Химическое инициирование радикальной полимеризации. Радикальная полимеризация

Лекция 4. Радикальная полимеризация.

Радикальная полимеризация протекает по цепному механизму .

В результате каждого элементарного акта происходит образование нового радикала, к которому присоединяется новая нейтральная молекула, т.е. кинетическая цепь превращается в материальную .

Основные стадии радикальной полимеризации:

инициирование

рост цепи

обрыв цепи

передача цепи

1 . Инициирование заключается в образовании свободных радикалов под действием:

– тепла (термическое инициирование);

– света (фотоинициирование);

– ионизирующих излучений (радиационное инициирование);

– химических инициаторов (химическое инициирование)

Первые три способа малоэффективны, т.к. сопровождаются различными побочными реакциями (разветвление, деструкция и т.д.). Чаще всего используют химическое инициирование, при котором образование свободных радикалов происходит вследствие термического и фотохимического распада различных соединений, содержащих нестабильные (лабильные) связи, а также в результате ОВР. Наиболее распространёнными инициаторами являются: пероксиды, гидропероксиды, изо- и диазосоединения, перэфиры, ацилпероксиды.


Пример .

а) пероксид бензоила

t распада = 70 - 80˚С

Эффективность инициирования f = 0,7 - 0,9

б) азобисизобутиронитрил

t распада = 60 - 75˚С

Эффективность инициирования f = 0,5 - 0,7

в) персульфат калия

t распад = 40 - 50˚С

Выбор инициатора обусловлен его растворимостью в мономере или растворителе и температурой, при которых может быть достигнута определённая скорость получения свободных радикалов.

Радикал, образующийся при инициировании, присоединяется к двойной (=) связи мономера и начинает реакционную цепь.

Поскольку стабильность радикалов, образующихся при распаде пероксидов, азосоединений и других инициаторов разная, скорость их реакции с молекулами мономера, а следовательно, и скорость полимеризации различны. Для облегчения распада инициаторов и снижения энергии активации стадии инициирования в реакцию вводят восстановители (амины, соли металлов переменной степени окисления).

С целью понижения (от 146 до 42 - 84 кДж/моль), облегчения распада инициаторов используют окислительно-восстановительные системы .

Например:

https://pandia.ru/text/80/211/images/image008_31.gif" width="231" height="104 src=">

Окислительно-восстановительные системы применяют в водных средах или при полимеризации в эмульсии . Широкое распространение их в промышленности производства полимеров связано с существенным снижением энергии активации распада инициаторов на свободные радикалы и уменьшением таким образом энергетических затрат в производственных условиях.

2. Рост цепи – заключается в последовательном присоединении молекул мономера к образующемуся активному центру с передачей его на конец цепи.

Развитие кинетической цепи сопровождением образованием материальной цепи.

(маленькая)

Константа скорости реакции kp = 102 – 104 (большая)

Энергия активации и константа скорости реакции зависят от природы мономеров, параметров реакционной среды.

3. Обрыв цепи – происходит в результате гибели активных центров.

Обрыв цепи приводит к обрыву материальной и кинетической цепи.

Энергия активации обрыва цепи определяется энергией активации диффузии радикалов.

Обрыв может быть при любой длине растущего макрорадикала. При этом получаются макромолекулы разной длины.

Обрыв чаще всего происходит двумя способами: путем рекомбинации и диспропорционирования .

Еакт ≤ 4,2 кДж/моль

Eакт = 12,6-16,8 кДж/моль

Возможен также обрыв при взаимодействии растущих радикалов с низкомолекулярными веществами, присутствующими в системе.

Понизив температуру ↓

Понизить скорость обрыва цепи можно

повысив вязкость

4. Передача цепи – происходит путём отрыва растущим радикалом атома или группы атомов от какой-то молекулы (передатчика цепи). При этом:

– растущий радикал превращается в валентно - ненасыщенную молекулу;

– новый радикал развивает кинетическую цепь

Таким образом, реакция передачи цепи заключается в том, что вводимое в систему вещество – регулятор- обрывает растущую цепь, но при этом само становится свободным радикалом и начинает новую кинетическую цепь полимеризации.


Повышение температуры и увеличение количества агента передачи цепи (например, галогенсодержащих углеводородов) приводят к резкому возрастанию скорости реакции передачи цепи. Эта реакция подавляет другие стадии полимеризации, так, что образуются индивидуальные низкомолекулярные вещества, которые можно разделить(реакция теломеризации). Они содержат концевые группы из продуктов расщепления агента передачи цепи и являются активными в различных химических реакциях, в частности для получения новых полимеров.

Теломеры: олигомеры, имеющие на концах молекул реакционноспособные группы.

и т. д.

Так, теломеризация этилена в среде тетрахлорида углерода протекает с образованием индивидуальных продуктов (тетрахлорпентан, тетрахлоргептан и др.)

Пример . Передача цепи через:

а) молекулу мономера

б) молекулу растворителя

начало новой цепи

в) специально вводимые вещества (регуляторы), например, меркаптаны.

km , ks – константы скорости передачи цепи.

При взаимодействии растущего радикала с молекулой передатчика цепи прекращается рост материальной цепи, т.е. снижается молекулярная масса образующегося полимера; кинетическая цепь сохраняется.

Способность к участию в передаче цепи при радикальной полимеризации характеризуется константой передачи цепи на мономер Cm , на растворитель Cs, на инициатор Cu.

