Задачи урока: Обобщить и систематизировать знания о процессах жизнедеятельности организмов, обеспечивающих его целостность и взаимосвязь с окружающей средой. Проверить уровень

Ответы к школьным учебникам

Питание - это процесс получения организмами веществ и энергии. Пища содержит химические вещества, необходимые для создания новых клеток и обеспечения энергией процессов, происходящих в организме.

2. В чем сущность пищеварения?

Пища, попав в организм, в большинстве случаев не может усвоиться сразу. Поэтому она подвергается механической и химической переработке, в результате которой сложные органические вещества превращаются в более простые; затем они всасываются в кровь и разносятся ею по всему организму.

3. Расскажите о почвенном питании растений.

При почвенном питании растения с помощью корня поглощают воду и растворенные в ней минеральные вещества, которые по проводящим тканям попадают в стебли и листья.

4. Что такое воздушное питание растений?

Основными органами воздушного питания являются зеленые листья. В них через специальные щелевидные клеточные образования - устьица поступает воздух, из которого растение для питания использует лишь углекислый газ. Хлоропласты листа содержат зеленый пигмент хлорофилл, обладающий удивительной способностью улавливать солнечную энергию. Используя эту энергию, растения путем сложных химических превращений из простых неорганических веществ (углекислого газа и воды) образуют необходимые им органические вещества. Этот процесс называется фотосинтезом (от греч. «фотос» - свет и «синтез» - соединение). В ходе фотосинтеза солнечная энергия преобразуется в химическую, заключенную в органических молекулах. Образовавшиеся органические вещества из листьев перемещаются в другие части растения, где расходуются на процессы жизнедеятельности или откладываются в запас.

5. В каких органоидах растительной клетки происходит фотосинтез?

Процесс фотосинтеза происходит в хлоропластах растительной клетки.

6. Как осуществляется пищеварение у простейших?

Пищеварение у простейших, например у амебы, осуществляется следующим образом. Встретив на своем пути бактерию или одноклеточную водоросль, амеба медленно обволакивает добычу с помощью ложноножек, которые, слившись, образуют пузырек - пищеварительную вакуоль. В нее из окружающей цитоплазмы поступает пищеварительный сок, под действием которого содержимое пузырька переваривается. Образовавшиеся в результате питательные вещества через стенку пузырька поступают в цитоплазму - из них строится тело животного. Непереваренные остатки перемещаются к поверхности тела и выталкиваются наружу, а пищеварительная вакуоль исчезает.

7. Из каких основных отделов состоит пищеварительная система позвоночных?

Пищеварительная система позвоночных обычно состоит из ротового отверстия, глотки, пищевода, желудка, кишечника и анального отверстия, а также многочисленных желез. Пищеварительные железы выделяют ферменты (от лат. «ферментум» - брожение) - вещества, обеспечивающие переваривание пищи. Самые крупные железы - печень и поджелудочная железа. В ротовой полости пища измельчается и смачивается слюной. Здесь под влиянием ферментов слюны и начинается процесс переваривания, который продолжается в желудке. В кишечнике пища окончательно переваривается, и питательные вещества всасываются в кровь. Непереваренные остатки выводятся из организма.

8. Какие организмы называются симбионтами?

Симбионтами (от греч. «симбиозис» - совместная жизнь) называют организмы, которые питаются сообща. Например, грибы - боровики, подберезовики, подосиновики и многие другие - растут у определенных растений. Грибница гриба оплетает корни растения и даже врастает внутрь его клеток, при этом корни дерева получают от гриба дополнительную воду и минеральные соли, а гриб от растения - органические вещества, которые он, не имея хлорофилла, синтезировать сам не может.

10. Чем пищеварительная система планарии отличается от пищеварительной системы дождевого червя?

В пищеварительной системе планарии, как и у гидры, имеется только одно ротовое отверстие. Поэтому пока пищеварение не закончится, животное не может заглотить новую добычу.

