование частично протекают за счет этой реакции.

В качестве катализаторов – протонных кислот – в промышленности чаще всего применяют серную кислоту. Она является наиболее активной среди других доступных и дешевых кислот, но в то же время сильнее катализирует и побочные реакции, приводя дополнительно к сульфированию фенола и сульфатированию олефина и образуя фенолсульфокислоты HOC6H4SO2OH и моноалкилсульфаты ROSO2OH, которые также участвуют в катализе процесса. С серной кислотой алкилирование н-олефинами (кроме этилена) происходит при С, а с более реакционно-способными изоолефинами и стиролом – уже при 500С, но для ускорения процесса и в последнем случае алкилирование проводят при 1000С, применяя H2SO4 в количестве 3 – 10%. Другим катализатором, не вызывающим побочных реакций сульфирования и более мягким по своему действию, является п-толуолсульфокислота CH3C6H4SO2OH. Но она имеет меньшую активность и большую стоимость, чем серная кислота.

С этими катализаторами алкилирование фенола протекает как гомогенная реакция по такому кинетическому уравнению:

Общим их недостатком является необходимость в отмывке кислотного катализатора, вследствие чего образуется значительное количество токсичных сточных вод. Поэтому привлекли внимание и получили практическое применение гетерогенные катализаторы, особенно катионнообменные смолы, которые отделяются от реакционной массы простым фильтрованием. С катионнообменной смолой КУ-2 алкилирование фенолов изоолефинами происходит при С, но медленнее, чем при катализе серной кислотой.

В последнее время получило распространение орто-алкилирование фенолов, протекающее при катализе фенолятами алюминия (ArO)3AI. В этом случае даже при незанятом пара-положении алкильная группа преимущественно направляется в орто-положение с последовательным образованием моно - и диалкилбензолов:

С изоолефинами реакция идет при температуре 1000С, повышение которой вызывает все более заметное пара-алкилирование.

Катализ фенолятом алюминия объясняют его строением как апроторной кислоты, способной образовывать с фенолом комплекс, имеющий значительную кислотность:

Считается, что олефин дает с протоном карбокатион, который не выходит в объем и при внутрикомплексной реакции атакует ближайшее к нему орто-положение фенола.

Аналогичный по своим закономерностям газофазный процесс алкилирования применим только для метилирования фенола метанолом. Его осуществляют с гетерогенным катализатором кислотного типа (оксид алюминия, алюмосиликаты м др.). При С получается в основном о-крезол, ксиленолы и анизол, но при более высокой температуре (С), в соответствии с ранее рассмотренным, растет выход п - и м-крезолов и снижается выход анизола и ксиленолов.

3. Технология процесса алкилирования фенолов

Для алкилирования фенолов до сих пор часто применяют периодический процесс. При алкилировании высококипящими жидкими олефинами проводят реакцию в аппарате с мешалкой и рубашкой для обогрева паром или охлаждения водой. В него загружают фенол и катализатор, нагревают их до 900С, после чего при перемешивании и охлаждении подают жидкий олефин (диизобутен, триммер или тетрамер пропилена, стирол). Во второй половине реакции, наоборот, необходимо подогревать реакционную массу. Общая продолжительность операции составляет 2-4 ч. После этого реакционную массу нейтрализуют в смесителе 5% щелочью, взятой в эквивалентном количестве к кислоте-катализатору, нагревая смесь острым паром. При этом отгоняется непрореагировавший олефин, который после конденсации паров отделяется в сепараторе от воды и может повторно использоваться для алкилирования. Нейтрализованный органический слой сырых алкилфенолов отделяют от водного раствора солей и направляют на вакуум-перегонку , при которой отгоняются вода, остатки олефина и непревращенный фенол.

В процессах получения алкилфенолов из газообразных олефинов целесообразно использовать не реактор с мешалкой, а пустотелую колонну, в которой реакционная масса перемешивается за счет барботирования олефина. Тепло реакции можно отводить с помощью внутренних или выносных холодильников. Для перехода на непрерывный процесс в целях его интенсификации и улучшения состава реакционной массы, как и при других необратимых последовательно-параллельных реакциях, выгоднее применять каскад таких реакторов.

В новом процессе алкилирования фенола в присутствии ионообменных смол катализатор суспендирован в жидкости, находящейся в реакционной колонне. В низ колонны непрерывна подаются фенол и олефин. При С на смоле КУ-2 или при С на алюмосиликате объемная скорость подачи составляет 0,15 ч-1. Реакционная масса отфильтровывается от частиц катализатора и поступает на перегонку. Расход катализатора составляет всего 0,4% от массы полученных алкилфенолов.

4. Продукты получения

Простейшие гомологи фенола: о-, м-, и п-крезолы и изомерные ксиленолы:

находятся в продуктах коксования угля, но в очень небольшом количестве, не способном удовлетворить потребности в них для получения полимерных материалов, пестицидов, антиокислителей и т. д. Один из путей их синтеза, реализованный в промышленности ряда стран, состоит в газофазном метилировании фенола метанолом над гетерогенным катализатором:

Из моноалкилфенолов представляет практический интерес п-трет-бутилфенол, получаемый из фенола и изобутена:

При его добавлении к фенолу при поликонденсации с формальдегидом получаются малорастворимые полимеры, что имеет значение при их применении в качестве лакокрасочных покрытий.