Cm = (0,1 - 5)*10-4 – маленькое значение

Например, при полимеризации винилацетата Cm = 2∙10-3

Из растворителей высокое значение Cs у . Так при полимеризации стирола Cs = 9∙10-3

Кинетика радикальной полимеризации

Скорость процесса описывается уравнением: https://pandia.ru/text/80/211/images/image026_11.gif" width="44" height="41"> - скорость исчезновения мономера

И - скорость инициирования и роста цепи

При образовании высокомолекулярного полимера число молекул мономера, участвующих в стадии инициирования намного меньше, чем в стадии роста, поэтому можно пренебречь.

Замерить трудно. Для стационарного процесса скорость возникновения радикала равна скорости их гибели, а скорость изменения концентрации радикалов ()

Для стационарного процесса уравнение скорости полимеризации примет вид:

концентрация инициатора (известна и задается до начала реакции)

Из уравнения следует, что скорость полимеризации зависит от скорости инициирования в степени 0,5, т.е..gif" width="49" height="25"> в раз. Это объясняется бимолекулярным механизмом отрыва цепи.

При термическом инициировании скорость полимеризации V зависит от соотношения трёх констант скорости реакции

Типичная кинетическая кривая, описывающая конверсию мономера (т.е. превращение мономера в полимер в результате полимеризации) в зависимости от времени, имеет S-образный вид.

Рис.1 Типичная кинетическая кривая цепной радикальной полимеризации:

1 – ингибирование; 2 – ускорение полимеризации (скорость растет со временем); 3 – стационарный период (скорость полимеризации постоянная); 4 – замедление полимеризации (скорость уменьшается со временем)

Как видно из рис. 1 на кривой можно выделить пять участков по значениям скоростей основной реакции превращения мономера в полимер в результате полимеризации: 1 – участок ингибирования , где концентрация свободных радикалов мала. И они не могут начать цепной процесс полимеризации; 2 – участок ускорения полимеризации , где начинается основная реакция превращения мономера в полимер, причем скорость растет; 3 – участок стационарного состояния, где происходит полимеризация основного количества мономера при постоянной скорости (прямолинейная зависимость конверсии от времени); 4 – участок замедления реакции , где скорость реакции уменьшается в связи с убылью содержания свободного мономера; 5 – прекращение основной реакции после исчерпания всего количества мономера.

Наибольший интерес представляет стационарный период реакции полимеризации, когда при постоянной скорости происходит полимеризация основной массы мономера. Это возможно, когда количество вновь образующихся свободных радикалов (стадия инициирования) равно количеству исчезающих макрорадикалов (стадия обрыва) реакционной и материальной цепей.

Степень полимеризации n (т.е. число звеньев мономерных единиц в одной среднестатистической макромолекуле) по определению пропорциональна скорости реакции роста цепи и обратно пропорциональна скорости реакции обрыва цепи, так как нейтральная макромолекула образуется в результате столкновения двух растущих макрорадикалов.

n = υp /υобр = kp[M] / kобр2 = kp[M] / kобр = kn / = knI / [I]0,5

Иными словами, степень полимеризации и, следовательно, средняя молекулярная масса полимера при свободнорадикальной полимеризации обратно пропорциональна квадратному корню из концентрации инициатора.

Влияние различных факторов на процесс радикальной полимеризации.

1. Влияние температуры

С повышением температуры увеличивается скорость реакции образования активных центров и реакции роста цепи. Таким образом, повышается суммарная скорость образования полимера. Обычно скорость полимеризации возрастает в 2-3 раза при повышении температуры на 10 ˚С. Однако при общем увеличении концентрации радикалов увеличивается и вероятность их столкновения друг с другом (обрыв цепи путем диспропорционирования или рекомбинации) или с низкомолекулярными примесями. В результате молекулярная масса полимера в целом уменьшается (средняя степень полимеризации уменьшается с ростом температуры), увеличивается доля низкомолекулярных фракций в полимере. Возрастает число побочных реаций, приводящих к образованию разветвленных молекул. Увеличивается нерегулярность при построении цепи полимера вследствие возрастания доли типов соединения мономера «голова к голове» и «хвост к хвосту».

2. Влияние концентрации инициатора.

С повышением концентрации инициатора число свободных радикалов увеличивается, возрастает число активных центров, увеличивается суммарная скорость полимеризации.

Однако при общем увеличении концентрации радикалов увеличивается и вероятность их столкновения друг с другом, т.е. обрыва цепи, что приводит к снижению молекулярной массы полимера.

3. Влияние концентрации мономера.

При полимеризации в среде растворителя суммарная скорость полимеризации и молекулярная масса образующегося полимера увеличивается с повышением концентрации мономера.

При полимеризации в инертном растворителе, не участвующем в реакции, скорость полимеризации равна (часто x = 1,5).

Большинство растворителей участвуют в полимеризации (в реакции передачи цепи). Поэтому получаются гораздо более сложные зависимости.

4. Влияние давления.

Давление высокое и сверхвысокое 300-500 МПа (3000-5000 ат) и выше значительно ускоряет полимеризацию.

Пример. Полимеризация метилметакрилата в присутствии https://pandia.ru/text/80/211/images/image041_1.jpg" align="left" width="217" height="161">Рис.2 Термическая полимеризация стирола при 100 ˚С в присутствии ингибиторов и замедлителей:

1 – без добавок; 2- 0,1% бензохинона (ингибитор); 3 – 0,2% нитробензола (ингибитор); 4 – 0,5% нитробензола (замедлитель)

Для регулирования процесса полимеризации применяют ингибиторы и замедлители полимеризации. Ингибиторы – низкомолекулярные вещества, которые меняют длительность индукционного периода, замедляя его. Это часто необходимо делать в технологии производства полимеров для предотвращения преждевременной полимеризации в неконтролируемых условиях.