Дождевой червь имеет более сложную и совершенную пищеварительную систему. Начинается она ротовым отверстием и заканчивается анальным, и пища по ней проходит только в одном направлении - через глотку, пищевод, желудок и кишечник. В отличие от планарии, питание дождевого червя не зависит от процесса переваривания.

11. Какие хищные растения вы знаете?

На бедных почвах и болотах обитает росянка. Это небольшое растение ловит насекомых с помощью клейких волосков, которые покрывают ее листья. К ним и прилипают неосторожные насекомые, привлеченные блеском клейких капелек сладкого сока. Они вязнут в нем, волоски плотно прижимают жертву к листовой пластине, которая, загибаясь, схватывает добычу. Выделяется сок, напоминающий пищеварительный сок животных, и насекомое переваривается, а питательные вещества всасываются листом. На болотах растет и другое хищное растение - пузырчатка. Она охотится на мелких ракообразных с помощью особых мешочков. А вот венерина мухоловка своими листьями-челюстями может захватить даже молодого лягушонка. Американское растение дарлингтония заманивает насекомых в настоящие ловушки - ловчие листья, имеющие вид ярко окрашенного кувшина. Они снабжены нектароносными железками, выделяющими ароматный сладкий сок, очень привлекательный для будущих жертв.

12. Приведите примеры всеядных животных.

Примерами всеядных животных служат приматы, свиньи, крысы и др.

13. Что такое фермент?

Фермент - особое химическое вещество, обеспечивающее переваривание пищи.

14. Какие приспособления к поглощению пищи встречаются у животных?

Мелкие растительноядные животные, питающиеся грубой растительной пищей, имеют крепкие жевательные органы. У насекомых, питающихся жидкой пищей, - мух, пчел, бабочек - ротовые органы превращены в сосущий хоботок.

Ряд животных имеют приспособления для отцеживания пищи. Например, двустворчатые моллюски, морские желуди отцеживают пищу (микроскопические организмы) с помощью ресничек или щетинообразных усиков. У некоторых китов эту функцию выполняют ротовые пластины - китовый ус. Набрав в рот воды, кит процеживает ее через пластины, а потом заглатывает застрявших между ними мелких ракообразных.

Млекопитающие животные (кролики, овцы, кошки, собаки) имеют хорошо развитые зубы, с помощью которых они откусывают и перетирают пищу. Форма, величина и количество зубов зависят от способа питания животного,

Пищеварение происходит в пищеварительной системе, которая включает в себя специальные железы, вырабатывающие ферменты. Ферменты - биологически активные вещества, способные ускорять биохимические реакции.

Ферменты выполняют роль биокатализаторов. Пищеварительные ферменты осуществляют расщепление компонентов пищи в пищеварительном канале.

Образуются ферменты в клетках пищеварительных желез: слюнных, желудка, поджелудочной, стенок кишок. Из этих желез они выделяются в составе слюны и пищеварительных соков:

  • Желудочного;
  • кишечного;
  • поджелудочного.

Функции ферментов

Каждый из ферментов обладает свойством выполнять определенную функцию и не затрагивать другие, т.е. обладает специфичностью.

Так, ферменты, расщепляющие белки, действуют только на них. Эту группу ферментов называют протеазами. К ним относятся пепсины, желатиназа, химозин желудка, трипсин и химотрипсин поджелудочной железы, энтерокиназа из желез стенок кишок.

Ферменты, расщепляющие жиры, называют липазами. Наиболее активны липазы, выделяющиеся с соком поджелудочной железы.

Третья группа пищеварительных ферментов - амилазы (карбогидразы). Они расщепляют углеводы. К ним относятся птиалин и мальтаза слюны, амилаза, мальтаза и лактаза поджелудочной железы.

Здесь названы лишь основные ферменты. На самом деле их больше. При всем многообразии они обладают упорядоченной последовательностью действия на вещества. Так, начальные этапы расщепления углеводов происходят в полости рта, последующие - в желудке, а затем - в кишках. Расщепление белков начинается в желудке под действием пепсина, а продолжается в кишках под действием других протеаз.

Ферменты функционируют только при определенных условиях среды: pH, температуре, наличии ряда веществ и пр.