Моноалкилфенолы с алкильной группой из 5-8 атомов углерода являются сильными бактерицидными средствами, а при ее удлинении до 8-12 атомов C оказываются ценными промежуточными продуктами для синтеза неионогенных поверхностно-активных веществ путем их оксиэтилирования:

В качестве алкилирующих агентов используют низшие полимеры и сополимеры олефинов (диизобутен, триммер и тетрамер пропилена, сополимеры бутена с пентенами и др.), из которых образуется трет-алкилфенолы. Чтобы получить продукты с лучшей биохимической разлагаемостью, целесообразнее применять н-олефины.

Важнейшей областью применения алкилфенолов и продуктов их дальнейшего превращения является производство стабилизаторов полимеров и масел против термоокислительной деструкции , развивающейсяпри эксплуатации этих материалов, особенно при повышенной температуре. Деструкция происходит по радикально-цепному механизму, причем ингибировать ее могут различные вещества, способные связывать свободные радикалы или же превращать их в нереакционно-способное состояние. Алкилфенолы дают при этом неактивные радикалы, стабилизированные сопряжением с ароматическим ядром, причем особенно сильный эффект оказывают фенолы с двумя разветвленными группами в орто-положении, когда влияние сопряжения дополняется пространственным влиянием объемистых заместителей:

Написанная формула принадлежит одному из самых распространенных стабилизаторов – ионолу, который получают из п-крезола и изобутена. Для этой же цели нашел применение антиоксидант-2246, получаемый конденсацией о-трет-бутил-п-крезола с формальдегидом:

однако общим их недостатком является ограниченная сырьевая база, обусловленная дефицитностью крезолов. Именно по этой причине большое значение получило орто-алкилирование позволяющее использовать в качестве сырья более доступный фенол. Большинство стабилизаторов этого типа принадлежит к двухъядерным соединениям с метиленовыми или сульфидными мостиками между 2,6-диалкилфенолом (полученным из изобутена, стирола и др.) и каким-либо ароматическим углеводородом (мезитиленом, дуролом) или другим алкилфенолом:

Список литературы

1. , Остроумов. М., Дрофа, 2008;

3. Лебедев и технология основного органического и нефтехимического синтеза. М., Химия. 1988. – 592 с.;

4. , Вишнякова нефтехимического синтеза. М., 1973. – 448 с.;

5. Юкельсон основного органического синтеза. М., «Химия», 1968.

Образование простых эфиров фенолов алкилированием фенолятов

Алкилирование образование простых эфиров фенолов). Алкилирование фенолов производится в большинстве случаев с помощью диметил- или диэтилсульфата или диазометана. Особенно гладко идет метилирование диазометаном, осуществляемое в мягких условиях. Метиловые и этиловые эфиры фенолов имеют почти всегда резкие температуры плавления и кипения.95

Значительные исследования проведены по разработке защитных присадок к сернистым дизельным топливам, для которых проблема снижения коррозии в присутствии влаги наиболее остра. С этой целью изучены соединения из ряда аминов, фенолов (алкилированный пирокатехин) и др. 36, 46, 49, 50. Добавление обычных топливных антиокислителей к сернистому дизельному топливу повышает его защитные свойства (вследствие торможения образования агрессивных продуктов окисления), однако эффект их нельзя считать достаточным. Защитное действие антиокислителей и деактиваторов металла в сернистом дизельном топливе видно из следующих данных 36, 50

Применение спиртов и алкилгалогенидов оправдано лишь в тех случаях когда они не могут быть заменены алкенами. Примерами таких процессов могут служить метилирование фенолов, алкилирование хлористым бензилом, трифенилхлорметаном и другие аналогичные реакции.

Для получения фенолов, алкилированных исключительно в орто-поло-жении, атака алкилирующего агента должна осуществляться со стороны гидроксильной гру пы, как, например, методе Колкй 4, 5 (пример 6.1).309

Алкилирование фенолов . Алкилированием фенолов получают алк-оксисоединения типа Аг-О-Alk. Для алкилирования, ак и в случае аминов, могут применяться спирты и галоидные алкилы (в большинстве случаев хлористый этил).

К синтетическим депрессаторам, оказавшимися достаточно высокоэффективными и получившими широкое техническое распространение, относится продукт конденсации нафталина с хлорированным парафином (депрессатор АзНИИ, парафлоу), а также продукты конденсации фенола, алкилированного хлорированным парафином, с фталилхлоридом, выпускаемые зарубежной промышленностью под названием сантонур.73


Действие сложных органических ингибиторов, являющихся продуктом конденсации этиленоксида с легкой фракцией сырых каменноугольных фенолов, алкилированных сланцевым бензином, как отдельно взятых, так и в купе с хроматами, показано в табл. 19.22. Эффективность этих ингибиторов не очень высока, так как максимальное значение у около 6 .332
Сополимер бутадиена со стиролом, фенол Фенол, алкилированный полимером Глина в ксилоле, 50-60 С, 20 ч 4