Ингибиторы: хиноны, ароматические амины, нитросоединения, фенолы, органические соли , , , и т.д.

Пример : гидрохинон

Хинон взаимодействует со свободными радикалами, превращая их в неактивные продукты. Гибель радикалов увеличивает длину индукционного периода.

Наряду с ингибиторами, позволяющими полностью остановить полимеризацию, существуют замедлители полимеризации , которые только уменьшают её скорость. Замедлитель выполняет двойную роль: снижает концентрацию радикалов и уменьшает время их жизни, что приводит к снижению длины полимерной цепи.

Ингибитор не влияет на скорость полимеризации, но предотвращает начало инициирования цепи, увеличивая индукционный период на кинетической кривой полимеризации. Длительность индукционного периода обычно пропорциональна количеству введенного ингибитора. Одно и то же вещество может выступать и как ингибитор, и как замедлитель, и как регулятор полимеризации в зависимости от природы полимеризуемого мономера. Например, кислород, который замедляет полимеризацию винилацетата и ускоряет полимеризацию стирола. При больших давлениях и высоких температурах кислород способствует полимеризации этилена. Это явление используют при промышленном производстве полиэтилена высокого давления. Кислород образует пероксиды или гидропероксиды при взаимодействии с мономерами или растущими цепями.

гидропероксид

пероксид

В зависимости от стабильности промежуточных пероксидов или гидропероксидов они могут либо увеличивать концентрацию радикалов и ускорять полимеризацию, либо дезактивировать имеющиеся радикалы и замедлять или даже ингибировать полимеризацию. Рис.1.3 с.28 кулезнев

Пример: ароматические нитро- и нитрозосоединения.

Регуляторы полимеризации вызывают преждевременный обрыв материальной цепи , снижая молекулярную массу полимера пропорционально введенному количеству регулятора. Примером их являются меркаптаны, в том числе додецилмеркаптан. Из-за большой длины углеводородной цепи его молекулы недостаточно активны и расходуются медленно.

Примеси в мономере и растворителе : степень их влияния на процесс полимеризации определяется их химической природой и реакционной способностью по отношению к активным частицам.

Для исключения влияния этих факторов берут для синтеза мономеры и растворители «кинетической чистоты», иногда вместо https://pandia.ru/text/80/211/images/image050_4.gif" width="23" height="17">, .

Способы проведения полимеризации

Радикальную полимеризацию проводят в блоке (массе), растворе, эмульсии, суспензии и газовой фазе. При этом процесс может протекать в гомогенных или гетерогенных условиях. Кроме того, фазовое состояние исходной реакционной смеси может также меняться в ходе полимеризации.

1. Полимеризация в блоке (в массе )

Полимеризацию проводят без растворителя. Из-за высокой экзотермичности процесс полимеризации трудно поддаётся регулированию. В ходе реакции повышается вязкость и затрудняется отвод тепла, вследствие чего возникают местные перегревы, приводящие к деструкции полимера, неоднородности его по молекулярной массе. Достоинством полимеризации в массе является возможность получения полимера в форме сосуда, в котором проводится процесс без какой-либо дополнительной обработки.

2. Полимеризация в растворе

В отличие от полимеризации в блоке в данном случае отсутствуют местные перегревы, так как тепло реакции снимается растворителем, выполняющим также роль разбавителя. Уменьшается вязкость реакционной системы, что облегчает её перемешивание.

Однако возрастает роль (доля) реакций передачи цепи, что приводит к понижению молекулярной массы полимера. Кроме того, полимер может быть загрязнён остатками растворителя, который не всегда удаётся удалить из полимера.

Существует два способа проведения полимеризации в растворе.

а) Применяют растворитель, в котором растворяется и мономер, и полимер. Получаемый полимер используют непосредственно в растворе или выделяют его осаждением или испарением растворителя.

б) В растворителе, используемом для полимеризации, растворяется мономер, но не растворяется полимер. Полимер по мере образования выпадает в твердом виде и может быть отделен фильтрованием.

3. Полимеризация в суспензии (бисерная или гранульная)

Широко используется для синтеза полимеров. При этом мономер диспергируют в Дисперсия" href="/text/category/dispersiya/" rel="bookmark">дисперсии достигается механическим перемешиванием и введением в реакционную систему специальных добавок – стабилизаторов. Процесс полимеризации осуществляют в каплях мономера, которые можно рассматривать как микрореакторы блочной полимеризации. Применяют инициаторы, растворимые в мономере.

Достоинством этого процесса является хороший отвод тепла, недостатком - возможность загрязнения полимера остатками стабилизатора

4. Полимеризация в эмульсии (эмульсионная полимеризация)

При эмульсионной полимеризации дисперсионной средой является вода. В качестве эмульгаторов используют различные мыла. Для инициирования чаще всего применяют водорастворимые инициаторы, окислительно - восстановительные системы.

Полимеризация может протекать в молекулярном растворе мономера в , на поверхности раздела капля мономера - , на поверхности или внутри мицелл мыла, на поверхности или внутри образующихся полимерных частиц, набухших в полимере.

Достоинствами процесса являются: высокая скорость, образование полимера большой молекулярной массы, лёгкость отвода тепла. Однако в результате эмульсионной полимеризации образуется большое количество сточных вод, требующих специальной очистки. Также необходимо удаление остатков эмульгатора из полимера.

5. Газофазная полимеризация

При газофазной полимеризации мономер (например, этилен) находится в газообразном состоянии. В качестве инициаторов могут использоваться и пероксиды. Процесс протекает при высоком p .