Так, фермент желудочного сока - пепсин - действует в резко кислой среде, его оптимум при pH=1,5-2,5. Действие липаз эффективней, если жиры эмульгированы. Роль эмульгатора выполняет желчь. Для работы ферментов кишок необходима щелочная среда. Предпочтительная температура для их нормальной работы - +36-37°С.

Если почему-либо изменяются условия в пищеварительном канале, ферменты снижают свою активность, что приводит к нарушению пищеварения, заболеваниям.

Состав гемолимфы. У высших животных в организме циркулируют две жидкости: кровь, выполняющая дыхательную функцию, и лимфа, выполняющая главным образом функцию разноса питательных веществ. Ввиду существенного отличия от крови высших животных кровь насекомых получила специальное название - гемолимфа . Она представляет собой единственную тканевую жидкость в теле насекомых. Подобно крови позвоночных животных она состоит из жидкого межклеточного вещества - плазмы и находящихся в ней клеток - гемоцитов . В отличие от крови позвоночных гемолимфа не содержит клеток, снабженных гемоглобином или другим дыхательным пигментом. Вследствие этого гемолимфа не выполняет дыхательной функции. Все органы, ткани и клетки берут из гемолимфы нужные им питательные и другие вещества и в нее же выделяют продукты обмена. Гемолимфа транспортирует продукты пищеварения от стенок кишечного канала ко всем органам, а продукты распада переносит к органам выделения.

Количество гемолимфы в теле пчел варьирует: у спарившейся матки - 2,3 мг; у яйцекладущей матки - 3,8; у трутня - 10,6; у рабочей пчелы - 2,7-7,2 мг.

Плазма гемолимфы является той внутренней средой, в которой живут и функционируют все клетки организма насекомого. Она представляет собой водный раствор неорганических и органических веществ. Содержание воды в гемолимфе от 75 до 90 %. Реакция гемолимфы большей частью слабокислая или нейтральная (рН от 6,4 до 6,8). Свободные неорганические вещества гемолимфы очень разнообразны и находятся в плазме в виде ионов. Общее количество их превышает 3%. Они используются насекомыми не только для поддержания осмотического давления гемолимфы, но и как резерв ионов, необходимых для работы живых клеток.

К основным катионам гемолимфы относится натрий, калий, кальций и магний. У каждого вида насекомых количественные соотношения между этими ионами зависят от его систематического положения, среды обитания и пищевого режима.

Для древних и относительно примитивных насекомых (стрекоз и прямокрылых) характерна высокая концентрация ионов натрия при относительно низкой концентрации всех остальных катионов. Однако в таких отрядах, как перепончатокрылые и чешуекрылые, содержание натрия в гемолимфе невысокое, и поэтому другие катионы (магния, калия и кальция) приобретают доминирующее значение. У личинок пчел в гемолимфе преобладают катионы калия, а у взрослых пчел - натрия.

Среди анионов гемолимфы на первом месте стоит хлор. У насекомых, развивающихся с неполным метаморфозом, от 50 до 80% катионов гемолимфы уравновешиваются анионами хлора. Однако в гемолимфе насекомых, развивающихся с полным метаморфозом, концентрация хлоридов сильно снижается. Так, у чешуекрылых анионы хлора могут уравновесить только 8-14% катионов, содержащихся в гемолимфе. В этой группе насекомых преобладают анионы органических кислот.

Помимо хлора, гемолимфа насекомых имеет другие анионы неорганических веществ, например Н 2 РO 4 и НСO 3 . Концентрация этих анионов обычно невысокая, но они могут играть важную роль в поддержании кислотно-щелочного равновесия в плазме гемолимфы.

В состав гемолимфы личинки пчелы входят следующие катионы и анионы неорганических веществ, г на 100 г гемолимфы:

Натрий - 0,012-0,017 магний - 0,019-0,022
калий - 0,095 фосфор - 0,031
кальций - 0,014 хлор - 0,00117

В гемолимфе всегда содержатся растворимые газы - немного кислорода и значительное количество СO 2 .