Алкилирование спиртов и фенолов, Алкилирование гидрокси-.группы действием спирта и минеральной кислоты имеет ограниченное применение, преимущественно для соединений нафталинового и антраценового рядов. В бензольном ряду спиртом в кислой среде могут быть алкилированы резорцин и особенно легко флороглю-цин. Для алкилирования и, в частности, для метилирования гид-роксисоединений широко используют диметилсульфат и метиловые эфиры бензол- и я-толуолсульфокислот. Процесс проводят, как правило, с избытком щелочи

Синтез п-трет. окти.л,феноли (алкилирование нри повышенной те.шге-469

Метод не пригоден для 0-алкилированных фенолов, алкилированных анилинов и ненасыщенных соединений. Во всех этих случаях, вследствие присоединения брома, получаются повышенные результаты.363

Фенолы, алкилированные в оба орто-положения и в пара-положение, особенно третичными алкилами, могут быть окислены окисью серебра или феррицианидом калия в ароксилы - вещества, обладающие свойствами свободных радикалов (Е. Мюллер)

В присутствии цеолитов алкилированию подвергаются и другие органические соединения, способные к взаимодействию с кислотными центрами. К числу таких соединений относится фенол.

Алкилирование фенола на обычном кислотном катализаторе осложняется образованием побочных продуктов -эфиров и комплексов катализатор-гидроксильные группы фенола. Однако при алкилировании фенола олефинами на редкоземельной форме цеолита X при - ° С эти побочные процессы не наблюдаются 61.

Как и в случае других производных бензола, алкилирование фенола приводит в основном к замещению в пара- и о/7ото-положения, что соответствует правилу селективности Брауна. Образование л/та-изомеров происходит либо после продолжительного контакта продуктов алкилирования с катализатором, либо при повышении температуры реакции. Установлено, что появление л/ешя-изомеров в продуктах алкилирования фенола изобутиленом связано с изомеризацией орто-и аря-изомеров путем трансалкилирования 54.393

На основании проведенных исследований А. А. Петров предложил деэмульгатор ОлПАСФЭ (оксиэтилированный синтетический фенол, алкилированный а-олефинами от крекинга парафина). Для синтеза его предложено применять олефины с цепью средней длины С12-С13, что кажется несколько нелогичным, так как не увязывается с выводами автора об оптимальной длине алкильной цепи (Сд). Содержание окиси этилена в деэмульгаторе ОлПАСФЭ должно составлять 30-40 моль на 1 моль алкилфенола или 80-85 вес. % от готового продукта.

Сырьем для его получения служил каменноугольный фенол, алкилированный фракцией крекинг-керосина с пределами кипения -°. Деэмульгатор УФЭд изготавливали также на базе каменноугольного фенола, но подвергали его только оксиэтилиро-ванию (без алкилирования) 7-8 молями оксиэтилена.

Деэмульгаторы ОП-7 и ОП-10 являлись продуктами реакции моно- и диал-килфенолов, получаемых на основе синтетического фенола с окисью этилена. Степень оксиэтилирования равнялась 6-7 и 9- 10 соответственно.

Деэмульгатор ОП-10 был испытан в промышленных масштабах при обезвоживании зольненской, жигулевской и калиновской нефтей. При этих испытаниях была получена кондиционная нефть при следующих расходах ОП-10 (г/т) зольнен-ская нефть - 100 жигулевская - калиновская - 80. Расход деэмульгатора НЧК при обезвоживании указанных нефтей составлял 3-5 кг/т.77

В текущее время в мировой научной практике накоплен значительный фактический материал по направленному алкилированию фенолов. Алкилирование можно вести в сторону преимущественного образования ж-моноалкилфенолов, а также о,п- и о,о-диалкилфенолов.91

Ряд стерически затрудненных фенолов алкилирован диме-тилсульфатом в условиях межфазного катализа. При замене метилиодида диметилсульфатом оказалось, что для полноты зеакции требуется стехиометрическое количество катализатора 5. В табл. 5.4 приведены результаты алкилирования нескольких

Гомологи фенола можно получить аналогичными реакциями из сульфо-, галоген- или аминопроизводных гомологов бензола. Однако существуют и методы введения алкильной группы в ядро фенола. Алкилирование фенолов идет легче, чем алкилирование бензола и его гомологов, благодаря активирующему действию гидроксильной группы. В качестве катализатора можно использовать хлорид цинка, а в качестве алкилирующих средств спирты 346

Можно также получать высшие фенолы алкилированием низших фенолов кислотных катализаторов. Замещение идет в пара-по-ложении

При подобном модифицировании растворимость в ароматических углеводородах достигается быстрее, чем совместимость с другими добавками. Тут заслуживают внимания новейшие данные, указывающие на ступенчатый характер перехода Смолы, полученные в щелочной среде из фенолов, алкилированных в лг-положении, растворимы в ароматических углеводородах и хорошо совмещаются с кислыми веществами (смоляными и жирными кислотами) даже при незначительной длине ц,епи замещающего радикала. Однако для совместимости с нейтральными веществами (глицериды жирных оксикислот, кумароновые смолы, смоляные эфиры, масляные алкиды) нужно увеличить длину цепи замещающего радикала. Еще большее удлинение ее необходимо для совместимости с жирными маслами, впсками, пеками, минеральными маслами, стеариновым пеком, каучуком и т. д. Таким образом, труднее всего получить свойства наиболее ценные для лаков.436