Выводы:

Свободнорадикальная полимеризация – один из видов цепных процессов синтеза полимеров. Поляризация исходных молекул мономера облегчает их реакции с радикалами инициатора при химическом инициировании или при физических методах генерации радикалов. Электроноакцепторные заместители способствуют большей стабильности радикалов мономера и растущих цепей. Процесс радикальной полимеризации можно регулировать различными приемами как по скорости конверсии мономера, так и по величине молекулярной массы полимера. Для этого используют добавки низкомолекулярных веществ, выполняющих функции ингибиторов или замедлителей реакции, а также осуществляющих передачу реакционной цепи или снижающих энергию активации распада инициаторов на радикалы. Знание закономерностей свободнорадикальной полимеризации позволяет управлять структурой полимера, а следовательно, и его физическими и механическими свойствами. Благодаря простоте этот способ получения полимеров нашел широкое применение в промышленности.

Радикальная полимеризация всегда протекает по цепному механизму. Функции активных промежуточных продуктов при радикальной полимеризации выполняют свободные радикалы. К числу распространенных мономеров, вступающих в радикальную полимеризацию, относятся винильные мономеры: этилен, винилхлорид, винилацетат, винилиденхлорид, тетрафторэтилен, акрилонитрил, метакрилонитрил, метилакрилат, метилметакрилат, стирол и диеновые мономеры (бутадиен, изопрен, хлоропренидр.).

Радикальной полимеризации свойственны все признаки цепных реакций, известных в химии низкомолекулярных соединений (например, взаимодействие на свету хлора и водорода). Такими признаками являются: резкое влияние незначительного количества примесей на скорость процесса, наличие индукционного периода и проте­кание процесса через последовательность трех зависящих друг от друга стадий - образование активного центра (свободного радикала), рост цепи и обрыв цепи. Принципиальное отличие полимеризации от простых цепных реакций заключается в том, что на стадии роста кинетическая цепь воплощается в материальную цепь растущего макрорадикала, и эта цепь растет до образования макромолекулы полимера.

Инициирование радикальной полимеризации сводится к созданию в реакционной среде свободных радикалов, способных начать реакционные цепи. Стадия инициирования включает две реакции: возникновение первичных свободных радикалов инициатора R* (1а) и взаимодействие свободного радикала с молекулой мономера (16) с образованием радикала М*:

Реакция (1б) протекает во много раз быстрее, чем реакция (1а). Поэтому скорость инициирования полимеризации определяет реакция (1а), в результате которой генерируются свободные радикалы R*. Свободные радикалы, представляющие собой частицы с неспаренным электроном, могут образовываться из молекул под влиянием физического воздействия - теплоты, света, проникающей радиации, когда в них накапливается энергия, достаточная для разрыва π-связи. В зависимости от вида физического воздействия на мономер при инициировании (образование первичного радикала М*) радикальную полимеризацию подразделяют на термическую, радиационную и фотополимеризацию. Кроме того, инициирование может осуществляться за счет распада на радикалы специально вводимых в систему веществ - инициаторов. Этот способ называется вещественным инициированием.

Термическое инициирование заключается в самоинициировании при высоких тем­пературах полимеризации чистых мономеров без введения в реакционную среду специальных инициаторов. В этом случае образование радикала происходит, как правило, вследствие разложения небольших количеств пероксидных примесей, которые могут возникать при взаимодействии мономера с кислородом воздуха. На практике таким путем получают так называемый блочный полистирол. Однако широкого распространения метод термического инициирования полимеризации не нашел, поскольку он требует больших затрат тепловой энергии, а скорость полимеризации в большинстве случаев невелика. Ее можно увеличить, повышая температуру, но при этом снижается молекулярная масса образующегося полимера.



Фотоинициирование полимеризации происходит при освещении мономера светом ртутной лампы, при котором молекула мономера поглощает квант света и переходит в возбужденное энергетическое состояние. Соударяясь с другой молекулой мо­номера, она дезактивируется, передавая последней часть своей энергии, при этом обе молекулы превращаются в свободные радикалы. Скорость фотополимеризации рас­тет с увеличением интенсивности облучения и, в отличие от термической полимери­зации, не зависит от температуры.

Радиационное инициирование полимеризации в принципе аналогично фотохимическому. Радиационное инициирование состоит в воздействии на мономеры излучений высокой энергии (γ-лучи, быстрые электроны, α- частицы, нейтроны и др.). Преимуществом фото- и радиационно-химического способов инициирования является возможность мгновенного «включения и выключения» излучения, а также проведение полимеризации при низких температурах.

Однако все эти способы технологически сложны и могут сопровождаться протеканием в получаемых полимерах побочных нежелательных реакций, например деструкции. Поэтому на практике чаще всего используют химическое (вещественное) инициирование полимеризации.

Химическое инициирование осуществляется введением в среду мономера низко­молекулярных нестойких веществ, имеющих в своем составе связи с низкой энергией - инициаторов, легко распадающихся на свободные радикалы под влиянием теплоты или света. Наиболее распространенными инициаторами радикальной полимеризации являются пероксиды и гидропероксиды (пероксид водорода, перок- сид бензоила, гидропероксиды mpem -бутила и изопропилбензола и др.), азо- и диазосоединения (динитрил азобисизомасляной кислоты, диазоаминобензол и др.), персульфаты калия и аммония. Ниже представлены реакции распада некоторых инициаторов.

Пероксид трет-бутила (алкилпероксид):

Активность и возможность применения инициаторов радикальной полимеризации определяется скоростью их разложения, которая зависит от температуры. Выбор конкретного инициатора обусловливается той температурой, которая необходима для проведения синтеза полимера. Так, динитрил азобисизомасляной кислоты применяют при 50-70 °С, пероксид бензоила - при 80-95°С, а пероксид трет-бутила - при 120-140°С.