В плазме гемолимфы имеются разнообразные органические вещества - углеводы, белки, липиды, аминокислоты, органические кислоты, глицерин, дипептиды, олигопептиды, пигменты и др.

Состав углеводов гемолимфы у пчел различного возраста не стабилен и прямо отражает состав Сахаров, поглощенных с кормом. У молодых пчел (не старше 5-6 дней) отмечается низкое содержание глюкозы и фруктозы, а у рабочих пчел - сборщиц нектара гемолимфа богата этими моносахаридами. Уровень фруктозы в гемолимфе пчел всегда больше, чем глюкозы. Содержащаяся в гемолимфе глюкоза полностью расходуется пчелой за 24 ч ее голодания. Запасов глюкозы в гемолимфе хватает пчеле-сборщице на полет в течение 15 мин. При более продолжительном полете пчелы уменьшается объем ее гемолимфы.

В гемолимфе трутней глюкозы меньше, чем у рабочих пчел, и количество ее довольно постоянно - 1,2%. У неплодных маток отмечено высокое содержание глюкозы в гемолимфе (1,7%) во время брачных полетов, но с переходом к кладке яиц количество Сахаров уменьшается и поддерживается на одном достаточно постоянном уровне независимо от ее возраста. В гемолимфе маток происходит значительное увеличение концентрации сахара при нахождении их в семьях, которые готовятся к роению.

Кроме глюкозы и фруктозы в гемолимфе имеются значительные количества дисахарида трегалозы. У насекомых трегалоза служит транспортной формой углеводов. Клетки жирового тела синтезируют ее из глюкозы, а затем выделяют в гемолимфу. Синтезированный дисахарид с током гемолимфы разносится по всему телу и поглощается теми тканями, которые нуждаются в углеводах. В тканях трегалоза расщепляется до глюкозы специальным ферментом - трегалазой. Особенно много трегалазы у пчел - сборщиц пыльцы.
Углеводы запасаются в организме пчел в форме гликогена и накапливаются в жировом теле и мышцах. У куколки гликоген содержится в гемолимфе, высвобождаемый в нее из клеток при гистолизе органов тела личинки.

Белки составляют существенную часть гемолимфы. Общее содержание белков в гемолимфе насекомых довольно высокое - от 1 до 5 г на 100 мл плазмы. Методом дискового электрофореза на полиакриламидном теле удается выделить из гемолимфы от 15 до 30 белковых фракций. Число таких фракций варьирует в зависимости от таксономического положения, пола, стадии развития насекомых и режима питания.

В гемолимфе личинки пчелы содержится значительно больше белка, чем в гемолимфе личинок других насекомых. На долю альбумина у личинки пчелы приходится 3,46%, а на долю глобулина - 3,10%. Содержание белка более постоянно у взрослых пчел, чем у личинок. В гемолимфе матки и рабочей пчелы белков несколько больше по сравнению с гемолимфой трутня. Кроме того, у многих насекомых гемолимфа половозрелых самок содержит белковые фракции, отсутствующие у самцов. Подобные белки получили название - вителлогенинов , специфический для женских особей желточный белок, потому что они используются для целей вителлогенеза - образования желтка в формирующихся яйцах. Вителлогенины синтезируются в жировом теле, а гемолимфа транспортирует их к созревающим ооцитам (зародышевым клеткам).

Особенно богата гемолимфа пчел, как и большинства других насекомых, аминокислотами, их здесь в 50-100 раз больше, чем в плазме позвоночных животных. Обычно в гемолимфе обнаруживается 15-16 свободных аминокислот, среди них максимального содержания достигают глутаминовая кислота и пролин. Пополнение запаса аминокислот в гемолимфе происходит из корма, перевариваемого в кишечнике, и из жирового тела, клетки которого могут синтезировать заменимые аминокислоты. Жировое тело, снабжающее гемолимфу аминокислотами, выступает и в роли их потребителя. Оно поглощает из гемолимфы аминокислоты, расходуемые на синтез белков.

Липиды (жиры) поступают в гемолимфу главным образом из кишечника и жирового тела. Наиболее значительную часть липидной фракции гемолимфы составляют глицериды, т. е. сложные эфиры глицерина и жировых кислот. Содержание жира непостоянно и зависит от корма насекомых, достигая в некоторых случаях 5% и больше. В 100 см 3 гемолимфы личинок рабочих пчел содержится от 0,37 до 0,58 г липидов.

В гемолимфе насекомых можно обнаружить почти все органические кислоты. У личинок насекомых, развивающихся с полным метаморфозом, отмечается особенно высокое содержание лимонной кислоты в плазме гемолимфы.

Среди пигментов, содержащихся в гемолимфе, чаще всего встречается каротиноиды и флавоноиды, которые создают желтую или зеленоватую окраску гемолимфы. В гемолимфе медоносных пчел присутствует бесцветный хромоген меланина.

В гемолимфе всегда присутствуют продукты распада в виде свободной мочевой кислоты или в виде ее солей (уратов).

Наряду с отмеченными органическими веществами в гемолимфе медоносных пчел всегда присутствуют окислительные и восстановительные, а также пищеварительные ферменты.

В гемолимфе пчел присутствуют гемоциты , представляющие собой снабженные ядрами клетки, которые происходят из мезодермы. Большая их часть обычно оседает на поверхности различных внутренних органов, и только некоторое количество их свободно циркулирует в гемолимфе. Гемоциты, прилегающие к тканям и сердцу, образуют фагоцитарные органы. У пчел гемоциты проникают и в сердце и циркулируют даже в тонких жилках крыльев.

Общее число гемоцитов, свободно циркулирующих в теле насекомого, 13 млн, а их суммарный объем достигает 10% объема гемолимфы. По своей форме они очень разнообразны и подразделяются на несколько типов. Все гемоциты, встречающиеся у личинок, куколок, молодых и старых пчел, составляют 5-7 типов. Б. А. Шишкин (1957) детально изучил строение гемоцитов у пчел и выделил пять основных типов: плазмоциты, нимфоциты, сферулоциты, эноцитоиды и платоциты (рис. 22). Каждый тип - это самостоятельная группа гемоцитов, не связанных друг с другом по происхождению и не имеющих морфологических переходов. Он описал и стадии развития гемоцитов от молодых растущих форм к зрелым и дегенерирующим.


Рис. 22.

А - плазмоциты; Б - нимфоциты; В - сферулоциты; Г - эноцитоиды; Д - платоциты (в стадии развития и дегенерации); ц - цитоплазма; я - ядро; в - вакуоли; бз - базофильные зерна; с - сферулы; хг - хроматиновые глыбки; хз - хроматиновые зерна


Плазмоциты - клеточные элементы гемолимфы личинки. Молодые клетки часто делятся митотическим путем и проходят пять стадий развития. Клетки отличаются размерами и строением.

Нимфоциты - клеточные элементы гемолимфы куколки, которые вдвое меньше плазмоцитов. Нимфоциты имеют светопреломляющие гранулы и вакуоли.

Сферулоциты встречаются у куколки и у взрослой пчелы. Эти клетки отличаются наличием в цитоплазме включений - сферул.

Эноцитоиды также встречаются у куколок и взрослых пчел. Клетки имеют округлую форму. В цитоплазме эноцитоидов содержатся гранулированные или кристаллические включения. Все клетки этого типа проходят шесть стадий развития.

Платоциты - небольшие, разнообразной формы и самые многочисленные гемоциты в гемолимфе взрослой пчелы, составляющие 80- 90% всех гемоцитов пчелы. Платоциты проходят от молодых до зрелых форм семь стадий развития.

Благодаря способности и трансформациям клетки гемолимфы, находящиеся в разных морфологических состояниях, могут выполнять разные функции. Обычно каждый тип гемоцитов накапливается в максимальном количестве на определенных этапах жизненного цикла. Особенно резко снижается количество гемоцитов в гемолимфе с 10-го дня жизни пчел. По-видимому, это переломный период в жизни пчелы и связан с изменением ее функции.

В летне-осенний период в гемолимфе пчел, пораженных клещом варроа, наблюдается увеличение числа платоцитов зрелых и старых возрастов, а также наличие большого количества юных форм клеток. Это, видимо, связано с тем, что при питании клеща на пчеле происходит уменьшение объема гемолимфы, ведущего к нарушению обмена веществ и регенерации платоцитов.

Функции гемолимфы. Гемолимфа омывает все клетки, ткани и органы насекомого. Она является той внутренней средой, в которой живут и функционируют все клетки организма пчелы. Гемолимфа выполняет семь основных жизненно важных функций.

Гемолимфа разносит питательные вещества от стенок кишечника ко всем органам. В выполнении этой трофической функции принимают участие гемоциты и химические соединения плазмы. Часть питательных веществ поступает из гемолимфы в клетки жирового тела и откладывается там в виде резервных питательных веществ, которые вновь переходят в гемолимфу при голодании пчел.

Вторая важная функция гемолимфы - участие в удалении продуктов распада . Гемолимфа, протекая в полости тела, постепенно насыщается продуктами распада. Затем она приходит в соприкосновение с мальпигиевыми сосудами, клетки которых выбирают из раствора продукты распада, мочевую кислоту. Таким образом, гемолимфа осуществляет транспортировку мочевой кислоты, уратов и других веществ от клеток организма пчелы к мальпигиевым сосудам, которые постепенно уменьшают концентрацию продуктов распада в гемолимфе. Из мальпигиевых сосудов мочевая кислота поступает в заднюю кишку, откуда выбрасывается с каловыми массами.

Н. Я. Кузнецов (1948) показал, что фагоцитоз бактерий слагается из двух процессов. Прежде на бактерии действуют химические агенты гемолимфы, а затем идет процесс поглощения бактерий фагоцитами.

О. Ф. Гробов (1987) показал, что организм личинки на внедрение возбудителя американского гнильца всегда отвечает защитной реакцией - фагоцитозом. Фагоциты захватывают и разрушают бациллы ларве, но это не обеспечивает полной защиты организма. Размножение бацилл идет интенсивнее, чем их фагоцитирование, и личинка погибает. При этом наблюдалось полное отсутствие фагоцитоза.

Существенна также механическая функция гемолимфы - создание необходимого внутреннего давления, или тургора. Благодаря этому у личинок поддерживается определенная форма тела. Кроме того, путем сокращения мышц может возникать повышенное давление гемолимфы и передаваться через нее в другое место для выполнения иной функции, например для разрыва кутикулярного покрова у личинок при линьке или расправления крыльев у только что вышедших из ячеек пчел.

Исключительно велика роль гемолимфы в поддержании постоянства активной кислотности . Почти все жизненные процессы в организме могут нормально протекать при постоянной реакции среды. Поддержание постоянства активной кислотности (рН) достигается благодаря буферным свойствам гемолимфы.

М. И. Резниченко (1930) показал, что гемолимфа пчел отличается хорошей буферностью. Так, при разведении гемолимфы в 10 раз активная кислотность ее почти не изменилась.

Гемолимфа принимает участие в газообмене , хотя и не разносит кислород по телу пчелы. Образующийся в клетках СO 2 непосредственно попадает в гемолимфу и с ней уносится в места, где повышенные возможности аэрации обеспечивают удаление его через трахейную систему.

Несомненно, что антибиотики и некоторые плазменные белки могут создавать устойчивость насекомых к болезнетворным микроорганизмам (иммунитет).

Как известно, в крови позвоночных животных действуют две независимые системы иммунитета - неспецифическая и специфическая.

Неспецифический иммунитет обусловлен на выделении в кровь антибактериальных белковых продуктов, создающих естественную или приобретенную устойчивость животных к заболеваниям. К числу наиболее изученных соединений этого рода принадлежит лизоцим - фермент, который разрушает оболочку бактериальных клеток. Установлено, что у насекомых неспецифическая система иммунитета тоже включает использование того же фермента.

Специфический иммунитет у позвоночных животных связан с образованием антител. Антитела принадлежат к глобулиновым белкам. Защитное действие любого антитела основано на его способности соединяться с определенным антигеном. Вакцинация, т. е. применение вакцины с ослабленными или убитыми возбудителями заразного заболевания, стимулирует образование специфических антител и создает устойчивость к данному заболеванию.

Считается, что в гемолимфе насекомых антитела не образуются. Однако, несмотря на это, известно, что вакцинация эффективно предохраняет насекомых от ряда болезней.

Еще в 1913 г. И. Л. Сербинов высказал гипотезу о возможности создания иммунитета у пчел при помощи вакцины, вводимой в организм через рот. Позже В. И. Полтев и Г. В. Александрова (1953) отмечали, что при заражении взрослых пчел возбудителем европейского гнильца через 10-12 дней у них создавался иммунитет.

Гемолимфа омывает все органы и ткани пчелы, объединяет их в единое целое. В гемолимфу попадают гормоны, ферменты и другие вещества, которые разносятся по телу. Под влиянием гормонов происходят процессы метаморфоза: превращения личинки в куколку и куколки во взрослую пчелу. Таким образом, основные процессы обмена веществ в организме пчелы непосредственно связаны с гемолимфой.

Гемолимфа в некоторой степени обеспечивает терморегуляцию организма. Омывая места усиленного теплообразования (грудная мускулатура), гемолимфа нагревается и переносит это тепло в места с более низкой температурой.


Новая конструкция улья разрешает получать мед “из крана” и не беспокоить пчел

Предыдущая страница -

Растворено вещество, близкое по строению к гемоглобину, имеющемуся у высших животных. Просвечивая через прозрачные покровы, гемолимфа придает красный цвет и телу насекомого. (фото)

Содержание воды в гемолимфе - 75-90%, в зависимости от стадии жизненного цикла и состояния (активная жизнь, ) насекомого. Ее реакция либо слабокислая (как и у крови животных), либо нейтральная, в пределах рН 6-7. Между тем, осмотическое давление гемолимфы намного выше, чем у крови теплокровных. В качестве осмотически активных соединений выступают различные аминокислоты и прочие вещества преимущественно органического происхождения.

Осмотические свойства гемолимфы особенно сильно выражены у немногочисленных насекомых, населяющих солоноватые и соленые воды. Так, даже при погружении мухи-береговушки в концентрированный раствор соли ее кровь не меняет своих свойств, а из тела не выходит жидкость, чего стоило бы ожидать при таком «купании».

По весу гемолимфа составляет 5-40% от массы тела.

Как известно, кровь животных имеет свойство свертываться - это защищает их от слишком большой кровопотери при ранениях. Среди насекомых не все обладают свертывающейся кровью; их раны, если такие появляются, обычно закрываются «пробками» из плазмоцитов, подоцитов и других специальных клеток гемолимфы.

Разновидности гемоцитов у насекомых

Состав гемолимфы насекомых

Гемолимфа состоит из двух частей: жидкости (плазмы) и клеточных элементов, представленных гемоцитами.

В плазме растворены органические вещества и неорганические соединения в ионизированной форме: натрий, калий, кальций, магний, хлорит-, фосфат, карбонат-ионы. В сравнении с позвоночными, гемолимфа насекомых содержит больше калия, кальция, фосфора и магния. Например, у растительноядных видов концентрация магния в крови может быть в 50 раз выше, чем у млекопитающих. То же касается калия.

Также в жидкой части крови обнаруживаются питательные вещества, метаболиты (мочевая кислота), гормоны, ферменты и пигментные соединения. В некотором количестве там также находятся растворенный кислород и углекислый газ, пептиды, белки, липиды, аминокислоты.