Алкилирование 2,6-диалкилфенолов. Ранее уже были отмечены некоторые примеры использования реакций 2,6-диалкилфенолов с олефинами и диенами До появления метода орто-алкилирования данный способ был ограничен лишь отдельными примерами. Однако в последнее десятилетие 2,6-диалкилфенолы все чаще используются для получения 4-замещенных пространственно-затрудненных фенолов. Алкилирование 2,6-диалкилфенолов протекает в более мягких условиях, чем алкилирование незамещенного фенола и возможно даже при взаимодействии с циклопропенильны-ми, циклогептатриенильными и другими стабильными ионами41

Из 15 образцов ПАВ реагент КА),2УФЭ16,4 (продукт конденсации фракции 44-° при 2 мм рт. ст. угольных фенолов, алкилированной фракции -° крекинг-бензина с 1б молекулами окиси этилена) показал себя наиболее эффективным деэмульгатором для девонской нефти. Исходя из исследований в лабораторных условиях деэмульгирующего свойства по количеству отстоявшейся воды и остаточной воды в нефти, этот реагент нами был рекомендован для промышленного испытания.

Соединения типа Г-16 широко представлены сульфонатами фенола, алкилированного три- или тетраизобутиленом или тетра- или пентапропиленом. Большая часть соответствующих патентов относится к методам алкилирования фенола этими олефинами. В числе несколько необычных катализаторов этого процесса упоминаются хлорное олово, фосфорновольфрамовая и фосфорномолибденовая кислоты, активированная фосфорной кислотой двуокись кремния и активированные кислотами глины. Применяется также серная кислота, но в данном случае, если не принять специальных предосторожностей 47, происходит значительная деполимеризация, которая снижает выход продукта.

Фенол и его гомологи алкилируются еще легче, чем нафталин. Особенно легко удается ввести радикал децил-, керил (см. стр.) и другие радикалы. Примеры получения низкомолекулярных алкильных производных содержатся в патентах ряда фирм. Из фенолов, алкилированных углеводородами нормального строения, получаются высококачественные моющие вещества. Подобный продукт был описан Флеттом

Для полного протекания реакции применяют избыток полимерди-стиллята (% на фенол). Алкилирование проводят при °С и заканчивают при содержании фенола не более 0,5%. Продолжительность процесса 10-12 ч. Основным недостатком процесса является его длительность, а также применение большого количества коррозионноактивного катализатора.83