Эффективными инициаторами, позволяющими проводить процесс радикальной полимеризации при комнатной и пониженной температурах, являются окислительно-восстановительные системы. В качестве окислителей используют обычно пероксиды, гидропероксиды, персульфаты и др. Восстановителями являются соли металлов переменной валентности (Fe, Со, Сu) в низшей степени окисления, сульфиты, амины и др.

Реакция окисления-восстановления проходит в среде, содержащей мономер, с образованием инициирующих полимеризацию свободных радикалов. Можно подобрать пары окислитель-восстановитель, растворимые в воде (например, пероксид водорода-сульфат железа (II)) или в органических растворителях (например, пероксид бензоила - диметиланилин). В соответствии с этим радикальную полимеризацию можно инициировать как в водных, так и в органических средах. Например, распад пероксида водорода в присутствии солей железа (II) может быть представлен следу­ющими уравнениями:

Радикалы НО* и НОО*, присоединяясь к молекуле мономера, инициируют радикальную полимеризацию.

Рост цепи осуществляется последовательным присоединением молекул мономера к радикалам (2), возникшим при реакции (1б), например:

В цепном процессе радикальной полимеризации рост кинетической цепи происходит практически мгновенно с образованием материальной цепи макрорадикала и заканчивается ее обрывом.

Обрыв цепи представляет собой процесс прекращения роста кинетической и материальной цепей. Он приводит к исчезновению в системе активных радикалов или к замене их малоактивными радикалами, не способными присоединять молекулы мономера. На стадии обрыва образуется макромолекула полимера. Обрыв цепи может происходить по двум механизмам:

1) два растущих макрорадикала, соударяясь, соединяются друг с другом в единую цепь, то есть рекомбинируют (За);

2) макрорадикалы, соударяясь, превращаются в две макромолекулы, причем один из них отдавая протон, превращается в макромолекулу с двойной С=С-связью на конце, а другой, принимая протон, образует макромолекулу с простой концевой С-С-связью; такой механизм называют диспропорционированием (3б):

При обрыве цепей рекомбинацией остатки инициатора находятся на обоих концах макромолекулы; при обрыве цепей диспропорционированием - на одном конце.

По мере роста цепей макрорадикалов увеличивается вязкость системы и уменьшается их подвижность, вследствие чего обрыв цепей затрудняется и общая скорость полимеризации возрастает. Это явление известно как гель-эффект. Гель-эффект обусловливает повышенную полидисперсность полимеров, что обычно приводит к ухудшению их механических свойств. Ограничение материальных цепей при ради­кальной полимеризации может происходить также путем присоединения макрора­дикала к первичному радикалу (обрыв на инициаторе) и в результате реакций передачи цепи.

Передача цепи заключается в отрыве растущим макрорадикалом подвижного атома от молекулы какого-либо вещества - растворителя, мономера, полимера, примесей. Эти вещества называются передатчиками цепи. В результате макрорадикал превращается в валентно-насыщенную макромолекулу и образуется новый радикал, способный к продолжению кинетической цепи. Таким образом, при реакциях передачи материальная цепь обрывается, а кинетическая - нет.

Реакцию передачи цепи на растворитель (например, четыреххлористый углерод) можно представить следующим образом:

Образующиеся при этом из молекул растворителя свободные радикалы могут присоединять молекулы мономера, то есть продолжать кинетическую цепь:

Если их активность отличается от активности первичных радикалов, то изменяется и скорость полимеризации.

При передаче цепи на полимер образуются разветвленные макромолекулы:

Вероятность передачи цепи на полимер возрастает при высокой конверсии мономера, когда концентрация макромолекул в системе велика.

Роль агента передачи цепи в некоторых случаях может играть сам мономер, если его молекулы содержат подвижный атом водорода. В таком случае растущий радикал не присоединяет к себе новую молекулу мономера по двойной связи, а отрывает у нее подвижный атом водорода, насыщая свою свободную валентность и одновременно превращая молекулу мономера в мономерный радикал. Это имеет место при полимеризации винилацетата:

Реакции передачи цепи па растворитель лежат в основе получения теломеров. Если полимеризацию какого-либо мономера проводить при высоких концентрациях растворителя, молекулы которого содержат подвижные атомы водорода или галогена, то продуктом реакции будут вещества с невысокой молекулярной массой, состоящие из нескольких мономерных звеньев, содержащих по концам фрагменты молекул растворителя. Эти вещества называют теломерами, а реакцию их получения - теломеризацией.

Реакции передачи цепи могут быть использованы для регулирования молекулярной массы полимеров и даже для предотвращения их образования. Этим широко пользуются на практике, часто применяя при полимеризации передатчики-регуляторы цепи, а при хранении мономеров - ингибиторы.

Регуляторы цепи - это вещества, которые обрывая растущие цепи полимера, практически не влияют при этом на общую скорость процесса. Типичными регуляторами цепи являются меркаптаны, содержащие подвижный атом водорода в меркаптогруппе. Передачу цепи на них можно представить следующим образом:

Полимеры, синтезированные в присутствии регуляторов цепи, отличаются оптимальным для переработки значением средней молекулярной массы и ММР.

Ингибиторы - это вещества, которые обрывают растущие цепи полимера, превращаясь при этом в соединения, не способные инициировать полимеризацию. В качестве ингибиторов обычно используют вещества, передача цепи на которые приводит к образованию неактивных (стабильных) радикалов. На практике для ингибирования радикальной полимеризации и хранения мономеров часто применяют гидрохинон, бензохинон, ароматические амины, нитробензол.