Остановимся подробнее на питательных веществах гемолимфы. Из углеводов большая часть, примерно, 80%, приходится на трегалозу, состоящую из двух молекул глюкозы. Она образуется в , выходит в гемолимфу, а затем расщепляется ферментом трегалазой в органах. При снижении температуры из другого углевода - гликогена - образуется глицерин. Кстати, именно глицерин имеет главное значение при переживании насекомыми морозов: он не дает гемолимфе образовать кристаллы льда, способные повредить ткани. Она превращается в желеобразную субстанцию, и насекомое сохраняет жизнеспособность иногда даже при минусовых температурах (например, наездник Braconcephi выдерживает замораживание до - 17 градусов).

Аминокислоты представлены в плазме в достаточно большом количестве и концентрации. Особенно там много глутамина и глутаминовой кислоты, которые играют роль в осморегуляции и используются для построения . Многие аминокислоты соединяются друг с другом в плазме и «хранятся» там в виде простых белков - пептидов. В гемолимфе самок насекомых имеется имеется группа белков - вителлогенинов, которые используются при синтезе желтка в . Белок лизоцим, присутствующий в крови у представителей обоих полов, играет роль в защите организма от бактерий и вирусов.

Клетки «крови» насекомых - гемоциты - как и эритроциты животных, имеют мезодермальное происхождение. Они бывают подвижными и неподвижными, имеют различную форму, представлены с разной «концентрацией». Например, в 1 мм 3 гемолимфы божьей коровки находится около 80 000 клеток. По другим данным, их количество может достигать 100 000. У сверчка их от 15 до 275 тыс. на 1 мм 3 .

Гемоциты разделяются по морфологии и функциям на основные разновидности: амебоциты, хромофильные лейкоциты, фагоциты с гомогенной плазмой, гемоциты с зернистой плазмой. А вообще, среди всех гемоцитов было обнаружено целых 9 видов: прогемоцит, плазмоцит, гранулоцит, эноцит, цистоцит, сферическая клетка, адипогемоцит, подоцит, червеобразная клетка. Частично это клетки разного происхождения, частично - разные «возраста» одного и того же гемопоэтического ростка. Они имеют различный размер, форму и функции. (фото)

Обычно гемоциты оседают на стенках сосудов и в циркуляции практически не участвуют, и только перед наступлением очередного этапа превращения или перед начинают перемещаться в кровотоке. Образуются они в специальных гемопоэтических органах. У Сверчков, Мух, Бабочек и эти органы находятся в области спинного сосуда.

Функции гемолимфы

Они весьма многообразны.

Питательная функция : транспорт по телу питательных элементов.

Гуморальная регуляция: обеспечение работы эндокринной системы, перенос гормонов и других биологически активных веществ к органам.

Дыхательная функция : транспорт кислорода к клеткам (у некоторых насекомых, гемоциты которых имеют гемоглобин или близкий к нему пигмент). Пример с Хиронимусов (комаров-звонцов, комаров-дергунов) уже описан выше. Это насекомое в личиночную стадию живет в воде, в болотистой местности, где содержание кислорода минимально. Данный механизм позволяет ему использовать имеющиеся в воде запасы О 2, чтобы выживать в таких условиях. У других кровь дыхательную функцию не выполняет. Хотя есть интересное исключение: у после питания проглоченные им эритроциты человека могут проникать через стенку кишечника в полость тела, где они без изменений, в состоянии полной жизнеспособности остаются продолжительное время. Правда, они слишком не похожи на гемоциты, чтобы брать на себя их функцию.

Выделительная функция : накопление продуктов обмена веществ, которые затем будут выведены из организма органами выделения.

Механическая функция : создание тургора, внутреннего давления для поддержания формы тела и структуры органов. Это особенно важно для с их мягкой

У ряда насекомых, например, саранчи или кузнечиков, наблюдается автогеморрагия: при сокращении особых мышц кровь выплескивается у них наружу для самозащиты. При этом она, по-видимому, смешиваясь с воздухом , иногда образует пену, что увеличивает ее объем. Места выброса крови у Листоедов , Кокцинеллид и других располагаются в области сочленений , в зоне прикрепления первой пары к телу и около рта.

Поделитесь с друзьями или сохраните для себя:

Загрузка...