Рубрики

Выберите рубрику 1. ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА НЕФТИ, ПРИРОДНОГО ГАЗА 3. ОСНОВЫ РАЗРАБОТКИ НЕФТЯНЫХ МЕСТОРОЖДЕНИЙ И ЭКСПЛУАТА 3.1. Фонтанная эксплуатация нефтяных скважин 3.4. Эксплуатация скважин погружными электроцентробежны 3.6. Понятие о разработке нефтяных и газовых скважин 7. МЕТОДЫ ВОЗДЕЙСТВИЯ НА ПРИЗАБОЙНУЮ ЗОНУ ПЛАСТА ОСНОВНЫЕ УЗЛЫ ИСПЫТАТЕЛЯ ПЛАСТОВ ВИНТОВЫЕ ЗАБОЙНЫЕ ДВИГАТЕЛИ АВАРИЙНЫЕ И ОСОБЫЕ РЕЖИМЫ РАБОТЫ ЭЛЕКТРООБОРУДОВАНИЯ АГРЕГАТЫ ДЛЯ РЕМОНТА И БУРЕНИЯ СКВАЖИН АНАЛИЗ ПРИЧИН МАЛОДЕБИТНОСТИ СКВАЖИН АНАЛИЗ ТЕХНОЛОГИЙ КАПИТАЛЬНЫХ РЕМОНТОВ СКВАЖИН Арматура устьевая АСФАЛЬТОСМОЛО-ПАРАФИНОВЫЕ ОТЛОЖЕНИЯ Без рубрики БЕЗДЫМНОЕ СЖИГАНИЕ ГАЗА БЕСШТАНГОВЫЕ СКВАЖИННЫЕ НАСОСНЫЕ УСТАНОВКИ блогун БЛОКИ ЦИРКУЛЯЦИОННЫХ СИСТЕМ. борьба с гидратами БОРЬБА С ОТЛОЖЕНИЕМ ПАРАФИНА В ПОДЪЕМНЫХ ТРУБАХ бурение Бурение боковых стволов БУРЕНИЕ НАКЛОННО НАПРАВЛЕННЫХ И ГОРИЗОНТАЛЬНЫХ СКВАЖИН Бурение скважин БУРИЛЬНАЯ КОЛОННА БУРОВЫЕ АВТОМАТИЧЕСКИЕ СТАЦИОНАРНЫЕ КЛЮЧИ БУРОВЫЕ АГРЕГАТЫ И УСТАНОВКИ ДЛЯ ГЕОЛОГО-РАЗВЕДОЧНОГО БУРЕНИЯ БУРОВЫЕ ВЫШКИ БУРОВЫЕ НАСОСЫ БУРОВЫЕ НАСОСЫ БУРОВЫЕ РУКАВА БУРОВЫЕ УСТАНОВКИ В МНОГОЛЕТНЕМЕРЗЛЫХ ПОРОДАХ (ММП) ВЕНТИЛИ. ВИДЫ НЕОДНОРОДНОСТЕЙ СТРОЕНИЯ НЕФТЯНЫХ ЗАЛЕЖЕЙ Виды скважин ВИНТОВЫЕ ПОГРУЖНЫЕ НАСОСЫ С ПРИВОДОМ НА УСТЬЕ ВЛАГОСОДЕРЖАНИЕ И ГИДРАТЫ ПРИРОДНЫХ ГАЗОВ СОСТАВ ГИДРАТ Влияние различных факторов на характеристики ВЗД ВОПРОСЫ ОПТИМИЗАЦИИ РАБОТЫ СИСТЕМЫ ПЛАСТ — УЭЦН ВЫБОР ОБОРУДОВАНИЯ И РЕЖИМА РАБОТЫ УЭЦН ВЫБОР СТАНКА-КАЧАЛКИ Газлифтная установка ЛН Газлифтная эксплуатация нефтяных скважин Газлифтный способ добычи нефти ГАЗЫ НЕФТЯНЫХ И ГАЗОВЫХ МЕСТОРОЖДЕНИЙ И ИХ СВОЙСТВА ГИДРАТООБРАЗОВАНИЕ В ГАЗОКОНДЕНСАТНЫХ СКВАЖИНАХ ГИДРАТООБРАЗОВАНИЕ В СИСТЕМЕ СБОРА НЕФТИ гидрозащита погружного электродвигателя ГИДРОКЛЮЧ ГКШ-1500МТ гидропоршневой насос Глава 8. СРЕДСТВА И МЕТОДЫ ГРАДУИРОВКИ И ПОВЕРКИ РАСХОДОИЗМЕРИТЕЛЬНЫХ СИСТЕМ ГЛУБИННЫЕ НАСОСЫ Горизонтальное бурение ГОРНО-ГЕОЛОГИЧЕСКИЕ УСЛОВИЯ БУРЕНИЯ НЕФТЯНЫХ И ГАЗОВЫХ СКВАЖИН ГРАНУЛОМЕТРИЧЕСКИЙ (МЕХАНИЧЕСКИЙ) СОСТАВ ПОРОД ДАЛЬНИЙ ТРАНСПОРТ НЕФТИ И ГАЗА ДЕФОРМАЦИОННЫЕ МАНОМЕТРЫ Диафрагменные электронасосы ДИЗЕЛЬ-ГИДРАВЛИЧЕСКИЙ АГРЕГАТ САТ-450 ДИЗЕЛЬНЫЕ И ДИЗЕЛЬ-ГИДРАВЛИЧЕСКИЕ АГРЕГАТЫ ДИНАМОМЕТРИРОВАНИЕ УСТАНОВОК ДНУ С ЛМП КОНСТРУКЦИИ ОАО «ОРЕНБУРГНЕФТЬ» добыча нефти добыча нефти в осложненых условиях ДОБЫЧА НЕФТИ С ПРИМЕНЕНИЕМ ШСНУ ЖИДКОСТНЫЕ МАНОМЕТРЫ ЗАБОЙНЫЕ ДВИГАТЕЛИ Закачка растворов кислот в скважину ЗАПОРНАЯ АРМАТУРА. ЗАЩИТа НЕФТЕПРОМЫСЛОВОГО ОБОРУДОВАНИЯ ОТ КОРРОЗИИ ЗАЩИТА ОТ КОРРОЗИИ НЕФТЕПРОМЫСЛОВОГО ОБОРУДОВАНИЯ ИЗМЕНЕНИЕ КУРСА СТВОЛА СКВАЖИНЫ измерение давления, расхода, жидкости, газа и пара ИЗМЕРЕНИЕ КОЛИЧЕСТВА ЖИДКОСТЕЙ И ГАЗОВ ИЗМЕРЕНИЕ РАСХОДА ЖИДКОСТЕЙ, ГАЗОВ И ПАРОВ ИЗМЕРЕНИЕ УРОВНЯ ЖИДКОСТЕЙ ИЗМЕРЕНИЯ ПРОДУКЦИИ МАЛОДЕБИТНЫХ ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ В НЕФТЕГАЗОДОБЫЧЕ ИСПЫТАНИЕ СКВАЖИННЫХ ЭЛЕКТРОНАГРЕВАТЕЛЕЙ Исследование глубинно-насосных скважин ИССЛЕДОВАНИЕ ЭФФЕКТИВНОСТИ кабель УЭЦН капитальный ремонт скважин Комплекс оборудования типа КОС и КОС1 КОНСТРУКЦИЯ ВИНТОВОГО ШТАНГОВОГО НАСОСА КОНСТРУКЦИЯ КЛАПАННОГО УЗЛА коррозия Краны. КРЕПЛЕНИЕ СКВАЖИН КТППН МАНИФОЛЬДЫ Маятниковая компоновка Меры безопасности при приготовлении растворов кислоты МЕТОДИКА РАСЧЕТА БУРИЛЬНЫХ КОЛОНН МЕТОДЫ БОРЬБЫ С ОТЛОЖЕНИЯМИ ПАРАФИНА В ФОНТАННЫХ СКВАЖИНАХ Методы воздействия на призабойную зону для увеличения нефтеотдачи пластов МЕТОДЫ И СРЕДСТВА ИЗМЕРЕНИЯ УРОВНЯ ЖИДКОСТЕЙ Методы изучения разрезов скважин. МЕТОДЫ КОСВЕННЫХ ИЗМЕРЕНИЙ ДАВЛЕНИЯ МЕТОДЫ УДАЛЕНИЯ СОЛЕЙ МЕХАНИЗМЫ ПЕРЕДВИЖЕНИЯ И ВЫРАВНИВАНИЯ БУРОВЫХ УСТАНОВОК МЕХАНИЗМЫ ПЕРЕМЕЩЕНИЯ И ВЫРАВНИВАНИЯ МЕХАНИЗМЫ ПРИ СПУСКО-ПОДЪЕМНЫХ ОПЕРАЦИЙ ПРИ БУРЕНИИ НАГРУЗКИ, ДЕЙСТВУЮЩИЕ НА УСТАНОВКУ Наземное оборудование Насосная эксплуатация скважин НАСОСНО-КОМПРЕССОРНЫЕ ТРУБЫ неоднородный пласт Нефть и нефтепродукты Новости портала НОВЫЕ ТЕХНОЛОГИЧЕСКИЕ И ТЕХНИЧЕСКИЕ ОБЕСПЕЧЕНИЕ ЭКОЛОГИЧЕСКОЙ БЕЗОПАСНОСТИ ПРОЦЕССОВ ДОБЫЧИ ОБОРУДОВАНИЕ ГАЗЛИФТНЫХ СКВАЖИН ОБОРУДОВАНИЕ ДЛЯ МЕХАНИЗАЦИИ СПУСКО-ПОДЪЕМНЫХ ОПЕРАЦИЙ Оборудование для нефти и газа ОБОРУДОВАНИЕ ДЛЯ ОДНОВРЕМЕННОЙ РАЗДЕЛЬНОЙ ЭКСПЛУАТАЦ ОБОРУДОВАНИЕ ДЛЯ ПРЕДУСМОТРЕНИЯ ОТКРЫТЫХ ФОНТАНОВ ОБОРУДОВАНИЕ ОБЩЕГО НАЗНАЧЕНИЯ Оборудование ствола скважины, законченной бурением ОБОРУДОВАНИЕ УСТЬЯ КОМПРЕССОРНЫХ СКВАЖИН ОБОРУДОВАНИЕ УСТЬЯ СКВАЖИНЫ Оборудование устья скважины для эксплуатации УЭЦН ОБОРУДОВАНИЕ ФОНТАННЫХ СКВАЖИН ОБОРУДОВАНИЕ ФОНТАННЫХ СКВАЖИН обработка призабойной зоны ОБРАЗОВАНИЕ ГИДРАТОВ И МЕТОДЫ БОРЬБЫ С НИМИ ОБРАЗОВАНИЕ КРИСТАЛЛОГИДРАТОВ В НЕФТЯНЫХ СКВАЖИНАХ ОБЩИЕ ПОНЯТИЯ О ПОДЗЕМНОМ И КАПИТАЛЬНОМ РЕМОНТЕ ОБЩИЕ ПОНЯТИЯ О СТРОИТЕЛЬСТВЕ СКВАЖИН ОГРАНИЧЕНИЕ ПРИТОКА ПЛАСТОВЫХ ВОД Опасные и вредные физические факторы ОПРЕДЕЛЕНИЕ ДАВЛЕНИЯ НА ВЫХОДЕ НАСОСА ОПРОБОВАНИЕ ПЕРСПЕКТИВНЫХ ГОРИЗОНТОВ ОПТИМИЗАЦИЯ РЕЖИМА РАБОТЫ ШСНУ ОПЫТ ЭКСПЛУАТАЦИИ ДНУ С ГИБКИМ ТЯГОВЫМ ЭЛЕМЕНТОМ ОСВОЕНИЕ И ИСПЫТАНИЕ СКВАЖИН ОСВОЕНИЕ И ПУСК В РАБОТУ ФОНТАННЫХ СКВАЖИН ОСЛОЖНЕНИЯ В ПРОЦЕССЕ УГЛУБЛЕНИЯ СКВАЖИНЫ ОСНОВНЫЕ ПОНЯТИЯ И ПОЛОЖЕНИЯ ОСНОВНЫЕ ПОНЯТИЯ И ПОЛОЖЕНИЯ ОСНОВНЫЕ СВЕДЕНИЯ О НЕФТЯНЫХ, ГАЗОВЫХ И ГАЗОКОНДЕНСАТНЫ ОСНОВЫ ГИДРАВЛИЧЕСКИХ РАСЧЕТОВ В БУРЕНИИ ОСНОВЫ НЕФТЕГАЗОДОБЫЧИ ОСНОВЫ ПРОЕКТИРОВАНИЯ НАПРАВЛЕННЫХ СКВАЖИН ОСНОВЫ ПРОМЫШЛЕННОЙ БЕЗОПАСНОСТИ ОЧИСТКА БУРЯЩЕЙСЯ СКВАЖИНЫ ОТ ШЛАМА ОЧИСТКА ПОПУТНЫХ ГАЗОВ пайка и наплавка ПАКЕР ГИДРОМЕХАНИЧЕСКИЙ ДВУХМАНЖЕТНЫЙ ПГМД1 ПАКЕРЫ ГИДРОМЕХАНИЧЕСКИЕ, ГИДРАВЛИЧЕСКИЕ И МЕХАНИЧЕСКИЕ ПАКЕРЫ ДЛЯ ИСПЫТАНИЯ КОЛОНН ПАКЕРЫ РЕЗИНОВО-МЕТАЛЛИЧЕСКОГО ПЕРЕКРЫТИЯ ПРМП-1 ПАКЕРЫ И ЯКОРИ ПАРАМЕТРЫ И КОМПЛЕКТНОСТЬ ЦИРКУЛЯЦИОННЫХ СИСТЕМ Параметры талевых блоков для работы с АСП ПЕРВИЧНОЕ ВСКРЫТИЕ ПРОДУКТИВНЫХ ПЛАСТОВ ПЕРВИЧНЫЕ СПОСОБЫ ЦЕМЕНТИРОВАНИЯ ПЕРЕДВИЖНЫЕ НАСОСНЫЕ УСТАНОВКИ И АГРЕГАТЫ ПЕРЕРАБОТКА ЛОВУШЕЧНЫХ НЕФТЕЙ (НЕФТЕШЛАМОВ) ПЕРИОДИЧЕСКИЙ ГАЗЛИФТ ПЕРСПЕКТИВЫ ИСПОЛЬЗОВАНИЯ ДНУ ПОВЫШЕНИЕ ЭФФЕКТИВНОСТИ ПОВЫШЕНИЕ ЭФФЕКТИВНОСТИ РАБОТЫ ШСНУ Погружение насосов под динамический уровень Подземное оборудование фонтанных скважин ПОДЪЕМ ВЯЗКОЙ ЖИДКОСТИ ПО ЗАТРУБНОМУ ПРОСТРАНСТВУ СКВАЖИНЫ ПОРОДОРАЗРУШАЮЩИЕ ИНСТРУМЕНТЫ ПОРШНЕВЫЕ МАНОМЕТРЫ Потери давления при движении жидкости по нкт Правила безопасности при эксплуатации скважин Правила ведения ремонтных работ в скважинах РД 153-39-023-97 ПРЕДУПРЕЖДЕНИЕ ОБРАЗОВАНИЯ СОЛЕЙ ПРЕДУПРЕЖДЕНИЯ ОБРАЗОВАНИЯ АСПО ПРЕДУПРЕЖДЕНИЯ ОБРАЗОВАНИЯ АСПО при работе ШГН ПРЕИМУЩЕСТВА ДЛИННОХОДОВЫХ Приготовление растворов кислот. ПРИГОТОВЛЕНИЕ, ОЧИСТКА БУРОВЫХ РАСТВОРОВ ПРИМЕНЕНИЕ СТРУЙНЫХ КОМПРЕССОРОВ ДЛЯ УТИЛИЗАЦИИ ПРИМЕНЕНИЕ УЭЦН В СКВАЖИНАХ ОАО «ОРЕНБУРГНЕФТЬ» ПРИНЦИП ДЕЙСТВИЯ И ОСОБЕННОСТИ КОНСТРУКЦИИ ДНУ С ЛМП ПРИЧИНЫ И АНАЛИЗ АВАРИЙ ПРОГНОЗИРОВАНИЕ ОТЛОЖЕНИЯ НОС ПРИ ДОБЫЧЕ НЕФТИ ПРОЕКТИРОВАНИЕ ТРАЕКТОРИИ НАПРАВЛЕННЫХ СКВАЖИН ПРОЕКТИРОВАНИЕ, ОБУСТРОЙСТВО И АНАЛИЗ РАЗРАБОТКИ УГЛЕВОДОРОДНЫХ МЕСТОРОЖДЕНИЙ Производительность насоса ПРОМЫВКА СКВАЖИН И БУРОВЫЕ РАСТВОРЫ ПРОМЫСЛОВЫЕ ИССЛЕДОВАНИЯ ПРОМЫСЛОВЫЕ МЕТОДЫ ОПРЕДЕЛЕНИЯ ЗОН ОБРАЗОВАНИЯ НОС ПРОМЫСЛОВЫЙ СБОР И ПОДГОТОВКА НЕФТИ, ГАЗА И ВОДЫ ПРОТИВОВЫБРОСОВОЕ ОБОРУДОВАНИЕ ПУТИ ПОВЫШЕНИЯ ЭФФЕКТИВНОСТИ ЭКСПЛУАТАЦИИ СКВАЖИН РАЗМЕЩЕНИЕ ЭКСПЛУАТАЦИОННЫХ И НАГНЕТАТЕЛЬНЫХ СКВАЖИН НА Разное РАЗРУШЕНИЕ ГОРНЫХ ПОРОД РАСПРЕДЕЛЕНИЕ ОБРЫВОВ ПО ДЛИНЕ КОЛОННЫ ШТАНГ РАСЧЕТ ДНУ РАСЧЕТ ПРОИЗВОДИТЕЛЬНОСТИ ДНУ Регулирование свойств цементного раствора и камня с помощью реагентов Режимы добывающих и нагнетательных скважин. РЕЗЕРВЫ СНИЖЕНИЯ ЭНЕРГОПОТРЕБЛЕНИЯ ПРИ ЭКСПЛУАТАЦИ РЕМОНТЫ ПО ЭКОЛОГИЧЕСКОМУ ОЗДОРОВЛЕНИЮ ФОНДА СКВАЖИН РОЛЬ ФОНТАННЫХ ТРУБ САМОХОДНЫЕ УСТАНОВКИ С ПОДВИЖНЫМ… СЕТКА РАЗМЕЩЕНИЯ СКВАЖИН СИСТЕМЫ УЛАВЛИВАНИЯ ЛЕГКИХ УГЛЕВОДОРОДОВ Скважинные уплотнители (пакеры) Скважинные центробежные насосы для добычи нефти СОСТАВ И НЕКОТОРЫЕ СВОЙСТВА ВОД НЕФТЯНЫХ И ГАЗОВЫХ МЕСТ СПЕЦИАЛЬНЫЙ НЕВСТАВНОЙ ШТАНГОВЫЙ НАСОС СПОСОБЫ ДОБЫЧИ НЕФТИ, ПРИМЕНЯЕМЫЕ НА МЕСТОРОЖДЕНИЯХ ОАО СПОСОБЫ ОЦЕНКИ СОСТОЯНИЯ ПЗП СРАВНИТЕЛЬНЫЕ ИСПЫТАНИЯ НАСОСНЫХ УСТАНОВОК СРЕДСТВА И МЕТОДЫ ПОВЕРКИ СЧЕТЧИКОВ КОЛИЧЕСТВА ГАЗОВ СРЕДСТВА И МЕТОДЫ ПОВЕРКИ СЧЕТЧИКОВ КОЛИЧЕСТВА ЖИДКОСТЕЙ СТАДИИ РАЗРАБОТКИ МЕСТОРОЖДЕНИЙ Станки-качалки Струйные насосы струйный насос СЧЕТЧИКИ КОЛИЧЕСТВА ГАЗОВ СЧЕТЧИКИ КОЛИЧЕСТВА ЖИДКОСТЕЙ ТАЛЕВЫЕ МЕХАНИЗМЫ ТЕМПЕРАТУРА И ДАВЛЕНИЕ В ГОРНЫХ ПОРОДАХ И СКВАЖИНАХ Теоретические основы безопасности ТЕХНИКА ИЗМЕРЕНИЯ РАСХОДА Техническая физика ТРАЕКТОРИЮ ПЕРЕМЕЩЕНИЯ ЗАБОЯ СКВАЖИНЫ Трубы УКАЗАНИЯ ПО РАСЧЕТУ ТОКОВ КОРОТКОГО ЗАМЫКАНИЯ УСЛОВИЯ ПРИТОКА ЖИДКОСТИ И ГАЗА В СКВАЖИНЫ Установки гидропоршневых насосов для добычи нефти Установки погружных винтовых электронасосов Установки погружных диафрагменных электронасосов Устьевое оборудование УТЯЖЕЛЕННЫЕ БУРИЛЬНЫЕ ТРУБЫ УЭЦН уэцн полностью ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИНТЕНСИВНОСТЬ ОБРАЗОВАНИЯ АСПО Физико-механические свойства пород-коллекторов ФИЗИЧЕСКАЯ ХАРАКТЕРИСТИКА ГАЗОВ НЕФТЯНЫХ И ГАЗОВЫХ МЕСТ ФИЛЬТРЫ Фонтанный способ добычи нефти ЦЕМЕНТИРОВАНИЕ СКВАЖИН ЦИРКУЛЯЦИОННЫЕ СИСТЕМЫ БУРОВЫХ УСТАНОВОК Шлакопесчаные цементы Шлакопесчаные цементы совместного помола Штанги насосные (ШН) ШТАНГОВЫЕ НАСОСНЫЕ УСТАНОВКИ (ШСНУ) ШТАНГОВЫЕ НАСОСЫ ДЛЯ ПОДЪЕМА ВЯЗКОЙ НЕФТИ ШТАНГОВЫЕ СКВАЖИННЫЕ НАСОСЫ Штанговые скважинные насосы ШСН ЭКСПЛУАТАЦИЯ ГАЗОВЫХ СКВАЖИН эксплуатация малодебитных скважин ЭКСПЛУАТАЦИЯ МАЛОДЕБИТНЫХ СКВАЖИН НА НЕПРЕРЫВНОМ РЕЖИМЕ ЭКСПЛУАТАЦИЯ ОБВОДНЕННЫХ ПАРАФИНСОДЕРЖАЩИХ СКВАЖИН ЭКСПЛУАТАЦИЯ СКВАЖИН ЭКСПЛУАТАЦИЯ СКВАЖИН УЭЦН ЭЛЕКТРОДЕГИДРАТОР. ЭЛЕКТРОДИАФРАГМЕННЫЙ НАСОС энергосбережение скважинного электронасосного агрегата ЯКОРИ
Поделитесь с друзьями или сохраните для себя:

Загрузка...