Образование свободных радикалов возможно при действии химических и физических факторов, поэтому инициирование радикальной полимеризации подразделяют на физическое и химическое (смотри схему)

В технологии производства полимеров преимущественно распространены химические методы инициирования, когда в реакционную смесь вводят инициаторы (J)- вещества, которые в определенных условиях легко распадаются на радикалы.

В группу инициаторов входят следующие вещества (таблица 10)

Таблица 10 –Типы инициаторов радикальной полимеризации

Тип инициатора Формула (в общем виде) Механизм распада на радикалы
Дигидропероксиды
Алкилгидропероксиды
Диалкилпероксиды
Диацилпероксиды
Дисульфиды
Персульфаты
Азосоединения

Конкретные представители инициаторов, условия и механизм их распада приведены в таблице 11.

Легкий и быстрый распад инициаторов на радикалы происходит по связям кислород – кислород или углерод – азот, так как эти связи обладают наименьшей прочностью (энергией связи).

Наименьшие температуры распада (50÷85 0 С) и соответственно наименьшая энергия активации (Е а и) у таких инициаторов как персульфат аммония, динитрил азобисизомасляной кислоты, пероксид бензоила. Эти инициаторы чаще всего используются в радикальной полимеризации.

Окислительно-восстановительные системы (ОВ-системы) – это комплексные системы, которые включают в себя окислитель и восстановитель (промотор). Роль окислителя чаще всего играют выше приведенные инициаторы J (пероксиды, гидропероксиды и др.). Промотором называют вещество, которое ускоряет распад инициаторов на радикалы . Промоторами в ОВ-системах служат соли металлов переменной валентности в низшей степени окисления , такие как хлорид железа двухвалентного FeCl 2 , хлорид меди одновалентной CuCl, нафтенаты кобальта, нафтенаты никеля () и др. Кроме них роль промоторов играют амины, сульфиты и др. В лакокрасочной промышленности промоторы – ускорители полимеризации называют сиккативы .

Механизм действия окислительно-восстановительных систем различен. Простейшей ОВ-системой является реактив Фентона – смесь из пероксида водорода Н-О-О-Н и хлористого железа FeCl 2 . В этой системе нестабильный катион Fe 2+ легко теряет электрон `е и переходит в высшую степень окисления. Fe 3+ . Выделившийся электрон ускоряет распад пероксида водорода Н-О-----О-Н на ион НО - и радикал НО · .

Распад инициаторов на радикалы в присутствии ОВ-систем идет очень быстро и энергия активации стадии инициирования при использовании ОВ-систем ниже, чем при использовании только одних химических инициаторов (Е а и (ОВ ) < Е а и ( J ) ) . Обычно энергия активации окислительно-восстановительного инициирования Е а и (ОВ ) составляет 42÷84 кДж/моль, а энергия активации инициирования с применением только инициаторов Е а и ( J ) равна 112÷170 кДж/моль.

Инициирование РП, т.е. образование свободных радикалов идет в два этапа , которые схематично можно представить следующим образом:

а) образование радикалов J · в результате распада молекул инициатора J :

б) образованием активных радикалов роста J- М · из молекул мономеров М:

На примере мономера винилхлорида эта реакция выглядит так:



Начальный этап (а) всегда требует затрат энергии активации Е а и, протекает с низкой скоростью и лимитирует весь процесс . Не все радикалы инициатора J · могут вызвать второй этап б) и образовать радикалы роста J- М · .

Часть радикалов инициатора исчезает в результате протекания обратной реакции рекомбинации J · + J · =J 2 .

Константа скорости инициирования k и при РП мала и составляет k и =0,8 ÷ 5,0 ×10 -5 с -1 .

Фотохимическое инициирование используется реже, чем химическое. При фотохимическом инициировании молекулы мономера М поглощают энергию квантов (hn ) излучения с длиной волны 100 нм

Энергия активации фотохимического инициирования Е а и (ф/х ) значительно ниже энергии активации чисто химического инициирования Е а и (Е а и (ф/х ) <<Е а и ( J) ) и близка к 0 (Е а и (ф/х ) » 0 кДж/моль). Вследствие этого фотохимическая радикальная полимеризация может протекать при низких и даже отрицательных температурах.

Однако скорость распада мономеров на радикалы при действии УФ-лучей или видимого излучения (ВИ) невысока. Для ускорения фотохимической полимеризации используют 2 приема:

1. Вводят в мономер вещества – фотоинициаторы

2. Вводят в мономер вещества – фотосенсибилизаторы.

Фотоинициаторы – это вещества, которые под влиянием энергии квантов УФ- или ВИ – излучения легче распадаются на радикалы, чем сами мономеры. Фотоинициаторами служат галогеналкилы (четыреххлористый углерод ССl 4 , 1,2 –трихлорэтанC 2 Cl 6), металлорганические соединения. Механизм действия ССl 4 следующий:

Фотосенсибилизаторы – это вещества, которые поглощают и накапливают энергию квантов УФ- или ВИ – излучения в более широком диапазоне длин волн, чем сам мономер, затем порциями большей величины отдают накопленную энергию мономеру. Молекулы мономера быстро переходят в возбужденное состояние и распадаются на радикалы. Роль фотосенсибилизаторов играют вещества, содержащие в своей структуре сопряженную двойную связь (хромофорные группы ) или ароматические циклы, например, дибензфенон или флуоресцин

дибензфенон флуоресцин

Механизм действия фотосенсибилизаторов (Ф) следующий:

Ф + hn Ф* Ф* + М Ф + М* М* М · + М ·


Таблица 11 - Основные группы инициаторов радикальной полимеризации, механизм и условия их распада

Органорастворимые Условия распада Водорастворимые Условия распада
1. Пероксид бензоила (ПБ) 2. Пероксид дитретбутила 3.Гидропероксид изопропилбензола (кумола) - ГИПЕРИЗ
4. Динитрилазобисизомасляной кислоты -ДИНИЗ 5. Диазоаминобензол
Тр=85 0 С Еа =113 кДж/моль Тр=130 0 С Еа =150 кДж/моль Тр=160 0 С Еа =130 кДж/моль Тр= 60 0 С Еа =112 кДж/моль Тр= 60 0 С Персульфат аммония (К, Nа) Пероксид водорода Окислительно-восстановительные системы Тр= 50-70 0 С Тр= 50 0 С Трмогут быть меньше0 0 С

Термическое инициирование – это вариант образования радикалов роста из молекул мономера, который проявляется при нагревании до температуры Т=100 0 С и выше. Однако этот вид инициирования изучен только для полимеризации метилметакрилата и стирола. Энергия активации термического инициирования Е а и (Т ) = 146 кДж/моль. Термическое инициирование протекает специфично, через стадию образования бирадикала мономера.

МЕТОДЫ СИНТЕЗА ВМС

Синтетические ВМС получают в результате 2-х типов реакций – полимеризации и поликонденсации.

ПОЛИМЕРИЗАЦИЯ – реакция соединения молекул мономера, протекающая за счет разрыва кратных связей и не сопровождающаяся выделением побочных низкомолекулярных веществ (H 2 O, HCl, NH 3 и др.). Полимеризация мономеров протекает по цепному механизму. В реакцию полимеризации вступают ненасыщенные мономеры с двойной связью. Полимеризация, в которую вступают молекулы одного вещества, называется гомополимеризацией :

n H 2 C = CH 2 ¾® [¾CH 2 ¾CH 2 ¾] n nH 2 C=O ¾®[¾CH 2 ¾O¾] n

формальдегид полиформальдегид

Если в реакцию полимеризации вступают различные мономеры, она носит название сополимеризации , например сополимеризация стирола с метилметакрилатом:

Реакция полимеризации не приводит к изменению элементного состава мономера. Как и любая химическая реакция, полимеризация начинается с разрыва одних химических связей и возникновения других. Такой разрыв может происходить по гетеро- или гомолитическому механизму. В первом случае образуются ионы, во втором - свободные радикалы. Таким образом, радикальная и ионная полимеризация различаются природой активного центра, начинающего и ведущего макромолекулярную цепь. Полимеризация, протекающая через образование ионов, называется ионной полимеризацией (катионной или анионной), а идущая с участием свободных радикалов – радикальной.

РАДИКАЛЬНАЯ ПОЛИМЕРИЗАЦИЯ –

процесс образования полимера по свободнорадикальному механизму с последовательным присоединением молекул мономера к растущему макрорадикалу. В этом случае активным центром является карбрадикал, т.е. атом углерода, имеющий 1 неспаренный электрон. Такой радикал легко отбирает один из электронов p-связи и образует пару электронов, т.е. новую s-связь:

Радикал, расположенный на конце растущей цепи, называется радикалом роста. Из схемы видно, что присоединение мономера к радикалу роста сопровождается регенерацией активного центра на конце цепи. Последовательность химических актов, возбужденных одной активной частицей, называется кинетической цепью. Как и всякий цепной процесс, реакция радикальной полимеризации складывается из 3 стадий: инициирования, роста цепи и ее обрыва.

Инициирование радикальной полимеризации

Реакция инициирования включает 2 последовательных акта: образование первичных свободных радикалов и присоединение радикалов к мономерам: I ¾® 2R ·

R · + CH 2 =CHX ¾® RCH 2 ¾C · HX

Скорость первой реакции много меньше скорости второй, поэтому она определяет скорость стадии инициирования. В зависимости от способа образования свободных радикалов различают несколько видов инициирования: вещественное, фотохимическое, радиохимическое и термическое.

Вещественное инициирование. В нем используют вещества, распадающиеся с образованием свободных радикалов. Эти соединения содержат в своих молекулах неустойчивые химические связи (О¾О, N¾N, S¾S, O¾N и др.). В качестве таких веществ используют пероксиды и азосоединения. Среди пероксидов широко применяются ацил-, алкил-, гидропероксиды и перэфиры. Наиболее известным среди азосоединений является изобутиронитрил, распадающийся с выделением азота:

Благодаря последнему обстоятельству он используется в промышленности не только как инициатор, но и для вспенивания пластмасс при получении пенопластов.

Фотохимическое инициирование. При облучении мономера УФ-светом молекулы, поглотившие квант света, возбуждаются и распадаются на инициирующие полимеризацию радикалы:

M + hv ¾® M* ¾® R 1 · + R 2 ·

Однако прямое облучение мономера малоэффективно, т.к. большинство мономеров не поглощает УФ-свет. В этом случае используют фотосенсибилизатор (Z) - соединение, передающее энергию возбуждения другим молекулам: Z + hv ¾® Z*,

Z* + М ¾® Z + М* ¾® R 1 · + R 2 · + Z

Наиболее эффективными фотоинициаторами являются ароматические кетоны и их производные, благодаря широкой области поглощения УФ-спектра.

Фотополимеризация используется для нанесения полимерных покрытий на металл, дерево, керамику, в стоматологии для отверждения композиций зубных пломб, в фотолитографии, с помощью которой изготавливают интегральные схемы в микроэлектронике, а также печатные платы (матрицы) в современной технологии фотонабора, позволяющей исключить использование свинца.

Недостатком фотоинициирования является быстрое падение его эффективности с увеличением толщины облучаемого слоя. Поэтому фотохимическое инициирование эффективно при возбуждении полимеризации в тонких слоях, порядка нескольких миллиметров.

Радиохимическое инициирование. В отличие от фотоизлучения радиоактивное является ионизирующим и обладает гораздо большей проникающей способностью, что объясняется большей энергией его частиц (a-частиц, нейтронов, электронов, жесткого электромагнитного излучения и излучения радиоактивных источников Со 60). Ионизация мономера является следствием выбивания электронов из его молекул частицами высокой энергии: М + излучение ¾® М + · + ē

Термическое инициирование. Имеется очень мало примеров этого процесса (полимеризация стирола и винилпиридинов).

Рост цепи

Реакция роста цепи состоит в многократном присоединении молекул мономера к радикалу с сохранением свободного электрона в концевом звене растущей макромолекулы:

RCH 2 ¾C · HX+ CH 2 =CHX ¾® RCH 2 ¾СНХ¾СН 2 ¾C · HX

Радикал роста атакует метиленовую группу двойной связи, т.е. «хвост» мономера. Такой порядок присоединения называется «голова» (радикал) к «хвосту» (мономер).

Обрыв цепи

связан с исчезновением свободного электрона у конечного звена макромолекулы:

Свободные радикалы взаимодействуют не только с мономерами и образующимися макромолекулами, но и с растворителем и примесями. Такие реакции называют реакциями передачи цепи. При этом активный центр может перейти на любую молекулу, например, молекулу растворителя, которая, превращаясь в радикал, дает начало новой макромолекуле:

В данном случае передача цепи происходит через растворитель - тетрахлорид углерода. При этом скорость реакции полимеризации не уменьшается, а степень полимеризации образующегося полимера снижается. Поэтому изменяя соотношение количества мономера и растворителя, можно получать полимеры с различной молекулярной массой.

ИОННАЯ ПОЛИМЕРИЗАЦИЯ

протекает с образованием либо иона карбония, либо карбаниона, с последующей передачей по растущей цепи «+» или «-» заряда. В зависимости от этого различают катионную (карбониевую) и анионную (карбанионную) полимеризацию. Ионная полимеризация проходит в присутствии катализаторов, способствующих образованию ионов. Поэтому она называется также каталитической полимеризацией.

Синтетические полимеры

В ХХ веке появление синтетических высокомолекулярных соединений – полимеров - было технической революцией. Полимеры получили очень широкое применение в самых различных практических областях. На их основе были созданы материалы с новыми во многом необычными свойствами, значительно превосходящими ранее известные материалы.

Полимеры – это соединения, молекулы которых состоят из повторяющихся единиц - мономеров.

Известны природные полимеры . К ним относятся полипептиды и белки, полисахариды, нуклеиновые кислоты.

Синтетические полимеры получаются путем полимеризации и поликонденсации (см. дальше) низкомолекулярных мономеров.

Структурная классификация полимеров

а) линейные полимеры

Имеют линейное строение цепи. Их названия производятся от названия мономера с добавлением приставки поли -:

б) сетчатые полимеры:

в) сетчатые трехмерные полимеры:

Совместной полимеризацией различных мономеров получают сополимеры . Например:

Физико-химические свойства полимеров определяются степенью полимеризации (величина n) и пространственной структурой полимера. Это могут быть жидкости, смолообразные или твердые вещества.

Твердые полимеры по-разному ведут себя при нагревании.

Термопластичные полимеры – при нагревании расплавляются и после охлаждения принимают любую заданную форму. Это можно повторять неограниченное число раз.

Термореактивные полимеры – это жидкие или пластичные вещества, которые при нагревании затвердевают в заданной форме и при дальнейшем нагревании не расплавляются.

Реакции образования полимеров полимеризация

Полимеризация – это последовательное присоединение молекул мономера к концу растущей цепи. При этом все атомы мономера входят в состав цепи, и в процессе реакции ничего не выделяется.

Для начала реакции полимеризации необходимо активировать молекулы мономера с помощью инициатора. В зависимости от типа инициатора различают

    радикальную,

    катионную и

    анионную полимеризацию.

Радикальная полимеризация

В качестве инициаторов радикальной полимеризации применяют вещества, способные при термолизе или фотолизе образовывать свободные радикалы, чаще всего это органические перекиси или азосоединения, например:

При нагревании или освещении УФ-светом эти соединения образуют радикалы:

Реакция полимеризации включается в себя три стадии:

    Инициирование,

    Рост цепи,

    Обрыв цепи.

Пример – полимеризация стирола:

Механизм реакции

а) инициирование:

б) рост цепи:

в) обрыв цепи:

Радикальная полимеризация легче всего идет с теми мономерами, у которых образующиеся радикалы стабилизированы влиянием заместителей у двойной связи. В приведенном примере образуется радикал бензильного типа.

Радикальной полимеризацией получают полиэтилен, поливинилхлорид, полиметилметакрилат, полистирол и их сополимеры.

Катионная полимеризация

В этом случае активация мономерных алкенов производится протонными кислотами или кислотами Льюиса (BF 3 , AlCl 3 , FeCl 3) в присутствии воды. Реакция идет как электрофильное присоединение по двойной связи.

Например, полимеризация изобутилена:

Механизм реакции

а) инициирование:

б) рост цепи:

в) обрыв цепи:

Катионная полимеризация характерна для винильных соединений с электронодонорными заместителями: изобутилена, бутилвинилового эфира, α-метилстирола.

Поделитесь с друзьями или сохраните для себя:

Загрузка...